General procedure for synthesis of (3)
A 10-mL undivided three-necked bottle was equipped with a carbon rod anode (Ø = 6 mm) and carbon rod cathode (Ø = 6 mm) which was connected to a direct current (DC) regulated power supply. 1 (0.5 mmol), selenium powder (0.6 mmol), 2 (0.8 mmol), and TBAI (0.5 mmol) were dissolved in 4 mL MeCN and 2 mL H2O, the cell was electrolyzed at a constant current of 10 mA (~9.2 mA/cm2). The mixture was stirred for 10 h at environment temperature. The electrolysis was terminated when the starting materials were consumed as determined by TLC. Then the reaction mixture was diluted with 50 mL ethyl acetate, washed with a saturated solution of brine (2 × 15 mL), dried (Na2SO4), and concentrated in vacuum, and the resulting residue was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate) to afford the desired products 3 .
Supporting Information
The supporting information for this article is available on the WWW under https://doi.org/10.1002/cjoc.2023xxxxx.
Acknowledgement
We acknowledge funding supports from the starting grant of Guizhou University [(2023)5)]. We also thank International Science Editing for editing this manuscript.
References
  1. (a) Mampuys, P.; McElroy, C. R.; Clark, J. H.; Orru, R. V. A.; Maes, B. U. W. Thiosulfonates as Emerging Reactants: Synthesis and Applications. Adv. Synth. Catal. 2020 , 362 , 3-64; (b) Wu, H. Y.; Chen, X. L.; Wu, Y. D.; Wu, A. X. Rongalite as a Versatile Reagent in Organic Synthesis. Chin. J. Chem .2023 , 41 , 3388-3400; (c) Ghiazza, C.; Billard. T. Synthesis, Reactivity and Activation Modes of Fluoroalkyl Thiosulfonates and Selenosulfonates. Eur. J. Org. Chem .2021 , 2021 , 5571-5584; (d) Huang, S.; Xia, Z.; Lu, K.; Lu, H.; Tung, C. H.; Xu, Z. S-Trifluoroethyl Benzenesulfonothioate: A Bench-Stable Reagent for Electrophilic Trifluoroethylthiolation. Chin. J. Chem . 2020 ,38 , 1625-1628.
  2. (a) Small, L. D.; Bailey, J. H.; Cavallito, C. J. Comparison of Some Properties of Thiolsulfonates and Thiolsulfinates. J. Am. Chem. Soc . 1949 , 71 , 3565—3566. (b) Zottola, M. A.; Beigel, K.; Soni, S. D.; Lawrence, R. Disulfides as Cyanide Antidotes: Evidence for a New In Vivo Oxidative Pathway for Cyanide Detoxification. Chem. Res. Toxicol . 2009 , 22 , 1948-1953.
  3. (a) Wang, X.; Meng, J.; Zhao, D.; Tang, S.; Sun, K. Synthesis and Applications of Thiosulfonates and Selenosulfonates as Free-adical Reagents. Chin.Chem. Lett . 2023 , 34 , 107736; (b) Crespi, S.; Fagnoni, M. Generation of Alkyl Radicals: From the Tyranny of Tin to the Photon Democracy. Chem. Rev .2020 , 120 , 9790-9833; (c) Pannecoucke, X.; Besset, T. Use of ArSO2SRf Reagents: An Efficient Tool for the Introduction of SRf Moieties. Org. Biomol. Chem . 2019 , 17 , 1683-1693; (d) Nogueira, C. W.; Zeni, G.; Rocha, J. B. T. Organoselenium and Organotellurium Compounds:  Toxicology and Pharmacology. Chem. Rev .2004 , 104 , 6255-6286; (e) Ge, D.; Chen, J. W.; Xu, P.; Pan, J.; Chu, X. Q. Chin. Chem. Lett . 1,n-Thiosulfonylation Using Thiosulfonates as Dual Functional Reagents. 2022 ,33 , 4732-4739; (f) Abdtawfeeq, T. H.; Mahmood, E. A.; Azimi, S. B. Kadhim, M. M.; Kareem, R. T.; Charati, F. R. Vessally, E. Direct Selenosulfonylation of Unsaturated Compounds: A Review. RSC Adv . 2022 , 12 , 30564-30576.
  4. (a) Lü, S.; Wang, Z.; Gao, X.; Chen, K.; Zhu, S. 1,2-Difunctionalization of Acetylene Enabled by Light. Angew. Chem. Int. Ed . 2023 , 62 , e202300268; (b) Zhu, D.; Shao, X. X.; Hong, X.; Lu, L. Shen, Q. Angew. Chem. Int. Ed .2016 , 55 , 15807-15811; (c) Xiao, X.; Tian, H. Y.; Huang, Y. Q.; Lu, Y. J.; Fang, J. J.; Zhou, G. J.; Chen, F. E. Atom- and Step-Economic 1,3- Thiosulfonylation of Activated Allenes with Thiosulfonates to Access Vinyl Sulfones/Sulfides. Chem. Commun .2022 , 58 , 6765-6768; (d) Wang, B.; Hu, Z.; Huang, L.; Ren. X.; Gao, Q.; Wang, X. Polysulfide Synthesis via Visible-Light-Induced Heteroarene-Migratory Dithiosulfonylation Reaction. Chem. Commun . 2023 , 59 , 7247-7250; (e) Li, H.; Cheng, Z.; Tung, C. H.; Xu, Z. Atom Transfer Radical Addition to Alkynes and Enynes: A Versatile Gold/Photoredox Approach to Thio-Functionalized Vinylsulfones. ACS Catal . 2018 ,8 , 8237-8243; (f) Liu, J.; Yao, H.; Li, X.; Wu, H.; Lin, A.; Yao, H.; Xu, J.; Xu, S. Organocatalytic 1,5-Trifluoromethylthio-sulfonylation of Vinylcyclopropane Mediated by Visible Light in the Water Phase. Org. Chem. Front .2020 , 7 , 1314-1320; (g) Wu, Z.; Xu, Y.; Wu, X.; Zhu, C. Synthesis of Selenoether and Thioether Functionalized Bicyclo[1.1.1]pentanes. Tetrahedron 2020 ,76 , 131692.
  5. (a) Shyam, P. K.; Kim, Y. K.; Lee, C.; Jang, H. Y. Copper-Catalyzed Aerobic Formation of Unstable Sulfinyl Radicals for the Synthesis of Sulfinates and Thiosulfonates. Adv. Synth. Catal .2016 , 358 , 56-61; (b) Perrone, E.; Alpegiani, M.; Bedeschi, A.; Borghi, D.; Giudici, F.; Franceschi, G. Cyclic thiosulfinates and Thiosulfonates from Oxidation of the 2-Thiacephem Ring System. Synthesis of (5R )-Penems by Stereospecific Sulfur Dioxide Extrusion. J. Org. Chem . 1986 , 51 , 3413-3420; (c) Luu, T. X. T.; Nguyen, T. T. T.; Le, T. N.; Spanget-Larsen, J.; Duus, F. Fast and Efficient Green Synthesis of Thiosulfonate S-Esters by Microwave-Supported Permanganate Oxidation of Symmetrical Disulfides. J. Sulfur Chem . 2015 ,36 , 340-350; (d) Reddy, R. J.; Waheed, M.; Kumar, J. J. A Straightforward and Convenient Synthesis of Functionalized Allyl Thiosulfonates and Allyl Disulfanes. RSC Adv . 2018 ,8 , 40446-40453; (e) Harpp, D. N.; Ash, D. K.; Smith, R. A. Chemistry of Sulfenic Sulfonic Thioanhydrides. Solvent-Dependent Sulfur Extrusion. J. Org. Chem . 1979 , 44 , 4135-4140.
  6. (a) Zhang, X.; Cui, T.; Zhang, Y.; Gu. W.; Liu, P.; Sun, P. Electrochemical Oxidative Cross-Coupling Reaction to Access Unsymmetrical Thiosulfonates and Selenosulfonates. Adv. Synth. Catal . 2019 , 361 , 2014-2019; (b) Peng, Z.; Zheng, X.; Zhang, Y.; An, D.; Dong, W. H2O2-Mediated Metal-Free Protocol Towards Unsymmetrical Thiosulfonates from Sulfonyl Hydrazides and Disulfides in PEG-400. Green Chem . 2018 , 20 , 4428-4432; (c) Zhang, G. Y.; Lv, S. S.; Shoberu, A.; Zou, J. P.J. Org. Chem . 2017 , 82 , 9801-9807; (d) Back, T. G.; Collins, S.; Krishna, M. V. Reactions of Sulfonhydrazideswith Benzeneseleninic Acid, Selenium Halides, and Sulfur Halides. A Convenient Preparation of Selenosulfonates and Thiosulfonates.Can. J. Chem . 1987 , 65 , 38-42; (e) Iwata, S.; Senoo, M.; Hata, T.; Urabe, H. Synthesis of S -Aryl Arenethiosulfonates fromN ,N -Di(arenesulfonyl)hydrazines: Reduction of Sulfonyl Chlorides with an Organic Reagent. Heteroatom Chem .2013 , 24 , 336-344; (f) Mahieu, J. P.; Gosselet, M.; Sebille, B.; Beuzard, Y. Synthesis of New Thiosulfonates and Disulfides from Sulfonyl Chlorides and Thiols. Synth. Comm .1986 , 16 , 1709-1722.
  7. (a) Zhou, X. Q.; Tang, H. T.; Cui, F. H.; Liang, Y.; Li, S. H.; Pan, Y. M. Electrocatalytic Three-Component Reactions: Synthesis of Tellurium-Containing Oxazolidinone for Anticancer Agents. Green Chem . 2023 , 25 , 5024-5029; (b) Chivers, T.; Laitinen, R. S. Tellurium: A Maverick Among the Chalcogens.Chem. Soc. Rev . 2015 , 44 , 1725-1739; (c) Chen, Y.; Deng, X.; Jing, X.; Zhou, H. Tellurium-Mediated Organic Reactions.Chin. J. Org. Chem. 2020 , 40 , 4147-4154.
  8. (a) Lai, X. L.; Xu, H. C. Photoelectrochemical Asymmetric Catalysis Enables Enantioselective Heteroarylcyanation of Alkenes via C–H Functionalization. J. Am. Chem. Soc . 2023 , 145 , 18753-18759; (b) Cheng, X.; Lei, A.; Mei, T. S.; Xu, H. C.; Xu, K.; Zeng, C. C. Recent Applications of Homogeneous Catalysis in Electrochemical Organic Synthesis. CCS Chem . 2022 ,4 , 1120-1152; (c) Li, Z. M.; Shuai, B.; Ma, C.; Fang, P.; Mei, T. S. Nickel-Catalyzed Electroreductive Syntheses of Triphenylenes Using ortho-Dihalobenzene-Derived Benzynes. Chin. J. Chem .2022 , 40 , 2335-2344; (d) Ma, C.; Fang, P.; Liu, Z. R.; Xu, S. S.; Xu, K.; Cheng, X.; Lei, A.; Xu, H. C.; Zeng, C. C.; Mei, T. S. Recent Advances in Organic Electrosynthesis Employing Transition Metal Complexes as Electrocatalysts. Sci. Bull .2021 , 66 , 2412-2429; (e) Zhou, Y.; Zhao, Z.; Zeng, L.; Li, M.; He, Y.; Gu, L. Recent Advance in Organic Electrochemical Synthesis of Nitrogenous Heterocyclic Compounds Involving Haloids as Mediators. Chin. J. Org. Chem . 2021 , 41 , 1072-1080.
  9. (a) Gehani, A. A. M. A. E.; Maashi, H. A.; Harnedy, J.; Morrill, L. C. Electrochemical Generation and Utilization of Alkoxy Radicals.Chem. Commun . 2023 , 59 , 3655-3664; (b) Shi, S. H.; Liang, Y.; Jiao, N. Electrochemical Oxidation Induced Selective C–C Bond Cleavage. Chem. Rev . 2021 , 121 , 485-505; (c) Yang, K.; Feng, T.; Qiu, Y. Organo-Mediator Enabled Electrochemical Deuteration of Styrenes. Angew. Chem. Int. Ed .2023 , 62 , e202312803; (d) Jiang, Y. Xu, K.; Zeng, C. C. Electrophotocatalytic Si–H Activation Governed by Polarity-Matching Effects. CCS Chem . 2021 , 3 , 1911-1920; (e) Wang, P.; Tang, S.; Lei, A. Electrocatalytic Oxidant-Free Dehydrogenative C-H/S-H Cross-Coupling. Angew. Chem. Int. Ed . 2017 , 56 , 3009-3013; (f) Zhu, C.; Ang, N. W. J.; Meyer, T. H.; Qiu, Y.; Ackermann, L. Organic Electrochemistry: Molecular Syntheses with Potential. ACS Cent. Sci . 2021 , 7 , 415-431; (g) Yang, Z.; Yang, D.; Zhang, J.; Tan, C.; Li, J.; Wang, S.; Zhang, H.; Huang, Z. Lei, A. Electrophotochemical Ce-Catalyzed Ring-Opening Functionalization of Cycloalkanols under Redox-Neutral Conditions: Scope and Mechanism.J. Am. Chem. Soc . 2022 , 144 , 13895-13902; (h) He, Y.; Zeng, L.; Li, M.; Zhang, S.; Li, G. Electrochemical Oxidative C–C Bond Cleavage of Ketones for C–N Bond Formation: A Route to Amides. J. Org. Chem . 2022 , 87, 12622-12631.
  10. (a) Zhang, X.; Cui, T.; Zhao, X.; Liu, P.; Sun, P. Electrochemical Difunctionalization of Alkenes via Four-component Reactions Cascade Mumm Rearrangement: Rapid Access to Functionalized Imides.Angew. Chem. Int. Ed . 2020 , 59 , 3465-3469; (b) Zeng, L.; Li, J.; Gao, J.; Huang, X.; Wang, W.; Zheng, X.; Gu, L.; Li, G.; Zhang, S.; He, Y. An electrochemical oxidative multicomponent cascade annulation of ketones and amines used to produce imidazoles.Green Chem . 2020 , 22 , 3416-3420; (c) Lai, X. L.; Xu, H. C. Photoelectrochemical asymmetric catalysis enables enantioselective heteroarylcyanation of alkenes via C-H functionalization. J. Am. Chem. Soc . 2023 , 145 , 18753-18759; (d) Zhao, Z.; He, Y.; Li, M.; Xu, J.; Li, X.; Zhang, L.; Gu, L. An Electrochemical Multicomponent [3+1+1] Annulations to Synthesize Polysubstituted 1,2,4-Triazoles. Tetrahedron2021 , 87 , 132111; (e) Ren, S.; Zhou, Q.; Zhou, H. Y.; Wang, L. W.; Mulina, O. M.; Paveliev, S .A.; Tang, H. T.; Terentʼev, A. O.; Pan, Y. M. Three-Component Electrochemical Aminoselenation of 1,3-Dienes. J. Org. Chem . 2023 , 88, 5760-5771; (f) Lu, Y.; Mu, S. Y.; Li, H. X.; Jiang, J.; Wu, C.; Zhou, M. H.; Ouyang, W. T.; He, W. M. EtOH-Catalyzed Electrosynthesis of Imidazolidine-Fused Sulfamidates from N-Sulfonyl Ketimines, N-Arylglycines and Formaldehyde. Green Chem . 2023 ,25 , 5539-5542; (g) Wan, C.; Song, R. J.; Li, J. H. Electrooxidative 1,2-Bromoesterification of Alkenes with Acids and N-Bromosuccinimide. Org. Lett . 2019 , 21 , 2800-2803; (h) Zhang, T. T.; Luo, M. J.; Li, Y.; Song, R. J.; Li, J. H. Electrochemical Alkoxyhalogenation of Alkenes with Organohalides as the Halide Sources via Dehalogenation. Org. Lett .2020 , 22 , 7250-7254.
  11. (a) Meng, Z. Y.; Feng, C. T.; Zhang, L.; Yang, Q.; Chen, D. X.; Xu, K. Regioselective C−H Phosphorothiolation of (Hetero)arenes Enabled by the Synergy of Electrooxidation and Ultrasonic Irradiation. Org. Lett . 2021 , 23 , 4214-4218; (b) Yu, M.; Huang, T.; Zhang, L.; Shabbir, M.; Gao, Y.; Chen, Y. H.; Yi, H.; Lei, A. Regioselective Electrochemical Radical Cascade Cyclization of Internal Alkynes to Selenated and Trifluoromethylated Dihydropyran. Sci China Chem . 2023 , 66 , 3178-3185; (c) Zhang, C.; Zhou, Y.; Zhao, Z.; Xue, W.; Gu, L. An Electrocatalytic Three-Component Reaction for the Synthesis of Phosphoroselenoates.Chem. Commun . 2022 , 58 , 13951-13954; (d) Xiong, T. K.; Xia, Q.; Zhou, X. Q.; Cui, F. H.; Tang, H. T.; Pan, Y. M.; Liang, Y. Electrochemically Mediated Fixation of CO2: Synthesis of Functionalized Oxazolidine-2,4-Diones by Three-Component Reactions. Adv. Synth. Catal . 2023 , 365 , 2183-2187; (e) Sun, L.; Wang, L.; Alhumade, H.; Yi, H.; Cai, H.; Lei, A. Electrochemical Radical Selenylation of Alkenes and Arenes via Se–Se Bond Activation.Org. Lett . 2021 , 23, 7724-7729.
  12. For details, see Supplementary Information (Table S1-S4).
  13. Wei, W.; Zhan, L.; Gao, L.; Huang, G.; Ma, X. Research Progress of Electrochemical Synthesis of C -Sulfonyl Compounds. Chin. J. Org. Chem. 2023 , 43 , 17-35.