Conflicts of Interest
The authors declare that there is no conflict of interest.
References
1. Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474(11):1823-36.
2. Hasan N, Yang H. Factors affecting the composition of the gut microbiota, and its modulation. PeerJ. 2019;7:e7502.
3. Mahnic A, Rupnik M. Different host factors are associated with patterns in bacterial and fungal gut microbiota in Slovenian healthy cohort. PLOS ONE. 2018;13(12):e0209209.
4. Yao Y, Cai X, Chen C, Fang H, Zhao Y, Fei W, et al. The Role of Microbiomes in Pregnant Women and Offspring: Research Progress of Recent Years. Frontiers in Pharmacology. 2020;11.
5. Sandall J, Tribe RM, Avery L, Mola G, Visser GHA, Homer CSE, et al. Short-term and long-term effects of caesarean section on the health of women and children. The Lancet. 2018;392(10155):1349-57.
6. Amir M, Brown JA, Rager SL, Sanidad KZ, Ananthanarayanan A, Zeng MY. Maternal Microbiome and Infections in Pregnancy. Microorganisms. 2020;8(12).
7. Meghan BA, Theodore K, Heather M, David SG, Catherine JF, Radha SC, et al. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. Canadian Medical Association Journal. 2013;185(5):385.
8. Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C, et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut. 2014;63(4):559-66.
9. Mitsou EK, Kirtzalidou E, Oikonomou I, Liosis G, Kyriacou A. Fecal microflora of Greek healthy neonates. Anaerobe. 2008;14(2):94-101.
10. Biasucci G, Benenati B, Morelli L, Bessi E, Boehm G. Cesarean Delivery May Affect the Early Biodiversity of Intestinal Bacteria1,2. The Journal of Nutrition. 2008;138(9):1796S-800S.
11. Ana Pilar B, Jiangfeng Y, Ann-Beth M, João Paulo S, Jun Z. Trends and projections of caesarean section rates: global and regional estimates. BMJ Global Health. 2021;6(6):e005671.
12. Allaband C, McDonald D, Vázquez-Baeza Y, Minich JJ, Tripathi A, Brenner DA, et al. Microbiome 101: Studying, Analyzing, and Interpreting Gut Microbiome Data for Clinicians. Clinical Gastroenterology and Hepatology. 2019;17(2):218-30.
13. Winand R, Bogaerts B, Hoffman S, Lefevre L, Delvoye M, Van Braekel J, et al. Targeting the 16S rRNA Gene for Bacterial Identification in Complex Mixed Samples: Comparative Evaluation of Second (Illumina) and Third (Oxford Nanopore Technologies) Generation Sequencing Technologies. International Journal of Molecular Sciences [Internet]. 2020; 21(1).
14. Grönlund MM, Lehtonen OP, Eerola E, Kero P. Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. J Pediatr Gastroenterol Nutr. 1999;28(1):19-25.
15. Rutayisire E, Huang K, Liu Y, Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: a systematic review. BMC Gastroenterol. 2016;16(1):86.
16. Chu DM, Ma J, Prince AL, Antony KM, Seferovic MD, Aagaard KM. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med. 2017;23(3):314-26.
17. Huurre A, Kalliomäki M, Rautava S, Rinne M, Salminen S, Isolauri E. Mode of Delivery – Effects on Gut Microbiota and Humoral Immunity. Neonatology. 2007;93(4):236-40.
18. Wong CB, Iwabuchi N, Xiao J-z. Exploring the Science behind Bifidobacterium breve M-16V in Infant Health. Nutrients [Internet]. 2019; 11(8).
19. Ewaschuk JB, Diaz H, Meddings L, Diederichs B, Dmytrash A, Backer J, et al. Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2008;295(5):G1025-G34.
20. Sela DA, Mills DA. Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends in Microbiology. 2010;18(7):298-307.
21. Fang Z, Pan T, Li L, Wang H, Zhu J, Zhang H, et al. Bifidobacterium longum mediated tryptophan metabolism to improve atopic dermatitis via the gut-skin axis. Gut Microbes. 2022;14(1):2044723.
22. Kim J, Kim BE, Leung DYM. Pathophysiology of atopic dermatitis: Clinical implications. Allergy and Asthma Proceedings. 2019;40(2):84-92.
23. Saturio S, Nogacka AM, Alvarado-Jasso GM, Salazar N, de los Reyes-Gavilán CG, Gueimonde M, et al. Role of Bifidobacteria on Infant Health. Microorganisms [Internet]. 2021; 9(12).
24. Shao Y, Forster SC, Tsaliki E, Vervier K, Strang A, Simpson N, et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature. 2019;574(7776):117-21.
25. Long G, Hu Y, Tao E, Chen B, Shu X, Zheng W, et al. The Influence of Cesarean Section on the Composition and Development of Gut Microbiota During the First 3 Months of Life. Frontiers in Microbiology. 2021;12.
26. Zafar H, Saier MH. Gut Bacteroides species in health and disease. Gut Microbes. 2021;13(1):1848158.
27. Zhang C, Li L, Jin B, Xu X, Zuo X, Li Y, et al. The Effects of Delivery Mode on the Gut Microbiota and Health: State of Art. Frontiers in Microbiology. 2021;12.
28. Lindberg E, Adlerberth I, Hesselmar B, Saalman R, Strannegård I-L, Åberg N, et al. High Rate of Transfer of Staphylococcus aureus from Parental Skin to Infant Gut Flora. Journal of Clinical Microbiology. 2004;42(2):530-4.
29. Alghamdi HA, Behieldin A, Edris S. Gut microbiome skin axis in the development of atopic dermatitis. J Pak Med Assoc. 2021;71(4):1221-7.
30. Acton DS, Tempelmans Plat-Sinnige MJ, van Wamel W, de Groot N, van Belkum A. Intestinal carriage of Staphylococcus aureus: how does its frequency compare with that of nasal carriage and what is its clinical impact? European Journal of Clinical Microbiology & Infectious Diseases. 2009;28(2):115-27.
31. Kaplina A, Kononova S, Zaikova E, Pervunina T, Petrova N, Sitkin S. Necrotizing Enterocolitis: The Role of Hypoxia, Gut Microbiome, and Microbial Metabolites. International Journal of Molecular Sciences [Internet]. 2023; 24(3).
32. Fallani M, Rigottier-Gois L, Aguilera M, Bridonneau C, Collignon A, Edwards CA, et al. Clostridium difficile and Clostridium perfringens species detected in infant faecal microbiota using 16S rRNA targeted probes. Journal of Microbiological Methods. 2006;67(1):150-61.
33. Ramamurthy T, Kumari S, Ghosh A. Chapter Six - Diarrheal disease and gut microbiome. In: Das B, Singh V, editors. Progress in Molecular Biology and Translational Science. 192: Academic Press; 2022. p. 149-77.
34. Turunen J, Tejesvi MV, Paalanne N, Pokka T, Amatya SB, Mishra S, et al. Investigating prenatal and perinatal factors on meconium microbiota: a systematic review and cohort study. Pediatric Research. 2023.
35. Arrieta M-C, Stiemsma LT, Amenyogbe N, Brown EM, Finlay B. The Intestinal Microbiome in Early Life: Health and Disease. Frontiers in Immunology. 2014;5.
36. Yassour M, Vatanen T, Siljander H, Hämäläinen A-M, Härkönen T, Ryhänen SJ, et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Science Translational Medicine. 2016;8(343):343ra81-ra81.
37. Se Jin S, Maria Gloria D-B, Rob K. How delivery mode and feeding can shape the bacterial community in the infant gut. Canadian Medical Association Journal. 2013;185(5):373.
38. Hobbs AJ, Mannion CA, McDonald SW, Brockway M, Tough SC. The impact of caesarean section on breastfeeding initiation, duration and difficulties in the first four months postpartum. BMC Pregnancy and Childbirth. 2016;16(1):90.
39. Li L, Wan W, Zhu C. Breastfeeding after a cesarean section: A literature review. Midwifery. 2021;103:103117.
40. Stinson LF, Keelan JA, Payne MS. Comparison of Meconium DNA Extraction Methods for Use in Microbiome Studies. Frontiers in Microbiology. 2018;9.
Figure legends
Figure 1: Steps of the process performed.
Figure 2: Data analysis of next-generation sequencing workflow.
Figure 3. Genus of gut microbiome profiles generated by 16s rRNA full length gene using Oxford nanopore sequencer. 89 samples of VG group represented 16 bacteria genera with percentage of relative abundance more than 0.5% and 44 samples of CS group represented 10 bacteria genera with percentage of relative abundance more than 0.5%.
Figure 4. Species of gut microbiome profiles generated by 16s rRNA full length gene using Oxford nanopore sequencer.
Table legends
Table 1. Patient’s demographic data.
Table 2 Comparison the abundancy of taxon species between neonate’s gut microbiome delivered via vaginal delivery and cesarean delivery.
Table 3 Comparison of the abundancy of taxon species between neonates’ gut microbiome delivered via cesarean delivery with and without labor.