Please note: We are currently experiencing some performance issues across the site, and some pages may be slow to load. We are working on restoring normal service soon. Importing new articles from Word documents is also currently unavailable. We apologize for any inconvenience.

Andrew Dean

and 12 more

1. Organisms have evolved diverse strategies to manage parasite infections. Broadly, hosts may avoid infection by altering behaviour, resist infection by targeting parasites, or tolerate infection by repairing associated damage. Effectiveness of a strategy depends on interactions between, e.g., resource availability, parasite traits (virulence, life-history) and the host itself (nutritional status, immunopathology). 2. To understand how these factors shape host parasite-mitigation strategies, we developed a mathematical model of within-host, parasite-immune dynamics in the context of helminth infections. The model incorporated host nutrition and resource allocation to different mechanisms of immune response: larval parasite prevention; adult parasite clearance; damage repair (tolerance). We also considered a non-immune strategy: avoidance via anorexia, reducing intake of infective stages. Resources not allocated to immune processes promoted host condition, whereas harm due to parasites and immunopathology diminished it. Maximising condition (a proxy for fitness), we determined optimal host investment for each parasite-mitigation strategy, singly and combined, across different environmental resource levels and parasite trait values. 3. Which strategy was optimal varied with scenario. Tolerance generally performed well, especially with high resources. Success of the different resistance strategies (larval prevention or adult clearance) tracked relative virulence of larval and adult parasites: slowly maturing, highly damaging larvae favoured prevention; rapidly maturing, less harmful larvae favoured clearance. Anorexia was viable only in the short-term, due to reduced host nutrition. Combined strategies always outperformed any lone strategy: these were dominated by tolerance, with some investment in resistance. 4. Choice of parasite mitigation strategy has profound consequences for hosts, impacting their condition, survival and reproductive success. We show the efficacy of different strategies is highly dependent on timescale, parasite traits and resource availability. Models that integrate such factors can inform the collection and interpretation of empirical data, to understand how those drivers interact to shape host immune responses in natural systems.

Lisa Gecchele

and 2 more

1. Urban areas are often considered to be a hostile environment for wildlife as they are highly fragmented and frequently disturbed. However, these same habitats can contain abundant resources, while lacking many common competitors and predators. The urban environment can have a direct impact on the species living there, but can also have indirect effects on their parasites and pathogens. To date, relatively few studies have measured how fine-scale spatial heterogeneity within urban landscapes can affect parasite transmission and persistence. 2. Here we surveyed 237 greenspaces across the urban environment of Edinburgh (UK) to investigate how fine-scale variation in socio-economic and ecological variables can affect red fox (Vulpes vulpes) marking behaviour, gastrointestinal (GI) parasite prevalence and parasite community diversity, 3. We found that the presence and abundance of red fox faecal markings was non-uniformly distributed across greenspaces, and instead was dependent on the ecological characteristics of a site. Specifically, common foraging areas were left largely unmarked, which indicates that suitable resting and denning sites may be limiting factor in urban environments. In addition, the amount of greenspace around each site was positively correlated with overall GI parasite prevalence, species richness and diversity, highlighting the importance of greenspace (a commonly used measure of landscape connectivity) in determining the composition of the parasite community in urban areas. 4. Our results suggest that fine scale variation within urban environments can be important for understanding the ecology of infectious diseases in urban wildlife and could have wider implication for the management of urban carnivores.