Please note: We are currently experiencing some performance issues across the site, and some pages may be slow to load. We are working on restoring normal service soon. Importing new articles from Word documents is also currently unavailable. We apologize for any inconvenience.

Andrew F. Feldman

and 25 more

Dryland ecosystems cover 40% of our planet’s land surface, support the lives of billions of people, and are responding dramatically to the combined effects of climate and land use change. These expansive and diverse systems also dominate core aspects of Earth’s climate, storing and exchanging vast amounts of water, carbon, and energy with the atmosphere. Despite the indispensable natural resources and ecosystem services provided by drylands and their high vulnerability to change, drylands are one of the most, if not the most, poorly understood ecosystem types. Such lack of study has been in part due to incorrect historical assumptions that drylands are unproductive “wastelands”. This lack of understanding results in notably poor model representation and forecasting capacity, hindering our representation and decision making for these vulnerable ecosystems. The NASA Terrestrial Ecology Program solicited proposals for a multi-year field campaign, of which Adaptation and Response in Drylands (ARID) was one of two scoping studies selected. With the goal of gathering input from the scientific and data end-user communities, we provide an overview of our ARID kick-off meeting with over 300 in-person and virtual participants held in October 2023 at the University of Arizona. This meeting gathered insights from public and private data end-users and scientists. We also report on follow-up activities that have taken place since then, including town halls, community surveys, and international engagements.

Fernando Sedano

and 6 more

Urban population in sub Saharan Africa (SSA) is rapidly growing. While only 30% of its population lived in urban centers in 2000, this figure will reach 60% by year 2050. Urban energy demand is closely tied to forest degradation. Charcoal is the main source of cooking fuel for eighty percent of African urban households and its overall consumption is expected to rise by 2040. Charcoal production is already the main driver of forest degradation in SSA. REDD+ guidelines encourage countries to identify and describe individual activities and drivers causing forest degradation as an initial step to define suitable methods for measuring and monitoring and formulate appropriate strategies and policies. Yet, forest degradation associated to charcoal production remains largely under reported. Charcoal production results in partial removals of forest cover that do not necessarily involve significant variations of the spectral signal. As a consequence, efforts to monitor forest degradation associated to charcoal production with medium resolution data has proved elusive. We present initial results of our effort to monitor and quantify carbon emissions from forest degradation due to charcoal production in SSA. Our work combines time series of multi sensor medium (20 – 30m), high (2m) and very high (0.5m) spatial resolution sensors with field data to characterize the spatial and temporal dynamics of charcoal production in charcoal production sites across SSA. The integration of these datasets provides the means to map, monitor and measure charcoal kilns, and subsequently quantify the magnitude and intensity of aboveground biomass removals associated to charcoal production at a level of detail and precision not reported previously. Our initial results reveal that charcoal production accounts for a larger share of greenhouse gas emission than previously reported, highlight its negative impacts on the ecosystem, and question the long-term sustainability of charcoal production under current and future urban energy demands. This work is a first step towards the development of a monitoring, reporting and verification system specific to forest degradation in the SSA context.