Please note: We are currently experiencing some performance issues across the site, and some pages may be slow to load. We are working on restoring normal service soon. Importing new articles from Word documents is also currently unavailable. We apologize for any inconvenience.

Louis-Marie Gauer

and 2 more

Gravity Recovery And Climate Experiment (GRACE) and GRACE-Follow On (GRACE-FO) global monthly measurements of Earth’s gravity field have led to significant advances in the quantification of mass transfer on Earth. Yet, a long temporal gap between missions prevents interpretation of long-term mass variations. Moreover, instrumental and processing errors translate into large non-physical stripes polluting geophysical signals. We use Multichannel Singular Spectrum Analysis (M-SSA) to overcome both issues by exploiting spatio-temporal information of multiple Level-2 GRACE/GRACE-FO solutions. We statistically replace missing data and outliers using iterative M-SSA on Equivalent Water Height (EWH) time series processed by CSR, GFZ, GRAZ, and JPL to form a combined evenly spaced solution. Then, M-SSA is applied to retrieve common signals between each EWH time series and its neighbours to reduce residual spatially uncorrelated noise. We develop a complementary filter, based on the residual noise between fully processed data and a parametric fit to observations, to further reduce persisting stripes. Comparing GRACE/GRACE-FO M-SSA solution with SLR low-degree Earth’s gravity field and hydrological model demonstrates its ability to statistically fill missing observations. Our solution reaches a noise level comparable to mass concentration (mascon) solutions over oceans, without requiring \textit{a priori} information or regularisation. While short-wavelength signals are hampered by filtering of spherical harmonics solutions or challenging to capture using mascon solutions, we show that our technique efficiently recovers localized mass variations using well-documented mass transfers associated with reservoir impoundments.