We present a seismic model of the African Plate, made with the technique of full-waveform inversion. The purpose of our model is to become a foundation for future use and research, such as quantitative geodynamic interpretations, earthquake-induced ground motion predictions, and earthquake source inversion. Starting from the first-generation Collaborative Seismic Earth Model (CSEM), we invert seismograms filtered to a minimum period of 35 s and compute gradients of the misfit function with respect to the model parameters using the adjoint state method. In contrast to the conventional FWI approach, we use dynamically changing data subsets (mini-batches) of the complete dataset to compute approximate gradients at each iteration. This approach has three significant advantages: (1) it reduces computational costs for model updates and the inversion, (2) it enables the use of larger datasets without increasing iteration costs, and (3) it makes it trivial to assimilate new data since we can add it to the complete dataset without changing the misfit function, thereby enabling “evolutionary FWI". We perform 130 mini-batch iterations and invert data from 397 unique earthquakes and 184,356 unique source-receiver pairs at the cost of approximately 10 full-data iterations. We clearly image tectonic features such as the Afar triple junction. Particularly interesting are the low-velocity zones below the Hoggar, Aïr, and Tibesti Mountains, pronounced more than in earlier works. Finally, we introduce a new strategy to assess model uncertainty. We deliberately perturb the final model, perform additional mini-batch iterations, and compare the result with the original final model. This test uses actual seismic data instead of artificially generated synthetic data and requires no assumptions about the linearity of the inverse problem.

Sebastian Noe

and 12 more

Geological interpretations, earthquake source inversions and ground motion modelling, among other applications, require models that jointly resolve crustal and mantle structure. With the second generation of the Collaborative Seismic Earth Model (CSEM2), we present a global multi-resolution tomographic Earth model that serves this purpose. The model evolves through successive regional- and global-scale refinements. While the first generation aggregated regional models, with this study, we ensure consistency between all individual submodels, resulting in a model that accurately explains wave propagation across scales. Recent regional tomographic models were incorporated, comprising continental-scale inversions for Asia and Africa, as well as regional inversions for the Western US, Central Andes, Iran, and Southeast Asia. Across all regional refinements, over 793,000 unique source-receiver pairs contributed. Moreover, the long-wavelength Earth model (LOWE) introduces large-scale structures outside of pre-existing local refinements. A global full-waveform inversion over a total of 194 iterations with a minimum period of 50 s on a large data set of 2,423 earthquakes and over 6 million source-receiver pairs ensures that regional updates in the crust and uppermost mantle correctly translate into updates of deeper, global-scale structure. To test the performance of CSEM2, we evaluate waveform fits between observed and synthetic seismograms at 50 s for an independent data set on the global scale, and on the regional scale for lower periods. We show that we can accurately simulate waveforms within and across the regional refinements, maintaining the original resolution of the submodels embedded in the global framework.

Yajian Gao

and 7 more

We present a new seismic tomography model for the crust and upper-mantle beneath the Central Andes based on multi-scale full seismic waveform inversion, proceeding from long periods (40–80~s) over several steps down to 12–60~s. The spatial resolution and trade-offs among inversion parameters are estimated through the multi-parameter point-spread functions. P and S wave velocity structures with a spatial resolution of 30–40 km for the upper mantle and 20 km for the crust could be resolved in the central study region. In our study, the subducting Nazca slab is clearly imaged in the upper mantle, with dip-angle variations from the north to the south. Bands of low velocities in the crust and mantle wedge indicate intense crustal partial melting and hydration of the mantle wedge beneath the frontal volcanic arc, respectively and they are linked to the vigorous dehydration from the subducting Nazca plate and intermediate depth seismicity within the slab. These low velocity bands are interrupted at 19.8º–21°S, both in the crust and uppermost mantle, hinting at the lower extent of crustal partial melting and hydration of the mantle wedge. The variation of lithospheic high velocity anomalies below the backarc from North to South allows insight into the evolutionary foundering stages of the Central Andean margin. A high velocity layer beneath the southern Altiplano suggests underthrusting of the leading edge of the Brazilian Shield. In contrast, a steeply westward dipping high velocity block and low velocity lithospheric uppermost mantle beneath the southern Puna plateau hints at the ongoing lithospheric delamination.