Conflicts of Interest
The authors declare that there is no conflict of interest.
References
1. Thursby E, Juge N. Introduction to the human gut microbiota. Biochem
J. 2017;474(11):1823-36.
2. Hasan N, Yang H. Factors affecting the composition of the gut
microbiota, and its modulation. PeerJ. 2019;7:e7502.
3. Mahnic A, Rupnik M. Different host factors are associated with
patterns in bacterial and fungal gut microbiota in Slovenian healthy
cohort. PLOS ONE. 2018;13(12):e0209209.
4. Yao Y, Cai X, Chen C, Fang H, Zhao Y, Fei W, et al. The Role of
Microbiomes in Pregnant Women and Offspring: Research Progress of Recent
Years. Frontiers in Pharmacology. 2020;11.
5. Sandall J, Tribe RM, Avery L, Mola G, Visser GHA, Homer CSE, et al.
Short-term and long-term effects of caesarean section on the health of
women and children. The Lancet. 2018;392(10155):1349-57.
6. Amir M, Brown JA, Rager SL, Sanidad KZ, Ananthanarayanan A, Zeng MY.
Maternal Microbiome and Infections in Pregnancy. Microorganisms.
2020;8(12).
7. Meghan BA, Theodore K, Heather M, David SG, Catherine JF, Radha SC,
et al. Gut microbiota of healthy Canadian infants: profiles by mode of
delivery and infant diet at 4 months. Canadian Medical Association
Journal. 2013;185(5):385.
8. Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C,
Jernberg C, et al. Decreased gut microbiota diversity, delayed
Bacteroidetes colonisation and reduced Th1 responses in infants
delivered by caesarean section. Gut. 2014;63(4):559-66.
9. Mitsou EK, Kirtzalidou E, Oikonomou I, Liosis G, Kyriacou A. Fecal
microflora of Greek healthy neonates. Anaerobe. 2008;14(2):94-101.
10. Biasucci G, Benenati B, Morelli L, Bessi E, Boehm G. Cesarean
Delivery May Affect the Early Biodiversity of Intestinal Bacteria1,2.
The Journal of Nutrition. 2008;138(9):1796S-800S.
11. Ana Pilar B, Jiangfeng Y, Ann-Beth M, João Paulo S, Jun Z. Trends
and projections of caesarean section rates: global and regional
estimates. BMJ Global Health. 2021;6(6):e005671.
12. Allaband C, McDonald D, Vázquez-Baeza Y, Minich JJ, Tripathi A,
Brenner DA, et al. Microbiome 101: Studying, Analyzing, and Interpreting
Gut Microbiome Data for Clinicians. Clinical Gastroenterology and
Hepatology. 2019;17(2):218-30.
13. Winand R, Bogaerts B, Hoffman S, Lefevre L, Delvoye M, Van Braekel
J, et al. Targeting the 16S rRNA Gene for Bacterial Identification in
Complex Mixed Samples: Comparative Evaluation of Second (Illumina) and
Third (Oxford Nanopore Technologies) Generation Sequencing Technologies.
International Journal of Molecular Sciences [Internet]. 2020; 21(1).
14. Grönlund MM, Lehtonen OP, Eerola E, Kero P. Fecal microflora in
healthy infants born by different methods of delivery: permanent changes
in intestinal flora after cesarean delivery. J Pediatr Gastroenterol
Nutr. 1999;28(1):19-25.
15. Rutayisire E, Huang K, Liu Y, Tao F. The mode of delivery affects
the diversity and colonization pattern of the gut microbiota during the
first year of infants’ life: a systematic review. BMC Gastroenterol.
2016;16(1):86.
16. Chu DM, Ma J, Prince AL, Antony KM, Seferovic MD, Aagaard KM.
Maturation of the infant microbiome community structure and function
across multiple body sites and in relation to mode of delivery. Nat Med.
2017;23(3):314-26.
17. Huurre A, Kalliomäki M, Rautava S, Rinne M, Salminen S, Isolauri E.
Mode of Delivery – Effects on Gut Microbiota and Humoral Immunity.
Neonatology. 2007;93(4):236-40.
18. Wong CB, Iwabuchi N, Xiao J-z. Exploring the Science behind
Bifidobacterium breve M-16V in Infant Health. Nutrients [Internet].
2019; 11(8).
19. Ewaschuk JB, Diaz H, Meddings L, Diederichs B, Dmytrash A, Backer J,
et al. Secreted bioactive factors from Bifidobacterium infantis enhance
epithelial cell barrier function. American Journal of
Physiology-Gastrointestinal and Liver Physiology. 2008;295(5):G1025-G34.
20. Sela DA, Mills DA. Nursing our microbiota: molecular linkages
between bifidobacteria and milk oligosaccharides. Trends in
Microbiology. 2010;18(7):298-307.
21. Fang Z, Pan T, Li L, Wang H, Zhu J, Zhang H, et al. Bifidobacterium
longum mediated tryptophan metabolism to improve atopic dermatitis via
the gut-skin axis. Gut Microbes. 2022;14(1):2044723.
22. Kim J, Kim BE, Leung DYM. Pathophysiology of atopic dermatitis:
Clinical implications. Allergy and Asthma Proceedings. 2019;40(2):84-92.
23. Saturio S, Nogacka AM, Alvarado-Jasso GM, Salazar N, de los
Reyes-Gavilán CG, Gueimonde M, et al. Role of Bifidobacteria on Infant
Health. Microorganisms [Internet]. 2021; 9(12).
24. Shao Y, Forster SC, Tsaliki E, Vervier K, Strang A, Simpson N, et
al. Stunted microbiota and opportunistic pathogen colonization in
caesarean-section birth. Nature. 2019;574(7776):117-21.
25. Long G, Hu Y, Tao E, Chen B, Shu X, Zheng W, et al. The Influence of
Cesarean Section on the Composition and Development of Gut Microbiota
During the First 3 Months of Life. Frontiers in Microbiology. 2021;12.
26. Zafar H, Saier MH. Gut Bacteroides species in health and disease.
Gut Microbes. 2021;13(1):1848158.
27. Zhang C, Li L, Jin B, Xu X, Zuo X, Li Y, et al. The Effects of
Delivery Mode on the Gut Microbiota and Health: State of Art. Frontiers
in Microbiology. 2021;12.
28. Lindberg E, Adlerberth I, Hesselmar B, Saalman R, Strannegård I-L,
Åberg N, et al. High Rate of Transfer of Staphylococcus aureus from
Parental Skin to Infant Gut Flora. Journal of Clinical Microbiology.
2004;42(2):530-4.
29. Alghamdi HA, Behieldin A, Edris S. Gut microbiome skin axis in the
development of atopic dermatitis. J Pak Med Assoc. 2021;71(4):1221-7.
30. Acton DS, Tempelmans Plat-Sinnige MJ, van Wamel W, de Groot N, van
Belkum A. Intestinal carriage of Staphylococcus aureus: how does its
frequency compare with that of nasal carriage and what is its clinical
impact? European Journal of Clinical Microbiology & Infectious
Diseases. 2009;28(2):115-27.
31. Kaplina A, Kononova S, Zaikova E, Pervunina T, Petrova N, Sitkin S.
Necrotizing Enterocolitis: The Role of Hypoxia, Gut Microbiome, and
Microbial Metabolites. International Journal of Molecular Sciences
[Internet]. 2023; 24(3).
32. Fallani M, Rigottier-Gois L, Aguilera M, Bridonneau C, Collignon A,
Edwards CA, et al. Clostridium difficile and Clostridium perfringens
species detected in infant faecal microbiota using 16S rRNA targeted
probes. Journal of Microbiological Methods. 2006;67(1):150-61.
33. Ramamurthy T, Kumari S, Ghosh A. Chapter Six - Diarrheal disease and
gut microbiome. In: Das B, Singh V, editors. Progress in Molecular
Biology and Translational Science. 192: Academic Press; 2022. p. 149-77.
34. Turunen J, Tejesvi MV, Paalanne N, Pokka T, Amatya SB, Mishra S, et
al. Investigating prenatal and perinatal factors on meconium microbiota:
a systematic review and cohort study. Pediatric Research. 2023.
35. Arrieta M-C, Stiemsma LT, Amenyogbe N, Brown EM, Finlay B. The
Intestinal Microbiome in Early Life: Health and Disease. Frontiers in
Immunology. 2014;5.
36. Yassour M, Vatanen T, Siljander H, Hämäläinen A-M, Härkönen T,
Ryhänen SJ, et al. Natural history of the infant gut microbiome and
impact of antibiotic treatment on bacterial strain diversity and
stability. Science Translational Medicine. 2016;8(343):343ra81-ra81.
37. Se Jin S, Maria Gloria D-B, Rob K. How delivery mode and feeding can
shape the bacterial community in the infant gut. Canadian Medical
Association Journal. 2013;185(5):373.
38. Hobbs AJ, Mannion CA, McDonald SW, Brockway M, Tough SC. The impact
of caesarean section on breastfeeding initiation, duration and
difficulties in the first four months postpartum. BMC Pregnancy and
Childbirth. 2016;16(1):90.
39. Li L, Wan W, Zhu C. Breastfeeding after a cesarean section: A
literature review. Midwifery. 2021;103:103117.
40. Stinson LF, Keelan JA, Payne MS. Comparison of Meconium DNA
Extraction Methods for Use in Microbiome Studies. Frontiers in
Microbiology. 2018;9.
Figure legends
Figure 1: Steps of the process performed.
Figure 2: Data analysis of next-generation sequencing workflow.
Figure 3. Genus of gut microbiome profiles generated by 16s rRNA full
length gene using Oxford nanopore sequencer. 89 samples of VG group
represented 16 bacteria genera with percentage of relative abundance
more than 0.5% and 44 samples of CS group represented 10 bacteria
genera with percentage of relative abundance more than 0.5%.
Figure 4. Species of gut microbiome profiles generated by 16s rRNA full
length gene using Oxford nanopore sequencer.
Table legends
Table 1. Patient’s demographic data.
Table 2 Comparison the abundancy of taxon species between neonate’s gut
microbiome delivered via vaginal delivery and cesarean delivery.
Table 3 Comparison of the abundancy of taxon species between neonates’
gut microbiome delivered via cesarean delivery with and without labor.