Important message: Due to recent site outage we are still restoring full functionality to Authorea powered sites. Please bear with us until full functionality is restored

loading page

Significant variability in the δ44/40Ca of global carbonatites: implications for carbonate recycling, magma differentiation and source-mantle mineralogy
  • Anupam Banerjee,
  • Ramananda Chakrabarti,
  • Antonio Simonetti
Anupam Banerjee
Indian Institute of Science

Corresponding Author:[email protected]

Author Profile
Ramananda Chakrabarti
Indian Institute of Science
Author Profile
Antonio Simonetti
University of Notre Dame
Author Profile

Abstract

Stable Ca isotopic composition (δ44/40Ca) of crustal carbonates are typically lighter than that of the bulk silicate Earth value (~1.05 ‰). Hence, δ44/40Ca of mantle-derived rocks can potentially trace recycled crustal carbonates into the mantle. We report the Ca isotopic compositions of globally distributed carbonatites (n = 46), which are unique igneous rocks with more than 50% modal carbonate minerals, with eruption ages ranging from Precambrian until recent. The δ44/40Ca (w.r.t. SRM915a) of these carbonatites show a large range (0.35 ‰ to 1.26 ‰), which is significantly higher than the analytical uncertainty (0.08‰) of the measurements performed using TIMS at CEaS, IISc. These samples are well-characterized in terms of their major and trace element geochemistry as well as Nd, Sr, B, C, and O isotopic compositions for selected samples. No systematic trend is observed between δ44/40Ca of the carbonatites and their eruption ages. Significant variability is observed in δ44/40Ca values in samples from individual provinces including those from the Oka complex in Canada (0.44 ‰ – 1.26 ‰, n= 8), Ambadongar (0.53 ‰ – 1.1 ‰, n= 8) and the Newania complexes (0.44 ‰ – 0.83 ‰, n= 4) in north-west India, the South Indian carbonatites (0.65 ‰ – 0.91 ‰, n= 3) and carbonatites from the Palabora complex in South Africa (0.35 ‰ – 0.84‰, n= 3). The δ44/40Ca of carbonatites from Oka, Newania and the Ambadongar show strong correlations with Ca/Mg, Ca/Fe as well as CaO and MgO contents. The δ44/40Ca of the Oka and Ambadongar carbonatites show correlated variations with their Mg# and K/Rb ratios, respectively. The large variability in δ44/40Ca of global carbonatites is explained in terms of: (1) presence of isotopically lighter ancient subducted carbonates in the mantle-source regions and carbonate metasomatism of the mantle, (2) partial melting and differentiation of the carbonatite magma and (3) heterogeneity in the source-mantle mineralogy of carbonatites.