
Appendix A. Supplemental Information 1 

A.1. Literature Review 2 

Since the adoption of the Paris Agreement and the emergence of Nationally Determined 3 
Contributions (NDCs) and Long-term Strategies (LTS), model-based research has actively 4 
explored the feasibility, implications, and opportunities surrounding these policies and other 5 
emissions reduction pathways. Many of these studies focus on the policy implementation while 6 
relying on business-as-usual assumptions in other areas of the modeling framework. (Iyer et al., 7 
2015b) examine the NDCs in 2015 and the energy-economic implications across policy scenarios 8 
which vary the timing of mitigation actions. (Fawcett et al., 2015) also assess these NDC pledges 9 
by computing probabilistic temperature outcomes with a global climate model based on several 10 
scenarios constructed with an integrated assessment model. (Ou et al., 2021) then evaluate the 11 
updated 2020 NDC pledges using additional simulations, emphasizing that additional ambition is 12 
needed to achieve long-term goals. These studies use a limited number of scenarios in 13 
determining emissions trajectories, trading off the evaluation of uncertainty with finely-tuned 14 
scenario pathways. (Gambhir et al., 2022) approach emissions mitigation using several 15 
temperature target scenarios as well as an NDC scenario to identify transition risk metrics within 16 
an integrated assessment framework. The authors find that different types of risks emerge as 17 
being most sensitive to the future temperature pathway on different timescales. (Binsted et al., 18 
2020) used NDC scenarios to quantify the economic implications of stranded assets under the 19 
Paris Agreement, finding significant cost burdens associated with the policies. (Santos Da Silva 20 
et al., 2019) model two NDC scenarios using an integrated assessment framework in which one 21 
scenario does not have access to CCS technologies, and evaluates resulting food-energy-water 22 
nexus outcomes. 23 

There exists also a broad literature of uncertainty and sensitivity analysis centered around 24 
climate mitigation modeling research. However, many of these studies evaluate only a few 25 
deeply uncertain factors in their simulations, often only implemented individually rather than 26 
through a factorial ensemble. (Iyer et al., 2015a) explore varying the cost of financing clean 27 
energy projects in the electric power sector across regions due to investment risk and variations 28 
in institutional quality under a generic 50% emissions reduction policy. This study found that 29 
these disparities in investment risks significantly affected the total costs of mitigation, and that 30 
more industrialized regions take on a greater share of the mitigation requirements. (Kanyako and 31 
Baker, 2021) perform an uncertainty analysis on wind energy costs for a carbon tax and a 1.5° 32 
scenario, exploring impacts on wind generation share across a distribution of cost forecasts. (Ou 33 
et al., 2018) compare two low-carbon pathways (each comprised of several technology 34 
assumptions) in the US under two different mid-century emissions reductions targets, evaluated 35 
with water consumption and air pollution metrics. (Moksnes et al., 2019) prepare an ensemble of 36 
324 scenarios varying six uncertain factors related to energy systems (including a simple CO2 37 
target) and perform scenario discovery on the resulting cost and capacity mix outcomes. 38 

Several studies use an ensemble of model realizations in climate mitigation contexts. McJeon et 39 
al., 2011 uses a large, 768-member ensemble and scenario discovery to explore the impacts of 40 
technology assumptions on stabilization costs under two temperature stabilization scenarios. 41 
Groves et al., 2020 develops 3,003 realizations of Costa Rica’s decarbonization plan to assess the 42 



economic value of the plan independent of international pledges. Although many previous 43 
modeling efforts have examined impacts of climate mitigation measures and parametric 44 
uncertainties on energy-economic outcomes, there remains a gap in evaluating countries' NDC + 45 
LTS pledges across a wide range of deeply uncertain factors in a large ensemble framework. 46 
This study seeks to confirm the results of prior research in a robust NDC- + LTS-consistent 47 
mitigation context, as well as examine interactive effects of previously independent sensitivity 48 
factors in a large ensemble of model realizations. 49 

Table S1: Non-exhaustive list of existing work. 50 
Authors Short Description Approach to Uncertainty 

McJeon et 
al., 2011 

768-member large ensemble of GCAM runs exploring 
impacts of technology assumptions on stabilization costs 

Scenario discovery, reporting density 
and coverage statistics on extreme 
outcomes 

Fawcett et 
al., 2015 

600-member temperature projection ensemble applied to 
several GCAM Paris Agreement scenarios 

Temperature outcomes presented 
probabilistically 

Isley et al., 
2015 

XLRM framework generating 6,000 combinations of 
uncertain parameters and 6 policies in agent-based model 

Exploratory modeling to explore 
decarbonization rates and policy 
choices 

Iyer et al., 
2015b 

Four GCAM scenarios varying model assumptions to 
explore Paris Agreement implications on 2°C 

Using a small number of detailed 
representative scenarios to assess 
implications of INDCs 

McFarland 
et al., 2015 

Set of temperature projections applied to GCAM-USA, 
ReEDS, IPM to look at electricity supply/demand Multi-model comparison 

Wilkerson et 
al., 2015 

Carbon price scenarios applied to GCAM, MERGE, and 
EPPA Multi-model comparison 

Kober et al., 
2016 

Climate policies centered on Latin America, using 
GCAM, POLES, TIAM-ECN, and TIAM-WORLD Multi-model comparison 

Lucena et 
al., 2016 

Five scenarios of Brazil’s energy mix using EPPA, 
GCAM, MESSAGE-Brazil, Phoenix, POLES, and 
TIAM-ECN 

Multi-model comparison 

Van Der 
Zwaan et al., 
2016 

Five scenarios of energy technology deployment in Latin 
America using EPPA, GCAM, Phoenix, POLES, TIAM-
ECN, and TIAM-WORLD 

Multi-model comparison 

Pietzcker et 
al., 2017 

Integration of wind and solar in IAMs using AIM/CGE, 
IMAGE, MESSAGE, POLES, REMIND, and WITCH Multi-model comparison 

Kriegler et 
al., 2018 

Strengthening short-term goals to meet Paris Agreement 
with 13 scenarios across three policy dimensions using 
REMIND-MAgPIE 

Constructing representative scenarios 
with detailed sectoral assumptions to 
assess policy impacts 

Lamontagne 
et al., 2018 

33,750-member ensemble of GCAM runs splitting SSP 
assumptions into individually sampled elements Scenario discovery using CART 

Arango-
Aramburo et 
al., 2019 

Climate-impacted hydropower in Colombia using two 
GCMs, two RCPs, and 4 IAMs: GCAM, TIAM-ECN, 
MEG4C, Phoenix 

Multi-model comparison 

Lamontagne 
et al., 2019 

5,200,000-member ensemble using DICE, sampling 24 
uncertain factors and growth rate of global abatement Time-varying sensitivity analysis 

Moksnes et 
al., 2019 

324-member ensemble using OSeMOSYS-SAMBA to 
explore South American electricity infrastructure 

Scenario discovery using a Gaussian 
mixture model and PRIM 

Binsted et 
al., 2020 

Four global GHG mitigation scenarios using GCAM to 
explore stranded assets in Latin America 

Used 36 sensitivity scenarios to 
perform sensitivity analysis 



Burleyson et 
al., 2020 

Four scenarios each run using GCAM-USA and BEND to 
explore US buildings electricity consumption Two-model comparison 

Groves et 
al., 2020 

3,003-member ensemble varying over 300 uncertainties 
to explore Costa Rica’s national decarbonization plan 

Scenario discovery using PRIM to 
identify vulnerabilities 

Dolan et al., 
2021 

3,000-member ensemble of GCAM runs varying seven 
dimensions of uncertainties to explore impacts of water 
scarcity 

Scenario discovery using CART 

Kanyako 
and Baker, 
2021 

1,000-member ensemble of GCAM runs with technology 
costs sampled from expert elicitation data  

Uncertainty propagation from expert 
elicitation data 

Ou et al., 
2021 

Five emissions scenarios using GCAM coupled with 
simple climate model MAGICC 

Probabilistic temperature outcomes 
using detailed emissions scenarios 

Solano-
Rodríguez et 
al., 2021 

XLRM framework generating 480 alternatives for oil 
production in Latin America using BUEGO 

Latin hypercube sampling to generate 
ensemble of alternatives 

Birnbaum et 
al., 2022 

3,000-member ensemble of GCAM runs exploring water 
scarcity in Latin America Scenario discovery using CART 

Gambhir et 
al., 2022 

11 scenarios of temperature outcomes and 
socioeconomic/technological choices for 2°C pathways 
using GCAM 

Comparison of risk metrics across 
detailed representative scenarios 

Browning et 
al., 2023 

Using three scenarios to analyze net-zero by 2050 in the 
US across 16 models 

Multi-model (and multi-modeling 
team) comparison of detailed 
representative scenarios 

Huang et al., 
2023 

28,706-member ensemble of GCAM runs coupled with 
TM5-FASST to explore air quality implications from 
climate mitigation under uncertainty 

Large ensemble scenario analysis and 
model coupling 

van de Ven 
et al., 2023 

Three scenarios of climate action applied to GCAM-PR, 
GEMINI-E3, MUSE, and TIAM-Grantham 

Multi-model comparison to explore 
feasibility of climate ambition 

Woodard et 
al., 2023 

3,989-member ensemble of GCAM runs varying 12 
uncertainties chosen from expert elicitation Scenario discovery using CART 

  51 



A.2. Computing Metrics from GCAM Ensemble 52 

Table S2: Descriptions of each metric and how each is calculated from GCAM outputs. 53 

Metric Short Description 

Electricity Price 
Marginal levelized cost of new generation (analogous to wholesale electricity 
costs). When aggregated from several regions, a weighted average based on total 
regional electricity generation is applied. Queried directly from GCAM outputs. 

Electricity Share 
in Final Energy 

Also termed “Electrification Rate”, the proportion of total final energy delivered to 
end use sectors as electricity in each region. When aggregated from several regions, 
a weighted average based on total regional final energy is applied. Total final 
energy is queried directly from GCAM outputs, from which the proportion of 
electricity can be computed. 

Stranded Assets 

The cumulative costs of premature retirement of electric generating capacity over 
time in each region. Can be split by technology. Premature retirement refers to a 
generating unit being forced offline before the end of its economic life (e.g., due to 
mitigation policy constraining emissions or increasing costs to inefficient levels). 
Results from individual regions can be summed. Stranded assets are computed 
from GCAM outputs using the “plutus” R package (Zhao et al., 2021). 

Capacity 
Investments 

The cumulative capital costs of new electric generating capacity over time in each 
region. This metric gives one angle of a policy’s economic impacts, and can be 
split by technology. Capacity investments are computed from GCAM outputs using 
the “plutus” R package (Zhao et al., 2021). 

Energy Burden 

An aggregated metric of distributional energy justice, computed as a residential 
energy burden by dividing per capita residential energy expenditures by per capita 
GDP. From GCAM outputs, residential energy expenditures are computed using 
residential building service costs (which includes levelized installed costs of 
service equipment in addition to fuel costs) and final energy consumption in 
residential sectors. Population and GDP are exogenous inputs to GCAM. This 
metric does not include transport service costs. 

Level of CO2 
Removal 

The quantity (mass of CO2) removed from the atmosphere via Bioenergy with CCS 
(BECCS) and Direct Air Capture (DAC). Results from individual regions can be 
summed. Queried directly from GCAM outputs. 

Land Use 
Change 

Emissions 

The net quantity (mass of CO2) of land use change emissions, representing regional 
and global carbon stocks. Results from individual regions can be summed. Queried 
directly from GCAM outputs. 
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A.3. Supplemental Figures 55 

 56 
Figure S1: CO2 emissions trajectories across regions and globally, split by climate pledge policy 57 
sensitivity. "Other OECD" includes Canada, Japan, South Korea, Australia, and New Zealand. “Asia” 58 
includes Pakistan, Indonesia, Central Asia, South Asia, and Southeast Asia. “LAC” refers to Latin America 59 
and the Caribbean. 60 

 61 
Figure S2: Land use change emissions trajectories across regions and globally, split by climate pledge 62 
policy sensitivity. "Other OECD" includes Canada, Japan, South Korea, Australia, and New Zealand. 63 
“Asia” includes Pakistan, Indonesia, Central Asia, South Asia, and Southeast Asia. “LAC” refers to Latin 64 
America and the Caribbean. 65 



 66 
Figure S3: Evolution of the electricity generation mix as a split violin plot for No Policy cases (top) and 67 
climate pledge scenarios (bottom). Fossil fuels remain dominant in the No Policy case, although renewables 68 
still increase over time. In the NDC + LTS case, wind and solar trade places with fossil generation to 69 
become the leading producer of electricity. Fossil generation does not go to zero, partially because not every 70 
country has committed to NDC/LTS pledges, but also because of the significant amount of CO2 removal 71 
technologies employed in the model. Variability for other generation types is relatively small; these are 72 
shown instead as dotted lines representing the mean. 73 



 74 
Figure S4: Generation share violin plots similar to Figure S3, split out into ten aggregated global regions. 75 



 76 
Figure S5: Bioenergy with CCS (BECCS) for climate pledge scenarios as percentiles. Negative values 77 
represent CO2 being removed. Black lines show scenarios from IPCC AR6 (Riahi, 2022). 78 

 79 
Figure S6: Direct Air Capture (DAC) for climate pledge scenarios as percentiles. Negative values represent 80 
CO2 being removed. Black lines show scenarios from IPCC AR6 (Riahi, 2022). 81 



 82 
Figure S7: Feature importance analysis for seven representative metrics across the 3,840 simulations 83 
implementing national climate pledges. Each panel is presented as a heatmap quantifying relative influence 84 
by the scenario sensitivities in each row on each output metric over time. A higher score (darker color) 85 
indicates higher influence in the random forest model from the inclusion of each feature (listed in bottom 86 
left of figure). Because only NDC + LTS scenarios are examined here, this sensitivity is not listed. In 87 
general, Socioeconomic Factors is a relevant driver in nearly all outcome metrics, as it controls the scale of 88 
economic activity as well as resource demand. The electricity price panel confirms the critical drivers seen 89 
in Error! Reference source not found., while also notable is the increasing potential role of Industry 90 
Energy Efficiency, which affects industrial sectors including iron & steel, cement, aluminum, chemicals, 91 
and fertilizer production. This sensitivity also has an increasing importance in several other economic 92 
metrics as well as negative emissions. Feature importance is quantified by the average improvement in 93 
mean squared error (MSE) achieved in the random forest model from permuting each feature in out-of-bag 94 
samples, scaled to sum to one in each timestep. Feature importance here does not in itself indicate the 95 
direction of influence. 96 



 97 
Figure S8: Feature importance analysis for seven representative metrics across the 3,840 simulations 98 
implementing national climate pledges, split by region (column) and only showing values for 2030, 2050, 99 
and 2100. Each panel is presented as a heatmap quantifying relative influence by the scenario sensitivities 100 
in each row on each output metric. A higher score (darker color) indicates higher influence in the random 101 
forest model from the inclusion of each feature. Because only NDC + LTS scenarios are examined here, 102 
this sensitivity is not listed. 103 



 104 
Figure S9: (left) Cost of transport services in the passenger transport sector for aggregated global regions 105 
in three model periods, showing all 5,760 simulations; (right) Change in passenger transport service costs 106 
caused by two scenario sensitivities (climate pledges and Electrification of Transport) for each model 107 
configuration, computed as the difference between pairs of realizations which differ only by 108 
inclusion/exclusion of these two scenario levers. Developed regions tend to experience the highest costs, a 109 
trend which does not change over time. Passenger transport service costs increase over time across regions, 110 
but total expenditures remain relatively stable when scaled by GDP. "Other OECD" includes Canada, Japan, 111 
South Korea, Australia, and New Zealand. “Asia” includes Pakistan, Indonesia, Central Asia, South Asia, 112 
and Southeast Asia. “LAC” refers to Latin America and the Caribbean. 113 



 114 
Figure S10: CDF plot showing standardized changes in the values of select metrics when investment costs 115 
are regionally and technologically differentiated in each scenario configuration (only showing scenarios 116 
with NDCs + LTS implemented). A curve lying entirely to the right (left) of zero implies that institutional 117 
factors always increase (decrease) that metric. Thicker lines refer to global weighted means, while thinner 118 
lines refer to ten aggregated global regions (legend at bottom right). Note that a steep CDF curve here 119 
suggests that varying this sensitivity results in a very consistent change in the outcome; it does not represent 120 
the underlying variability of the outcome itself. 121 



 122 
Figure S11: Year in which global net-zero CO2 emissions is achieved across all realizations with national 123 
emissions pledges, split by scenario sensitivity. Visually, Socioeconomic Factors and Direct Air Capture 124 
Cost show the greatest variability, followed by Industry Energy Efficiency and Cost of Wind and Solar 125 
(VRE Cost). Net-zero year is determined by linear interpolation between GCAM’s five-year timesteps. 126 

 127 
Figure S12: Year in which net-zero CO2 emissions is achieved across aggregate regions, for all realizations 128 
with national emissions pledges. Russia, Asia, and Middle East do not reach net-zero in any simulation due 129 
to one or more countries within each region not reaching net-zero. For LAC, 93 realizations out of 3,840 130 
do not reach net-zero by 2100. For Africa, 103 realizations out of 3,840 do not reach net-zero by 2100. 131 


