Samuel Mogen

and 10 more

Anthropogenic carbon emissions and associated climate change are driving rapid warming, acidification, and deoxygenation in the ocean, which increasingly stress marine ecosystems. On top of long-term trends, short term variability of marine stressors can have major implications for marine ecosystems and their management. As such, there is a growing need for predictions of marine ecosystems on monthly, seasonal, and multi-month timescales. Previous studies have demonstrated the ability to make reliable predictions of the surface ocean physical and biogeochemical state months to years in advance, but few studies have investigated forecasts of multiple stressors simultaneously or assessed the forecast skill below the surface. Here, we use the Community Earth System Model (CESM) Seasonal to Multiyear Large Ensemble (SMYLE) along with novel observation-based biogeochemical and physical products to quantify the predictive skill of dissolved inorganic carbon, dissolved oxygen, and temperature in the surface and subsurface ocean. CESM SMYLE demonstrates high physical and biogeochemical predictive skill multiple months in advance in key oceanic regions and frequently outperforms persistence forecasts. We find up to 10 months of skillful forecasts, with particularly high skill in the Northeast Pacific (Gulf of Alaska and California Current Large Marine Ecosystems) for temperature, surface DIC, and subsurface oxygen. Our findings suggest that dynamical marine ecosystem prediction could support actionable advice for decision making.

Clara Schoenbeck

and 10 more

The oceanographic conditions of the Southern California Bight (SCB) dictate the distribution and abundance of prey resources and therefore the presence of mobile predators, such as Cuvier’s beaked whales (Ziphius cavirostris). Cuvier’s beaked whales are deep-diving odontocetes that spend a majority of their time foraging at depth. Due to their cryptic behavior, little is known about how they respond to seasonal and interannual changes in their environment. This study utilizes passive acoustic data recorded from two sites within the SCB to explore the oceanographic conditions that Cuvier’s beaked whales appear to favor. Utilizing optimum multiparameter analysis, modeled temperature and salinity data are used to identify and quantify these source waters: Pacific Subarctic Upper Water (PSUW), Pacific Equatorial Water (PEW), and Eastern North Pacific Central Water (ENPCW). The interannual and seasonal variability in Cuvier’s beaked whale presence was related to the variability in El Niño Southern Oscillation events and the fraction and vertical distribution of the three source waters. Cuvier’s beaked whale acoustic presence was highest during the winter and spring and decreased during the late summer and early fall. These seasonal increases occurred at times of increased fractions of PEW in the California Undercurrent and decreased fractions of ENPCW in surface waters. Interannual increases in Cuvier’s beaked whale presence occurred during El Niño events. These results establish a baseline understanding of the oceanographic characteristics that correlate with Cuvier’s beaked whale presence in the SCB. Furthering our knowledge of this elusive species is key to understanding how anthropogenic activities impact Cuvier’s beaked whales.