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Abstract

Understanding animal movement and behaviour can aid spatial planning and inform
conservation management. However, it is difficult to directly observe behaviours in remote
and hostile terrain such as the marine environment. Behaviours can be inferred from
telemetry data using hidden Markov models (HMMSs), but model predictions are not typically
validated due to difficulty obtaining ground truth behavioural information. We investigate
the accuracy of HMM-inferred behaviours by considering a unique dataset provided by Joint
Nature Conservation Committee. The data consist of simultaneous proxy movement tracks
of the boat (defined as visual tracks as birds are followed by eye) and seabird behaviour
obtained at the same time-frequency by observers on the boat. We use these data to assess
whether (i) visual track is a good proxy for true bird locations in relation to HMM-inferred
behaviours, and (ii) inferred behaviours from HMMs fitted to visual tracking data accurately
represent true behaviours as identified by behavioural observations taken from the boat. We
demonstrate that visual tracking data can be regarded as a good proxy for true movement data
of birds in terms of similarity in inferred behaviours. Accuracy of HMMs ranging from 71%
to 87% during chick-rearing and 54% to 70% during incubation was generally insensitive to
model choice, even when AIC values varied substantially across different models. Finally, we
show that for foraging, a state of primary interest for conservation purposes, identified missed
foraging bouts lasted for only a few seconds. We conclude that HMMs fitted to tracking
data can accurately identify important conservation-relevant behaviours, demonstrated using
visual tracking data. Therefore, confidence in using HMMs for behavioural inference should
increase even when validation data are unavailable. This has important implications for
animal conservation, where the size and location of protected areas are often informed by

behaviours identified using HMMs fitted to movement data.
KEYWORDS

conservation, GPS data, movement data, movement modelling, visual tracking
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1 INTRODUCTION

Seabirds are key indicators of marine environmental health (Parsons ef”all 2008, [Lascelles
ef_all 2002) but are the most threatened and anthropogenically pressured group of birds
globally (Croxall’ef’all 20iT2). Threats, including invasive species at breeding colonies, climate
change, over-fishing, and offshore renewable developments, have resulted in a global decline
in seabird populations of 70% over the last five decades (Vulcano et all 2021). In the UK,
some species of seabirds (e.g. Northern fulmar (Fulmarus glacialis), little tern (Sternula
albifrons), European shag (Phalacrocorax aristotelis), Arctic skua (Stercorarius parasiticus),
and black-legged kittiwake (Rissa tridactyla)) have continued to decline (INCQO 20Z1). Of
the 25 seabird species that regularly breed in the UK, 24 are listed as Red or Amber on the
UK’s Birds of Conservation Concern (Stanbury et al] 2021). Under the Habitats Directive
(EC/92/43) and Birds Directive (EC/79/409), Special Protection Areas (SPA) are established
to form the Natura 2000 network, which protects species and habitats (European-Commission
ef—all POOR). Although SPAs have historically been restricted to small areas focused on
seabird breeding colonies, recent extensions and new classifications in the marine environment
have expanded the SPA network across the UK (INCO 2020). Seabirds are restricted to
central-place foraging during the breeding season. Therefore, understanding at-sea behaviour,

including characterising important foraging areas, is vital to ensure adequate protection

measures are in place to prevent further population decline.

Seabird tracking studies, where individuals are tagged using biologging technology, are an
effective way to understand space use and behaviour (Lascelles”ef all POUT?, Bennison ef all
2018, Wakefield ef"all 2007). Technological advances have accelerated the availability of
biologging information from devices such as Global Positioning System (GPS) transmitters,
accelerometers, conductivity-temperature-depth (CTD) tags, and harmonic radar trackers
(Cooke_efall 2004). Telemetry data provides information on animal locations at discrete
intervals but does not provide direct information about the underlying behaviour of the tagged
animals. To infer behavioural states such as foraging, flying, and resting from movement data,

hidden Markov Models (HMMSs) have been widely used (Morales ef all 2004, Pafferson ef all

2009, Langrock et all 20012, McKellar et all 2015, McClinfock 2021). HMMs are time series
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models with observation and state processes where the latent (unobserved) states describe
the underlying behaviour of the individual (Langrock et al] 2012). HMM-inferred behaviours
can be used to inform conservation decision-making, for example, the size and location of

protected areas.

One limitation of using HMM-inferred behaviours to inform conservation-relevant decision-making

is the difficulty in validating models using ground truth data. Some studies have attempted
to validate HMM-inferred behaviour from movement data, such as oo ef all (2013), which
validated the behaviour of fishing vessels using ground truth data recorded by onboard
observers. [Bennison ef all (2018) and Conners_ef all (2021) also validated HMM-inferred
behaviours of northern gannet (Morus bassanus) and albatross using behaviours from
depth-recorder and sensors as ground truth data, respectively. However, depth recorders and
sensors are also proxies for ground truth data with their own error structures. Overall, little
research has focused on evaluating the performance of HMMs fitted to animal movement
data through data validation because contemporaneous behavioural observations on tracked
individuals can be challenging to collect, particularly in featureless environments, such as
open ocean (Jooef all 2013). To examine the performance of HMMs fitted to movement data,
we consider a unique dataset provided by the Joint Nature Conservation Committee (JNCC)
and obtained via the visual tracking of terns (Sterna spp.) using a rigid-hulled inflatable
boat. A visual tracking method developed by Perrow ef all (2011) was conducted at several
tern breeding colonies across the UK during chick-rearing and incubation in different years
(Wilson_ef all 20014). Proxy movement data, corresponding to the GPS location of the boat,
and the observed behavioural data of the terns directly recorded by the observers on the boat

were collected.

First-hand behavioural data of seabirds such as that collected by Wilson ef_all (2014) is
generally not feasible to collect directly alongside GPS tracking location data. We consider
terns as a case study to examine the performance of HMMSs for behavioural inference. To
the best of our knowledge, this is the first study to validate HMM-inferred behaviour from
movement data using observed behavioural data of seabirds. Our study aims to leverage the

rare opportunity provided by the unique JNCC dataset to (i) examine whether boat locational
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data are an adequate proxy of tern movement and (ii) validate inferred behaviours of seabirds

from HMMs using observed seabird behavioural data.

2 MATERIALS AND METHODS

2.1 Study species and sites

This study investigates the movement behaviour of four tern (Sterna spp.) species:
Arctic (Sterna paradisaea), common (S.hirundo), Sandwich (S.sandvicensis), and roseate
(S.dougallii). Arctic terns tend to breed in coastal areas in the north and west of the UK,
with 80% occurring in Shetland, Orkney, and the Outer Hebrides. Common terns have a
widespread coastal distribution around the UK and also nest in small colonies inland along
rivers and islets. Sandwich terns congregate in several large colonies, and most roseate terns
breed on Rockabill, Ireland, with some pairs occasionally breeding in south-east Scotland,
Norfolk, and Hampshire (Wilson ef"all 2004). Study sites comprised of 9 breeding colonies
across the UK (Figure M): Blue Circle (54°49'N, 5°46’"W) and Cockle Island (54°40'N, 5°37"W)
in Northern Ireland; Cemlyn Bay (53°24’ N, 4°30" W) in North Wales; Glas-Eileanan Island
(56°49'N, 5°71'W), Forvie (57°18'N, 1°58'W), Isle of May (56°10’N, 2°32'"W), Leith (55°96'N,
3°16'W) and South Shian (56°46'N, 5°36'W) in Scotland; and Coquet Island (55°20'N,
1°32'W) in England.

Terns are ground-nesting colonial breeders, raising one brood each breeding season (May-June)
and laying a clutch of one to three eggs. While breeding adult terns are central-place foragers
throughout the breeding season, they are particularly restricted during chick-rearing when
they must return regularly to provision their chicks, and adults spend up to 80% of their
time foraging ([Mhaxter_ef all P0T2). Sandwich terns are specialist predators that can exploit
clupeids and sandeels from deeper water, potentially due to their wider foraging range.
Likewise, roseate terns are specialists who also forage by plunge diving to depth, catching prey
items of predominately sandeels, herring, and sprat. Common terns are generalist predators
and prey items include invertebrates, clupeids, sandeels, and gadoids. Arctic terns forage using

several techniques but are heavily dependent on sandeel and changes in prey availability can
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affect their breeding success (Eglington & Perrow 20014).

a Study site (tern species)
N H 1. Blue Circle (R,S)

2. Cemlyn Bay (A,C)
3. Cockle Island (A,S)
57.5 4. Coquet Island (A,C,R,S)
5. Forvie (S)

6. Glas Eileanan (C)

7. Isle of May (A)

8. Leith (C)

55.0 9. South Shian (C)

Latitude (° N)

52.5

50.0 0 50 100km

4

-12 -8 R
Longitude (° W)

FIGURE 1 Study sites consisting of 9 tern breeding colonies in the United Kingdom.
A-Arctic, C-Common, R-Roseate, and S-Sandwich tern.

2.2 Visual tracking data

Visual tracking data were collected using a technique developed by Perrow et all (2011) and
detailed in Wilson_et all (2014). We summarise the protocol as follows: The visual tracking
of terns was conducted during chick-rearing (June and July) and incubation (early May to
mid June) between 2009 and 2011. Rigid hull inflatable boats used for the visual tracking
were operated by different skippers across the study sites. The boats were kept ¢.50-200m
from terns whilst an individual was tracked to avoid disturbing the birds and affecting their
behaviour. Longitude and latitude of the boats were recorded using an onboard GPS device
set to a 1-second sampling frequency. Individuals were tracked on return foraging trips from
their breeding colony. One observer maintained constant sight of the tracked individual, while

another recorded behavioural information.

An ethogram of continuous flight behaviours and instantaneous foraging events was provided
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to each observer, and the timing of each behaviour was recorded (Wilson ef all 2014). Flight
behaviours were categorised as active search, transit search, and direct flight. Direct flight
was defined as a clear and consistent direction with fast flight usually returning to the colony
with food. An active search was defined as an erratic flight course actively searching for
food, which may include instances of diving and surface feeding. It is hypothesised that for
a direct flight, terns have a fixed location in view and fly in a clear and consistent direction,
whereas for transit search, they may change direction but not erratically to search for food
(Wilson_efall 200014). As a result, direct flight and transit search were defined as observed
not-foraging behaviour while an active search was defined as observed foraging behaviour.

These behavioural data are used as the validation data in the study.

The location of each observed behaviour was calculated from the boat’s GPS track log.
Unique IDs were assigned to the data of individual terns tracked in each colony. In 2009
and 2011, tracking only took place during chick-rearing. In 2010, tracking was conducted
during chick-rearing and incubation periods. Figure B provides an example of visual tracks
for the two breeding seasons. The data combined both complete and incomplete tracks of
terns. The track of terns was considered complete if individual terns were tracked leaving and
returning to the colony. Incomplete tracks were terns that could not be successfully followed

back to the colony.

Latitude (° N)

-3.4 -3.3 -3.2 -3.1 -3.3 -3.2 -3.1 -3.0

Longitude (° W) ' ' Longitude (° W)

(a) (b)

FIGURE 2 Visual tracks of common terns coloured with observed behavioural states
during (a) incubation and (b) chick-rearing period from Leith dock, 2010.
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Reasons for incomplete tracks could be individuals flying faster than the boat could follow,
flying over a physical obstruction that prevented the boat from following, observers confusing

the tracked individuals with other terns, or insufficient fuel in the boat (Perrow ef all 201T).

Visual tracks for which (i) a single observed behaviour was recorded throughout the tracking
trip and (ii) total tracking time that did not exceed 1 min are omitted (see Table S1 for a
summary of visual tracks used, Supporting Information). GPS coordinates of the boat are
subsequently converted into step length (km) and turning angle (radians). These calculated
metrics potentially provide information about tern behaviour. For example, foraging
behavioural activities are typically characterized by slow and tortuous flight, indicating
smaller step lengths and low directional persistence in turnings. In contrast, not-foraging
behavioural activities are generally characterized by longer step lengths and high directional

persistence in turnings (Morales_ef all PO04).

2.3 Visual tracks as a proxy for tern tracks

Given that the boat followed at a distance ¢.50-200m from the tracked terns, we investigate
how well boat tracks replicate the movement of tracked individuals using additional
information on the animal’s recorded position in relation to the boat. For a subset of tracks
recorded at the Coquet Island colony during the chick-rearing in 2009, additional data were
also collected corresponding to the distance and bearing of the tern from the boat, thus
permitting the reconstruction of the (approximate) longitude and latitude location of the

tern.

Mathematically, let Lonpoat and Latye,t denote the boat’s longitude and latitude position and
the bearing and distance of the boat to the tern be indicated by “bearing” and “distance”,
respectively. Then the corresponding tern longitude and latitude (Longern, Latiern) are given

by:

Latiern ~ arcsin ( sin (Latpoeat) X cos (distance/R) 4 cos (Latpeat) X sin (distance/R) X cos (bearing)),

Longern &~ Lonpe,t + atan2(y, x),
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where

R = 6371km(radius of the earth),
y = sin (bearing) x sin (distance/R) x cos (Latpoat), and

x = cos (distance/R) — sin (Latpoat) X sin (Latiern ).

We compare (i) boat tracks and approximate tern tracks and (ii) the distribution of step length
and angles corresponding to the boats and approximate tern tracks to determine whether the
former can be used as an approximation for the movement of individual terns. We then
model the boat and approximated tern tracking data using HMMs to account for the different
movement patterns dependent on the (unknown) underlying behavioural states. We then
extract the inferred behavioural states from models fitted to both datasets and create a

confusion matrix to assess differences and similarities in inferred states.

2.4 Hidden Markov model (HMM)

A HMM (Figure B) is a time series model with an observed component, X;, driven by an
underlying latent component known as the state process, S;. The latter, .S, takes a value on
a finite set of IV possible values and is assumed to be a first-order Markov chain with the state
transition probability v;; = P(S; = j|Si—1 = i). The observed component, X;, which can be
univariate or multivariate, is assumed to be regularly spaced in time, ¢, with the associated

observation process distribution f(Xy|X¢—1,...,X1,S5¢,...,51) = f(Xy]S;) at any given time

(hidden)

(Observed)

FIGURE 3 Graphical representation of a HMM where S; and X; denotes the state and
observed process.

HMDMs are suitable for fitting to the visual tracking data since observations are collected at a
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regularly spaced interval, and for each time ¢, we specify N = 2 discrete states corresponding

to foraging (S; = 1) and not-foraging (S; = 2).

Each observed data point, Xy, is bi-dimensional, consisting of the step length (km), r;, and
the turning angle (radians), 1;. At each time ¢, the distribution of X; is conditional on the

current hidden state, .S¢, such that

fj(Xt):(f(rt|5t:j)vf(wt|5t:j)> for j=1---,N, (1)

where r; is modelled from a gamma distribution with parameters mean, u, and standard
deviation, o ie., r|(Sy = j) ~ Gamma(uj,o;), and 9 is modelled from a von Mises
distribution with parameters mean, p, and concentration, s i.e., ¥|(S; = j) ~ von —
Mises(pj,k;). We assume the distributions are independent for each time ¢, conditional

on the underlying state S;.

The corresponding likelihood of a HMM is a function of the following parameters: (i) 9:
(1 x N) vector of initial state distribution given as § = (P(S1 = 1),..., P(S1 = N)) (ii) I*:

(N x N) matrix of transition probabilities given as

Y11 .- YIN

YN1 --- 7NN

(iii) P(X4): (N x N) diagonal matrix corresponding to the observation process given as
f(Xt:a;t\St:I) 0

0 f(Xt:ZL't|St:N)

The general likelihood function of a HMM is then given by

L =P(X; =1 |0) =6TP(z,)...TP(ar)1, (4)

10
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where 1 is a column vector of length N with all entries equal to 1. We estimate these
parameters, 8 = {d,~, P(z;)}, via maximum likelihood estimation and obtain the most likely
state sequence using the Viterbi algorithm (Zucchini_ef all 20T6). We used the R package
momentuHMM (McClinfock & Michelofl 2018) for fitting HMMs to the boat tracks since the
package is widely used by scientists studying animal movement. We followed the guidance

outlined in Michelof et all (2006) to specify initial starting values for the model parameters.

2.5 HMDMs specification and selection

Boat GPS locations were recorded at 1s intervals and do not have missing data. The
completeness of the data means it is possible to use the recorded positions directly without
the need to standardize the recording frequency by interpolating in time and space. Seabirds
have been shown to vary their behaviour and area use at different breeding stages, travelling
further from the colony to rich foraging grounds during incubation and remaining closer to the
colony to feed chicks during chick-rearing (Robertson ef all 2014). As behaviour is expected to
differ between the two periods, we expect model parameters to differ. We consider different

models by varying model parameters for each tern species at each colony during the two

periods, summarised in Table 0.

TABLE 1 HMMs (Models 0 - 6) fitted to the boat tracking data across study sites during
incubation and chick-rearing. Covariate = FEuclidean distance of the boat to the study site.

Pooling effect Covariate effect

Models | State process Observed process ‘ State process Observed process

0 v v X X
1 X v X X
2 v X X X
3 X X X X
4 X v v X
5 v X X v
6 X X v v

Model 0, the base model, specifies that the state and observed processes are pooled across
the individual visual tracks so that the model parameters are assumed to be the same for all

individuals. Model 1 assumes a unique transition probability matrix parameter, I', for each

11
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individual by removing the pooling effect on the state process. Model 2 assumes unique step
length parameters for each individual track by removing the pooling effect on the observed
process across tracks. The pooling effect on both state and observed process is not included

in Model 3.

The Euclidean distance of the boat to the colony was included as an environmental covariate
on the state process in Model 4, the observed process in Model 5, and both processes in Model
6. The parameters associated with the observed and state process are pooled across individual
tracks for Models 4 and 5, respectively. We include the covariate as a proxy for the energetic
cost of travelling to a particular location from the breeding colony since this cost constrains
the at-sea distribution of central-place foragers such as breeding seabirds (Wilson ef all 2014).
We assume a multinomial logistic regression for the models with a covariate included (Models

4, 5, and 6). Let ¢ denote the covariate for the 2-state HMM, we set

exp(n;;
ij = (nm)

=————"—— fori,j=1,2, (5)
chvzl eXP(mk)

where

M2 = (()12) + 5%12)012,

21 = 5(()21) + 591)021, (6)

mi = nz2 = 0,
and [y, (1 corresponds to the intercept and the regression parameter of the covariate,

respectively.

Model selection was performed using the Akaike information criterion (AIC) (Burnham &

Anderson 2007). The AIC value is expressed as

-~

AIC = —2In(L) + 2p, (7)

where £ is the likelihood evaluated at the MLE of the model parameters and p is the number

of model parameters. We define AAIC; as

12
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AAIC; = AIC; — AIC,;, for i=0,....6, (8)

such that AAIC; = 0 for the model deemed optimal.

2.6 Model validation

The validation data consist of the observed behaviours of visually tracked terns. The inferred
behavioural states from HMMs and validation data are assumed to be binary classifications:
foraging and not-foraging. Common evaluation metrics for binary classification tasks include
confusion matrix, F1l-score, area under a ROC curve, and logarithmic loss (Hossin & Sulaiman
o015). We use the Fl-score metric to validate behavioural states of visually tracked terns
inferred from HMMSs since the data are unbalanced; that is, observed behavioral state
distribution is uneven. In particular, we identified an unbalanced classification for some
breeding colonies such as Cemlyn, Isle of May, and Leith. The foraging behavioural state
is of more interest as this helps to identify tern foraging areas. Therefore, a false negative,
which fails to identify a foraging behaviour, is of higher importance in this context than a
false positive. To calculate the Fl-score metric, we obtain the (i) positive predictive value
(PPV), which is the proportion of correct positives identified from all the predicted positives

calculated as

number of true positive

PPV =

(9)

number of true positive + number of false positive

and (ii) true positive rate (TPR), which is the proportion of the positives that are predicted

correctly and expressed as

number of true positive

TPR =

10
number of true positive + number of false negative (10)

Using Equations () and (M), the Fl-score is calculated as

F1-score = 2( PPV« 1PR )

PV L TPR (11)
PPV + TPR

13
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We also report the negative predictive value (NPV), which is the percentage of correct

not-foraging behavioural states of all the decoded not-foraging states expressed as

number of true negative

NPV =

number of true negative + number of false negative (12)
Although the Fl-score is a good validation metric, it does not account for how close the
decoded behavioural state is to the observed behavioural state. However, the logarithmic
loss metric, which is based on probability, does account for the uncertainty in the predicted
classification (Hossin & Sulaiman 2015). Thus, we also consider the logarithmic loss for the
fitted HMMSs to account for the uncertainty of the decoded behavioural state. We use the

observed behavioural states at each point, y;, and the predicted probabilities of decoded

behavioural state, g;, to calculate the logarithmic loss metric as

n

Log loss(y, q) = —% > [yilog(g:) + (1 — i) log(1 — q)] (13)
i=1

where n is the number of observations. The fitted model with the lowest log-loss value is
deemed optimal for this criteria, and we report the Fl-score, PPV, and TPR corresponding

to optimal HMMs.

In addition to the validation metrics, we obtain the total number of foraging events identified
within each observed behavioural data for visual tracking trips conducted across breeding
colonies for each tern species. We define a foraging event as a bout within which only foraging
behavioural states are recorded in the observed behavioural data of the individual tracked tern
species. We then calculate the proportion of observed foraging events where optimal HMMs
correctly infer (i) less than 25% (0% exclusive), (i) 25 — 49%, (iii) 50 — 74%, and (iv) at
least 75% of foraging behavioural states. Also, we obtain the proportion of observed foraging
events completely missed from the foraging behavioural states inferred from optimal HMMs

(i.e., observed foraging events where the model infers foraging at 0% of the time points).

14
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3 RESULTS

3.1 Assessment of visual tracking data as a proxy for tern movement data

Reported results are based on visual tracking conducted at the Coquet Island colony during
the chick-rearing period in 2009. We compare the boat locations to the associated inferred
movement track of nine terns and distributions of the derived step lengths and turning
angles. Typical foraging movement patterns generated by the boat and inferred tern tracks
are provided in Figure @ (and Figures S1-S4, Supporting Information). There are strong
similarities between the locations (as would be expected given the boats were following the
birds) and step length distributions. However, there appear to be more substantial differences
with the turning angle distributions (lower panel of columns 2 and 3 in the figures). The latter
difference can be explained by the bird making quicker turns compared to the boat, which
has smoother turning movements.

ID 84

4 35+
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< 3.0
0 4
ro] 3 25
2 220+
g K] 8154
6 i 1.0
B 1
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0- 0.0 -
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FIGURE 4 Approximate roseate tern tracks and boat tracks from Coquet Island, 2009
(column 1). Histogram showing the distribution of step length (km) and turning angles
(radians) from boat tracks (column 2) and from approximate roseate tern tracks (column 3).

We fitted HMMs to both boat and inferred tern location data. We observed little difference
in the inferred behavioural states when using boat location to approximate the location of

the tern. The confusion matrix metrics in Figure B indicate that the proportions of true

15
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positives and true negatives when comparing behaviours derived from fitting HMMSs to boat
and inferred tern locations against each other are higher than those of false negatives and

false positives.

Arctic Common Sandwich
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FIGURE 5 Confusion matrix metrics of behavioural states inferred from HMMs fitted
to the boat and approximate location data of 1 Arctic, 2 common, and 5 Sandwich terns
from Coquet colony during chick-rearing, 2009. F = Foraging, N = Not-Foraging. FF = true
positive, FN = false negative, NF = false positive, and NN = true negative. Models 1, 2, and
3 require a minimum of 2 terns; hence, there is no bar for Arctic tern.

3.2 Validating HMM-inferred behavioural states

Reported results are based on HMMs deemed optimal (i.e., HMMs with the lowest log-loss
value). Tables B and B present the summarised results of 2-state HMMs fitted to the visual
tracking data during incubation and chick-rearing (see Tables S2-S4 for additional results,
Supporting Information). Correctly decoded foraging states relative to total decoded foraging

states ranged from 65% to 98% during chick-rearing.
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TABLE 2 Validation results of 2-state HMMs fitted to visual tracking data of terns during
incubation. I' = transition probability matrix, covariate = Euclidean distance of boat to
colony.

HMM deemed optimal

Incubation (i.e. based on lowest log-loss value)  Validation metrics (%)
Colony Species ‘ Model Model Description ‘ PPV  TPR Fl-score
Leith Common ‘ 0 complete pool ‘ 61.00 60.29 60.64
Blue Circle Roseate ‘ 4 covariate on I ‘ 82.90 60.62 70.03
Cockle Arctic ‘ 5 covariate on step ‘ 60.11 68.63 64.08
Cockle Sandwich 59.54  49.65 54.15

6 covariate on I' and step

Isle of May  Arctic 63.88 32.20  42.82

TABLE 3 Validation results of 2-state HMMs fitted to visual tracking data of terns during
chick-rearing. I' = transition probability matrix, covariate = Euclidean distance of boat to
colony.

HMM deemed optimal

Chick-rearing (i.e. based on lowest log-loss value)  Validation metrics (%)
Colony Species ‘ Model Model Description ‘ PPV TPR Fl-score
Coquet Commo 0 comblete ool 88.44 79.19  83.56
Glas Eileanan o0 Hpee p 8421 7349  78.48
Coquet . 66.84 61.75 64.19
Isle of May ~ “etic 1 mnopoolonT 86.77 70.65  77.88
Blue Circle Sandwich 9 N L on st 80.84 78.36 79.58
Leith Common © POOLOT SIEp 74.05 7019  72.07
Cockle 84.85 91.11 87.87
Coquet Sandwich 3 no pool on I' and step 86.90 74.77 80.38
Forvie 65.15 79.90  T71.77
Cemlyn Arctic 98.91 58.92 73.85
Coquet Roseate 4 covariate on I' 68.66 86.06 76.38
South Shian Common 70.51  90.64 79.32
Cemlyn Common 6 covariate on I" and step 71.93 81.21 76.29

We note that correct decoded foraging states relative to total observed foraging states ranged
from 70% to 91% except for Arctic terns from Cemlyn and Coquet study sites with 58% and
61%, respectively. Overall, the performance of HMMs in correctly inferring behavioural states

during chick-rearing is at least 71% across study sites except for Arctic terns in Coquet, with
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a percentage of 64%. Validation of HMM results for incubation data shows a low performance
compared to models fitted to chick-rearing data in inferring behavioural states. For example,
we recorded at least 70% for only one roseate tern visually tracked at the Blue Circle colony
during incubation. The overall low performance during this breeding season may be due to

the small sample sizes.

Examining the corresponding observed behavioural data for each movement track of the boat,
we identified and defined a foraging bout within each track where observed foraging behaviours
were recorded as a foraging event. Optimal models correctly identify at least 50% of foraging
behaviour within each observed foraging event, most times during chick-rearing (Figure B).
The reverse is, however, the case during incubation (Figure @). The number of observed
foraging events completely missed across study sites (i.e., observed foraging events where the

model infers foraging at 0% of the time points) sums to 65, with an average time of 21 secs

(Figure B).
Tern species [l Arctic [ Common [ Roseate [ Sandwich
Blue Circle Cockle Isle of May Leith
6 3.
<
g
g_)4- 24 20+
£
()]
©
§2- 14 10+
: m -
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Percentage of correct inferred foraging state within each observed foraging event

FIGURE 6 Proportion of correctly inferred foraging states within each observed foraging
event across study sites during incubation.
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FIGURE 7 Proportion of correctly inferred foraging states within each observed foraging
event across the study sites during chick-rearing.

Leith (C), IN A AAAA A A AAAa
Leith (C), CR A A Asa
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Forvie (S), CR Addass

Study site (tern species), season
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Blue Circle (S), CR A
0 25 50 75

Time of missed foraging events (secs)

FIGURE 8 Observed foraging events completely missed from inferred foraging events
across the study sites during chick-rearing (CR) and incubation (IN). A-Arctic, C-Common,
and S-Sandwich tern.

The visual tracks coloured with behavioural states (see, for example, Figure H) reveals
similarity in the inferred and observed behavioural states across time points within visual
tracking trips conducted across breeding colonies. Figure [M provides histograms of the step
length and turning angle overlaid with the density curves of the inferred behavioural states for
a given track (see Figures S5-S7 for additional tracks, Supporting Information). The inferred
states assigned to foraging show shorter step lengths and lower directional persistence in
turnings than the not-foraging states, which exhibit larger step lengths and high directional

persistence in turnings.
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FIGURE 9 Visual tracks of 6 common terns coloured with (a) observed and (b) decoded
behavioural states from South Shian colony during the chick-rearing period, 2011.
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FIGURE 10 Histograms showing the distribution of (a) step length (km) and (b) turning
angle of 6 visually (boat) tracked common terns from South Shian colony during chick-rearing
period, 2011. Lines represent HMM-fitted state-dependent distributions coloured according
to the decoded behavioural states.

All models fitted appeared to have similar inferred states so that the inferred states were
largely insensitive to the set of models considered. However, AIC identified the same, relatively
complex model (e.g., an HMM with a relatively large number of model parameters) across
many species and breeding colonies, while the validation metrics identified much simpler

models. During incubation, we observe that the HMM accounting for the Euclidean distance
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of the boat to the colony as a covariate effect is mostly considered optimal compared to
the chick-rearing period. Furthermore, since there are no young terns to look after at the
colony during incubation, terns are likely to forage further from the colony during this period
compared to chick-rearing. Thus, accounting for the distance of the terns to the colony in

HMMs may provide better behavioural inference.

4 DISCUSSION

4.1 Visual tracking as a tool for validating HMMs

HMM-inferred behavioural states from telemetry data have not been validated in many
previous studies due to the difficulty in obtaining concurrent observed behavioural data.
However, these inferred behaviours are used in ecology to delineate important areas, such
as those used for foraging, and effective conservation planning and management decisions are
taken based on the location of these behaviours. Given the current climate and appetite for
increasing the number of protected areas on land and sea globally (e.g., protecting 30% of the
earth by 2030 target from the UN Biodiversity COP 15), it is crucial to assess the validity of
behaviors inferred from HMMs used in identifying the size and location of essential areas to

be protected.

In practice, behavioural states of seabirds are mostly inferred from HMMs fitted to telemetry
data (Langrock et all 20172), and our study is the first to infer behavioural states of seabirds
from visual tracking data using HMMs. We acknowledge that there may be potential effects
of the boat following the seabirds on their behaviour, the inferred states, and the validation
process itself. However, previous studies have shown that the visual tracking method does not
unduly affect bird behaviour due to a reasonable distance maintained between the individuals
and the boat; moreover, most birds appear to ignore the boat (Roberfson efall 2014, Wilson
ef_all POT4, Perrow et all 2001). The distance between the boat and the bird was, however,
increased when there was a noticeable change in behaviour, such as evasive flight, observed

for a few birds (Roberfson ef all 2014, Wilson ef all P14, Perrow ef all 2001). These previous

studies did not investigate the extent to which boat-based tracks replicate the path taken by
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the birds. Our study shows that movement data from the boat being used to visually track
terns closely replicated those from the estimated location data of the terns being tracked,
particularly for movement tracks corresponding to the foraging behavioural states of terns.
Additionally, similar behavioural states of terns were inferred from HMM:s fitted to the boat
tracks and the corresponding actual (estimated) tern location data. We acknowledge that
the boat and approximate tern position were compared for a small number of tern species
and restricted to a single colony (Coquet) and breeding period (chick-rearing), which may
impose limitations on the how representative the data and how generalised the interpretation
of the results can be. However, there are previous studies where individual terns were tracked
visually using a boat with tracks obtained from the onboard GPS as proxies for foraging tracks
have been used to successfully identify foraging behaviours and areas of tern species (Wilson

et all 2014, Perrow ef all 201T).

The unique approach of the visual tracking method provides telemetry data for the boat, a
proxy for the tracks of the terns they are following, and additional behavioural observation
data, which are difficult to access in terrains such as the marine environment. Consequently, it
allows HMM-inferred behaviours of seabirds to be validated using behavioural observations.
From our findings, we can conclude that visual tracking is a suitable method to identify
foraging movement and at-sea behaviour of terns, consistent with Perrow ef"all (2011).
Furthermore, we show that visual tracking provides an effective alternative to telemetry in
contexts where attaching biologging devices may not be feasible or appropriate (e.g., in species
particularly susceptible to behavioural impacts from attachment process or devices ((Gillies

of_al 70'2[1).

4.2 Validating HMM-inferred behavioural states

Our study investigated the accuracy of HMMs fitted to visual tracking data from different
tern species across breeding colonies in the UK during the breeding season, using behavioural
observation data recorded by observers on the boats. Results suggest that HMMs can
correctly infer behavioural states from tracking data. A similar observation has been shown

for inferred behavioural states from HMMs using additional accelerometer and magnetometer
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data from four species of albatross Conners ef all (2021) and fishermen’s movement data with
frequency differing from the observed behaviours (Hoo“ef all P0T3). These methods used to
infer behaviours are subject to the accuracy of the measurement devices. Our study is the
first to validate HMMSs using observed behaviours taken concurrently as the tracking data
in the same spatial and temporal context. Generally, HMMs performed reasonably well at
decoding behavioural states. However, the performance during incubation was poor compared
to chick-rearing, particularly for Arctic terns at the Isle of May (42% see Table B). Terns on
the Isle of May had reduced breeding success in 2010. Therefore, terns that were tracked may
have included failed or non-breeders which are not required to return to the colony regularly
to attend to eggs or chicks, and so the data for this colony and year may be potentially

unrepresentative of breeding adults (Wilson_ef all 2014).

The capacity of HMMs in identifying and capturing most foraging behavioural activities within
a foraging bout was low for roseate terns at Blue Circle and common terns at Leith during
incubation in 2010 (Figure B) and common terns at Cemlyn and Leith during chick-rearing
(Figure @). The visual tracking method was aimed at chick-rearing (2009-2011) but was
extended to incubation in 2010, resulting in a reduction in the frequency of data collection
(through survey effort being split between time periods) (Wilson et all 2014), which may be a
potential reason for the poor performance of fitted HMMs during incubation and chick-rearing
in 2010. Observed behavioural data showed that common terns at Leith colony foraged closer
to the colony during chick-rearing, 2010 (Figure Bb). The Leith common tern colony is in
a port, so there may have been speed restrictions on the boat and limitations to how well
the boat could closely replicate the movement of the terns. It is unclear from our study the
exact reason why fitted HMMs did not identify most foraging behavioural states of common

terns within foraging events at Leith and Cemlyn. However, overall, 70% (Leith) and 81%

(Cemlyn) of the foraging behavioural states were decoded correctly from HMMs.

HMDMs inferred foraging behavioural states 0% of the time for some observed foraging events
that lasted for an average of 21 seconds. These missed foraging events were most common
in chick-rearing. Terns forage close to the colony during chick-rearing and do not travel for

long distances (as they do in incubation) (Eglington & Perrow 2014). Also, observers noted
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short sessions of foraging behavioural activities of some tracked terns in some colonies (JNCC
personal communication). As a result, the track of the boat may not capture tern movement
corresponding to these short observed foraging events. Consequently, boat tracks may not
have represented the tern’s track correctly within those short phases of foraging events. As
such, the HMMs fitted to boat tracks from such a scenario could not have decoded foraging

states within the foraging bout from the boat tracks.

The choice of the number of behavioural states to fit in HMMs is a major challenge in animal
movement modelling particularly when the goal is to infer behavioural states from telemetry
data. AIC tends to select HMMs with more states but may not correspond to or have
a meaningful biological interpretation of the studied animal. Pohle"ef all (P017) provides
practical guides in selecting the number of states to fit HMMs. Given a fixed number of
states, an additional model selection process may include covariates or consider pooling across
individual tracks. However, our study showed that these different models did not lead to any
substantial differences between the inferred behavioural states, as identified by McClintock
(2021). Therefore, fitting less complex HMMs may likely outperform complex models in
inferring hidden behavioural states from movement data. As such, when behavioural inference
is the study’s goal, it may be preferable to consider simpler models (i.e., including a smaller
number of model parameters) when choosing an appropriate HMM to fit after selecting the

desired number of states.

Our findings are informative for conservation management and planning. Seabird colonies are
more likely to be included as part of protected area networks due to their aggregated nature
and relative ease of delineation than areas used by seabirds at sea, especially for species
with large foraging ranges from the colony. Foraging areas are considered important habitats
to include within seabird-protected area networks (Lascelles ef all PUTG). Thus, foraging
behavioural activities can be a focus for future studies looking at using behavioural states
to inform conservation and management, such as identifying the optimal size and location of
foraging areas around seabird colonies. In addition, our study could be extended to assess
how temporal validation translates to spatial validation. The visual tracking data could be

used to compare the spatial distribution of behaviours inferred from HMMs with the spatial
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distribution of observed behaviours to determine the accuracy of foraging areas detected using

HMMs with real-world implications for conservation and management.

Our study shows that using HMMs to infer foraging behavioural states can help identify
most foraging events correctly as HMMs decoded foraging activities within observed foraging
events. Furthermore, missed foraging events or bouts may be less frequent from HMMs
fitted to telemetry data of seabirds as GPS devices attached to seabirds are more likely to
capture movement patterns influenced by short foraging behavioural activities that last a
short time than HMMs fitted to visual tracking data. Therefore, using HMMs for behavioural
inference, particularly the foraging behaviour of seabirds, can aid spatial planning and inform
conservation decisions, hence providing a tool for the effective management of the impact of

human activities on seabirds and other species.

In summary, using HMMs to infer important conservation-relevant behaviours from telemetry
data appears defensible based on our results and can inform the design of designated protected
areas. Furthermore, the visual tracking method may also be a useful data collection method
for ecological researchers in situations where some factors, such as small species relative to
device weights, inaccessibility of colony, and species known to be particularly susceptible
to disturbance, may not facilitate the attachment of GPS tags to animals. Lastly, there
is evidence from our validation study that given the same number of behavioural states,
there may be no substantial differences in the performance of simpler and complex HMMs
in inferring behavioural states even in situations where standard model selection approaches,

such as AIC, strongly suggest the use of more complex models.
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