References
Abrahams, A., Schlegel, R. W., & Smit, A. J. (2021), Variation and
Change of Upwelling Dynamics Detected in the World’s Eastern Boundary
Upwelling Systems. Frontiers in Marine Science , 8, 626411.
https://doi.org/10.3389/fmars.2021.626411
Arévalo‐Martínez, D.L., Steinhoff, T., Brandt, P., Körtzinger, A.,
Lamont, T., Rehder, G. & Bange, H.W. (2019), N2O
emissions from the northern Benguela upwelling system. Geophysical
Research Letters , 46(6), 3317–3326.
Bakun, A. (1990), Global climate change and intensification of coastal
ocean upwelling. Science , 247, 198–201.
https://doi.org/10.1126/science.247.4939.198
Bange, H., Bell, T., Cornejo, M., Freing, A., Uher, G., Upstill-Goddard,
R., & Zhang, G. (2009), MEMENTO: a proposal to develop a database of
marine nitrous oxide and methane measurements. Environmental
Chemistry , 6, 195–197. https://doi.org/10.1071/EN09033
Bonino, G., Di Lorenzo, E., Masina, S., et al. (2019), Interannual to
decadal variability within and across the major Eastern Boundary
Upwelling Systems. Scientific Reports , 9, 19949.
https://doi.org/10.1038/s41598-019-56514-8
Bordbar, M. H., Mohrholz, V., & Schmidt, M. (2021), The relation of
wind-driven coastal and offshore upwelling in the Benguela Upwelling
System. Journal of Physical Oceanography , 51(10), 3117–3133.
https://doi.org/10.1175/JPO-D-20-0297.1
Bordbar, M. H., Mohrholz, V., & Schmidt, M. (2023), Low confidence in
multi-decadal trends of wind-driven upwelling across the Benguela
Upwelling System. Earth System Dynamics , 14, 1065–1080.
https://doi.org/10.5194/esd-14-1065-2023
Borges, A. V. (2005), Do we have enough pieces of the jigsaw to
integrate CO2 fluxes in the coastal ocean?Estuaries , 28, 3–27. https://doi.org/10.1007/BF02732750
Borges, A. V., Delille, B., & Frankignoulle, M. (2005), Budgeting sinks
and sources of CO2 in the coastal ocean: Diversity of
ecosystems counts. Geophysical Research Letters , 32(14).
https://doi.org/10.1029/2005GL023053
Brandt, P., Bordbar, M. H., Coelho, P., et al. (2024), Physical Drivers
of Southwest African Coastal Upwelling and Its Response to Climate
Variability and Change. In G. P. von Maltitz et al. (Eds.),
Sustainability of Southern African Ecosystems under Global Change:
Science for Management and Policy Interventions. Ecological
Studies , 248, 221–257. https://doi.org/10.1007/978-3-031-10948-5
Brüchert, V., Currie, B., & Peard, K. R. (2009), Hydrogen sulphide and
methane emissions on the central Namibian shelf. Progress in
Oceanography , 83, 169–179.
https://doi.org/10.1016/j.pocean.2009.07.017
Cai, W.-J., Feely, R. A., Testa, J. M., et al. (2021), Natural and
Anthropogenic Drivers of Acidification in Large Estuaries. Annual
Review of Marine Science , 13, 1–33.
https://doi.org/10.1146/annurev-marine-010419-011004
Cai, W.-J. (2003), Riverine inorganic carbon flux and rate of biological
uptake in the Mississippi River plume. Geophysical Research
Letters , 30, 1032. https://doi.org/10.1029/2002GL016312
Calvert, S. E., & Price, N. B. (1983), Geochemistry of Namibian shelf
sediments. In E. Suess, & J. Thiede (Eds.), Coastal upwelling its
sediment record. NATO Conference Series (IV marine sciences) ,
10B, 337–375. https://doi.org/10.1007/978-1-4615-6651-9_17
Capelle, D. W., & Tortell, P. D. (2016), Factors controlling methane
and nitrous-oxide variability in the southern British Columbia coastal
upwelling system. Marine Chemistry , 179, 56–67.
Chou, W.-C., Gong, G.-C., Hung, C.-C., & Wu, Y.-H. (2013), Carbonate
mineral saturation states in the East China Sea: present conditions and
future scenarios. Biogeosciences , 10, 6453–6467.
https://doi.org/10.5194/bg-10-6453-2013
Cohen, Y. (1978), Consumption of dissolved nitrous oxide in an anoxic
basin, Saanich Inlet, British Columbia. Nature , 272, 235–237.
Cotovicz Jr., L. C., Knoppers, B. A., Brandini, N., Costa Santos, S. J.,
& Abril, G. (2015), A strong CO2 sink enhanced by
eutrophication in a tropical coastal embayment (Guanabara Bay, Rio de
Janeiro, Brazil). Biogeosciences , 12, 6125–6146.
https://doi.org/10.5194/bg-12-6125-2015
Dalsgaard, T., Thamdrup, B., Farías, L. & Revsbech, N.P. (2012),
Anammox and denitrification in the oxygen minimum zone of the eastern
South Pacific. Limnology and Oceanography , 57(5), 1331–1346.
Dalsgaard, T., Stewart, F.J., Thamdrup, B., De Brabandere, L., Revsbech,
N.P., Ulloa, O., Canfield, D.E. & DeLong, E.F. (2014), Oxygen at
nanomolar levels reversibly suppresses process rates and gene expression
in anammox and denitrification in the oxygen minimum zone off northern
Chile. MBio , 5(6),10–1128.
Damm, E., Helmke, E., Thoms, S., Schauer, U., Nöthig, E., Bakker, K.,
Kiene, R. P., & Scheider, B. (2010), Methane production in aerobic
oligotrophic surface water in the central Arctic Ocean.Biogeosciences , 7(3), 1099–1108.
Dickson, A.G., Sabine, C.L. & Christian, J.R. (2007), Guide to best
practices for ocean CO2 measurements.
Emeis, K., Eggert, A., Flohr, A., Lahajnar, N., Nausch, G., Neumann, A.,
Rixen, T., Schmidt, M., Van der Plas, A. & Wasmund, N. (2018),
Biogeochemical processes and turnover rates in the Northern Benguela
Upwelling System. Journal of Marine Systems , 188, 63–80.
Eyre, B. D., Camillini, N., Glud, R. N., et al. (2023), The climate
benefit of seagrass blue carbon is reduced by methane fluxes and
enhanced by nitrous oxide fluxes. Communications Earth &
Environment , 4, 374. https://doi.org/10.1038/s43247-023-01022-x
Florez-Leiva, L., Damm, E., & Farías, L. (2013), Methane production
induced by dimethylsulfide in surface water of an upwelling ecosystem.Progress in Oceanography , 112, 38–48.
Frame, C., Deal, E., Nevison, C. D., & Casciotti, K. L. (2014),
N2O production in the eastern South Atlantic: Analysis
of N2O stable isotopic and concentration data.Global Biogeochemical Cycles , 28, 1262–1278.
https://doi.org/10.1002/2013GB004790
Friis, K., Körtzinger, A., & Wallace, D. W. R. (2003), The salinity
normalization of marine inorganic carbon chemistry data.Geophysical Research Letters , 30, 1085. doi:10.1029/2002GL015898
Grundle, D. S., Löscher, C. R., Krahmann, G., et al. (2017), Low oxygen
eddies in the eastern tropical North Atlantic: Implications for
N2O cycling. Scientific Reports , 7, 4806.
https://doi.org/10.1038/s41598-017-04745-y
Heintz, M.B., Mau, S. & Valentine, D.L. (2012), Physical control on
methanotrophic potential in waters of the Santa Monica Basin, Southern
California. Limnology and oceanography , 57(2), 420–432.
Hutchings, L., van der Lingen, C., Shannon, L., Crawford, R., Verheye,
H., Bartholomae, C., van der Plas, A., Louw, D., Kreiner, A., Ostrowski,
M., Fidel, Q., Barlow, R. G., Lamont, T., Coetzee, J., Shillington, F.,
Veitch, J., Currie, J. C., & Monteiro, P. (2009), The Benguela Current:
An ecosystem of four components. Progress in Oceanography , 83,
15–32.
Jayakumar, A., Naqvi, S.W.A. & Ward, B.B. (2009), Distribution and
relative quantification of key genes involved in fixed nitrogen loss
from the Arabian Sea oxygen minimum zone. Indian Ocean
biogeochemical processes and ecological variability , 185, 187–203.
Junker, T., Mohrholz, V., Siegfried, L., & Van der Plas, A. (2017),
Seasonal to interannual variability of water mass characteristics and
currents on the Namibian shelf. Journal of Marine Systems , 165,
36–46. DOI: 10.1016/j.jmarsys.2016.09.003
Kessler, J.D., Valentine, D.L., Redmond, M.C., Du, M., Chan, E.W.,
Mendes, S.D., Quiroz, E.W., Villanueva, C.J., Shusta, S.S., Werra, L.M.
& Yvon-Lewis, S.A. (2011), A persistent oxygen anomaly reveals the fate
of spilled methane in the deep Gulf of Mexico. Science ,
331(6015), 312–315.
Kock, A. & Bange, H. W. (2015), Counting the Ocean’s Greenhouse Gas
Emissions. Eos , 96, 10–13. https://doi.org/10.1029/2015eo023665
Lefèvre, N., & Taylor, A. (2002), Estimatingp CO2 from sea surface temperatures in the
Atlantic gyres. Deep Sea Research Part I. Oceanographic Research
Papers , 49 (3), 539–554.
Le Quéré, C., Peters, G.P., Andres, R.J., Andrew, R.M., Boden, T.A.,
Ciais, P., Friedlingstein, P., Houghton, R.A., Marland, G., Moriarty, R.
& Sitch, S. (2014), Global carbon budget 2013. Earth Syst. Sci.
Data , 6, 235–263.
Lutjeharms, J.R.E. & Meeuwis, J.M. (1987), The extent and variability
of South-East Atlantic upwelling. South African Journal of Marine
Science , 5(1), 51–62.
Lutjeharms, J.R.E. & Stockton, P. L. (1987), Kinematics of the
upwelling front off southern Africa, South African Journal of
Marine Science , 5:1, 35–49, DOI: 10.2989/025776187784522612
Mashifane, T. B., Bourbonnais, A., & Fawcett, S. E. (2022), Nitrous
oxide dynamics in the southern Benguela upwelling system. Journal
of Geophysical Research: Oceans , 127, e2022JC019129.
https://doi.org/10.1029/2022JC019129
Millero, F.J. (2010), Carbonate constants for estuarine waters.Marine and Freshwater Research , 61(2), 139–142.
Mohrholz, V., Bartholomae, C.H., Van der Plas, A.K., & Lass, H.U.
(2008), The seasonal variability of the northern Benguela undercurrent
and its relation to the oxygen budget on the shelf. Continental
Shelf Research , 28(3), 424–441.
Mohrholz, V., Eggert, A., Junker, T., Nausch, G., Ohde, T., & Schmidt,
M. (2014), Cross-shelf hydrographic and hydrochemical conditions and its
short-term variability at the northern Benguela during a normal
upwelling season. Journal of Marine Systems , 140B, 92–110.
https://doi.org/10.1016/j.jmarsys.2014.04.019
Mollenhauer, G., Inthorn, M., Vogt, T., Zabel, M., Sinninghe Damsté, J.
S., & Eglinton, T. I. (2007), Aging of marine organic matter during
cross-shelf lateral transport in the Benguela upwelling system revealed
by compound-specific radiocarbon dating. Geochemistry, Geophysics,
Geosystems , 8, Q09004. https://doi.org/10.1029/2007GC001603
Morgan, E.J., Lavric, J.V., Arévalo-Martínez, D.L., Bange, H.W.,
Steinhoff, T., Seifert, T. & Heimann, M. (2019), Air–sea fluxes of
greenhouse gases and oxygen in the northern Benguela Current region
during upwelling events. Biogeosciences , 16(20), 4065–4084.
Muller, A.A., Reason, Ch.J., Mohrholz, V., Schmidt, M., & Eggert, A.
(2014), Computing transport budgets along the shelf and across the shelf
edge in the northern Benguela during summer (DJF) and winter (JJA).Journal of Marine Systems , 140B, 82–91.
https://dx.doi.org/10.1016/j.jmarsys.2014.02.007
Muller, A.A., Mohrholz, V., & Schmidt, M. (2013), The circulation
dynamics associated with a northern Benguela upwelling filament during
October 2010. Continental Shelf Research, 63, 59–68.
Müller, J.D., Bastkowski, F., Sander, B., Seitz, S., Turner, D.R.,
Dickson, A.G. & Rehder, G. (2018), Metrology for pH Measurements in
Brackish Waters-Part 1: Extending Electrochemical pH T Measurements of
TRIS Buffers to Salinities 5–20. Frontiers in Marine Science ,
5(176).
Müller, J.D. & Rehder, G. (2018), Metrology of pH measurements in
brackish waters—part 2: experimental characterization of purified
meta-cresol purple for spectrophotometric pHT
measurements. Frontiers in Marine Science , 5(177).
Nevison, C.D., Lueker, T.J. & Weiss, R.F. (2004), Quantifying the
nitrous oxide source from coastal upwelling. Global Biogeochemical
Cycles , 18(1).
Ohde T., & Dadou I. (2018), Seasonal and annual variability of coastal
sulphur plumes in the northern Benguela upwelling system. PLoS
ONE , 13 (2): e0192140. https://doi.org/10.1371/journal.pone.0192140
Ohde, Th., & Mohrholz, V. (2011), Interannual variability of Sulphur
plumes off the Namibian coast. Int. J. Remote Sensing , 32(24),
9327–9342.doi: 10.1080/01431161.2011.554455.
Reeburgh, W.S. (2007), Oceanic methane biogeochemistry. Chemical
reviews , 107(2), 486–513.
Rehder, G., Collier, R.W., Heeschen, K., Kosro, P.M., Barth, J. &
Suess, E. (2002), Enhanced marine CH4 emissions to the
atmosphere off Oregon caused by coastal upwelling. Global
Biogeochemical Cycles , 16(3).
Resplandy, L., Hogikyan, A., Müller, J. D., Najjar, R. G., Bange, H.
W., Bianchi, D., et al. (2024), A synthesis of global coastal ocean
greenhouse gas fluxes. Global Biogeochemical Cycles , 38,
e2023GB007803. https://doi.org/10.1029/2023GB007803
Sabbaghzadeh, B., Arévalo-Martínez, D. L., Glockzin, M., Otto, S., &
Rehder, G. (2021), Meridional and crossshelf variability of
N2O and CH4 in the Eastern-South
Atlantic. Journal of Geophysical Research: Oceans , 126,
e2020JC016878. https://doi. org/10.1029/2020JC016878
Santana-Casiano, J.M., González-Dávila, M. & Ucha, I.R. (2009), Carbon
dioxide fluxes in the Benguela upwelling system during winter and
spring: A comparison between 2005 and 2006. Deep Sea Research Part
II: Topical Studies in Oceanography , 56(8-10), 533–541.
Schmale, O., Wäge, J., Mohrholz, V., Wasmund, N., Gräwe, U., Rehder, G.,
Labrenz, M. & Loick‐Wilde, N. (2018), The contribution of zooplankton
to methane supersaturation in the oxygenated upper waters of the central
Baltic Sea. Limnology and Oceanography , 63(1), 412–430.
Siegfried L, Schmidt M, Mohrholz V, Pogrzeba H, Nardini P, Böttinger M,
et al. (2019), The tropical-subtropical coupling in the Southeast
Atlantic from the perspective of the northern Benguela upwelling system.PLoS ONE , 14(1): e0210083.
https://doi.org/10.1371/journal.pone.0210083
Siddiqui, C., Rixen, T., Lahajnar, N., et al. (2023), Regional and
global impact of CO2 uptake in the Benguela Upwelling
System through preformed nutrients. Nature Communications , 14,
2582. https://doi.org/10.1038/s41467-023-38208-y
Tyrrell, T., & Lucas, M. I. (2002), Geochemical evidence of
denitrification in the Benguela upwelling system. Continental
Shelf Research , 22(17), 2497–2511.
https://doi.org/10.1016/S0278-4343(02)00077-8
Uppström, L.R. (1974), The boron/chlorinity ratio of deep-sea water from
the Pacific Ocean. Deep-Sea Res . 21, 161–162.
Van der Plas, A. K., Monteiro, P. M. S., & Pascall, A. (2007), Cross
shelf biogeochemical characteristics of sediments in the central
Benguela and their relationship to overlying water column hypoxia.African Journal of Marine Science , 29, 37–47.
https://doi.org/10.2989/ajms.2007.29.1.3.68
Wesslander, K., Omstedt, A. & Schneider, B. (2010), Inter-annual and
seasonal variations in the air–sea CO2 balance in the
central Baltic Sea and the Kattegat. Continental Shelf Research ,
30(14), 1511–1521.
Xue, L., & Cai, W.-J. (2020), Total alkalinity minus dissolved
inorganic carbon as a proxy for deciphering ocean acidification
mechanisms. Marine Chemistry , 103791.
Zeebe, R., & Wolf-Gladrow, D. (2001), CO2 in seawater:
Equilibrium, kinetics, isotopes. Gulf Professional Publishing , 6,
1–346.
Zhang, M., Cheng, Y., Bao, Y., Zhao, C., Wang, G., Zhang, Y., Song, Z.,
Wu, Z. & Qiao, F. (2022), Seasonal to decadal spatiotemporal variations
of the global ocean carbon sink. Global Change Biology , 28(5),
1786–1797.