Please note: We are currently experiencing some performance issues across the site, and some pages may be slow to load. We are working on restoring normal service soon. Importing new articles from Word documents is also currently unavailable. We apologize for any inconvenience.

Marcel Mizera

and 7 more

Slip on the active Mai’iu low-angle normal fault in Papua New Guinea that dips 15–24° at the surface has exhumed in its footwall a single, continuous fault surface across a >25 km-wide dome. Derived from a metabasaltic protolith, the fault zone consists of a ≤3 m-thick zone of gouges and cataclasites that overprint a structurally underlying carapace of extensional mylonites. Detailed microstructural and geochemical data, combined with chlorite-based geothermometry, reveal changing deformation processes and conditions in the Mai’iu fault rocks as they were exhumed. The microstructure of non-plastically deformed actinolite grains inherited from the fine-grained (6–35 µm) basaltic protolith indicate that shearing at depth was controlled by diffusion creep accompanied by grain-boundary sliding of these grains together with chlorite neo-crystallization at T≥270–370°C. In a foliated cataclasite unit at shallower crustal levels (T≈150–270°C), fluid-assisted mass transfer and metasomatic reactions accommodated aseismic, distributed shearing; pseudotachylites and ultracataclasites in the same unit indicate that such creep was punctuated by episodes of seismic slip—after which creep resumed. At the shallowest levels (T≤150°C), gouges contain abundant saponite, a frictionally weak mineral that promotes creep on the shallowest-dipping (≤24°), most poorly oriented part of the Mai’iu fault. Our field, microstructural and geochemical data of freshly exhumed fault rocks support geodetic, seismological, and geomorphic evidence for mixed seismic-to-aseismic slip on this active low-angle normal fault.