Kay Suselj

and 6 more

As a marine Carbon Dioxide Removal (mCDR) approach, Ocean Alkalinity Enhancement (OAE) is emerging as a viable method for removing anthropogenic CO2 emissions from the atmosphere to mitigate climate change. To achieve substantial carbon reduction using this method, OAE would need to be widespread and scaled-up across the global ocean. However, the efficiency of OAE varies substantially across a range of space-time scales and as such field deployments must be carefully planned to maximize efficiency and minimize logistical costs and risks. Here we develop a mCDR efficiency framework based on the data-assimilative ECCO-Darwin ocean biogeochemistry model, which examines two key factors over seasonal to multi-decadal timescales: 1) mCDR potential, which quantifies the CO2 solubility of the upper ocean; and 2) dynamical mCDR efficiency, representing the full-depth impact of ocean advection, mixing, and air-sea CO2 exchange. To isolate and quantify the factors that determine dynamical efficiency, we develop a reduced complexity 1-D model, rapid-mCDR, as a computationally-efficient tool for evaluation of mCDR efficiency. Combining the rapid-mCDR model with ECCO-Darwin allows for rapid characterization of OAE efficiency at any location globally. This research contributes to our understanding and optimization of OAE deployments (i.e., deploying experiments in the real-world ocean) as an effective mCDR strategy and elucidates the regional differences and mechanistic processes that impact mCDR efficiency. The modeling tools developed in this study can be readily employed by research teams and industry to plan and complement future field deployments and provide essential Monitoring, Reporting, and Verification (MRV).

Yassir A. Eddebbar

and 5 more

In the tropical Pacific, weak ventilation and intense microbial respiration at depth give rise to a low dissolved oxygen (O2) environment that is thought to be ventilated primarily by the equatorial current system (ECS). The role of mesoscale eddies and diapycnal mixing as potential pathways of O2 supply in this region, however, remains poorly known due to sparse observations and coarse model resolution. Using an eddy resolving simulation of ocean circulation and biogeochemistry, we assess the contribution of these processes to the O2 budget balance and find that turbulent mixing of O2 and its modulation by mesoscale eddies contribute substantially to the replenishment of O2 in the upper equatorial Pacific thermocline, complementing the advective supply of O2 by the ECS and meridional circulation at depth. These transport processes are strongly sensitive to seasonal forcing by the wind, with elevated mixing of O2 into the upper thermocline during summer and fall when the vertical shear of the lateral flow and eddy kinetic energy are intensified. The tight link between eddy activity and the downward mixing of O2 arises from the modulation of equatorial turbulence by Tropical Instability Waves via their eddy impacts on the vertical shear. This interaction of ocean processes across scales sustains a local pathway of O2 delivery into the equatorial Pacific interior and highlights the need for adequate observations and model representation of turbulent mixing and mesoscale processes for understanding and predicting the fate of the tropical Pacific O2 content in a warmer and more stratified ocean.

Genevieve Jay Brett

and 5 more

We examine the effects of the submesoscale in mediating the response to projected warming of phytoplankton new production and export using idealized biogeochemical tracers in a high-resolution regional model of the Porcupine Abyssal Plain region of the North Atlantic. We quantify submesoscale effects by comparing our control run to an integration in which submesoscale motions have been suppressed using increased viscosity. The warming climate over the 21st century reduces resolved submesoscale activity by a factor of 2-3. Annual new production is slightly reduced by submesoscale motions in a climate representative of the early 21st-century and slightly increased by submesoscale motions in a climate representative of the late 21st-century. Resolving the submesoscale, however, does not strongly impact the projected reduction in annual production under representative warming. Organic carbon export from the surface ocean includes both direct sinking of detritus (the biological gravitational pump) and advective transport mediated pathways; the sinking component is larger than advectively mediated transport by up to an order of magnitude across a wide range of imposed sinking rates. Submesoscales are responsible for most of the advective carbon export, however, which is thus largely reduced by a warming climate. In summary, our results demonstrate that resolving more of the submesoscale has a modest effect on present-day new production, a small effect on simulated reductions in new production under global warming, and a large effect on advectively-mediated export fluxes.