Susan Howard

and 3 more

Diurnal tidal currents are the dominate contributors to diapycnal mixing in many regions along the pathways for warm Atlantic Water (AW) circulating within the Arctic Ocean along the continental slope. This mixing diffuses AW heat and salt into the cooler and fresher surroundings, including the upper ocean where ocean heat fluxes play a role in the stability of the ice pack. The strongest diurnal currents are associated with topographically-trapped vorticity waves, which are sensitive to stratification and mean flow. In models, these waves are also sensitive to choices for forcing and geometry. Sensitivity to background conditions implies that tidal currents and mixing will change as the Arctic evolves towards a new climate state. Here, as a first step towards understanding how diurnal tidal currents might change in a future Arctic Ocean, we describe results from a suite of high-resolution (dx=2 km) 2-D and 3-D models for Arctic diurnal tides, focusing on their currents at locations along the AW pathways. We first demonstrate that accurate representation of barotropic diurnal tides requires forcing with both open boundary conditions and the direct potential tide. Next, we use 3-D models with realistic, ocean background stratification and mean flow to describe the annual cycle of depth-averaged diurnal tidal currents. Finally, we investigate the baroclinic structure of diurnally forced waves including the generation of harmonics (semidiurnal and higher) that can contribute to mixing within the water column. Our results show that tides should be explicitly included in ocean and coupled predictive models for the Arctic to represent the feedbacks between tidal energetics and ocean mean state via mixing.

Till Baumann

and 9 more

In the Arctic Ocean, semidiurnal-band processes including tides and wind-forced inertial oscillations are significant drivers of ice motion, ocean currents and shear contributing to mixing. Two years (2013-2015) of current measurements from seven moorings deployed along °E from the Laptev Sea shelf (~50 m) down the continental slope into the deep Eurasian Basin (~3900 m) are analyzed and compared with models of baroclinic tides and inertial motion to identify the primary components of semidiurnal-band current (SBC) energy in this region. The strongest SBCs, exceeding 30 cm/s, are observed during summer in the upper ~30 m throughout the mooring array. The largest upper-ocean SBC signal consists of wind-forced oscillations during the ice-free summer. Strong barotropic tidal currents are only observed on the shallow shelf. Baroclinic tidal currents, generated along the upper continental slope, can be significant. Their radiation away from source regions is governed by critical latitude effects: the S baroclinic tide (period = 12.000 h) can radiate northwards into deep water but the M (~12.421 h) baroclinic tide is confined to the continental slope. Baroclinic upper-ocean tidal currents are sensitive to varying stratification, mean flows and sea ice cover. This time-dependence of baroclinic tides complicates our ability to separate wind-forced inertial oscillations from tidal currents. Since the shear from both sources contributes to upper-ocean mixing that affects the seasonal cycle of the surface mixed layer properties, a better understanding of both inertial motion and baroclinic tides is needed for projections of mixing and ice-ocean interactions in future Arctic climate states.