References
Abrahams, A., Schlegel, R. W., & Smit, A. J. (2021), Variation and Change of Upwelling Dynamics Detected in the World’s Eastern Boundary Upwelling Systems. Frontiers in Marine Science , 8, 626411. https://doi.org/10.3389/fmars.2021.626411
Arévalo‐Martínez, D.L., Steinhoff, T., Brandt, P., Körtzinger, A., Lamont, T., Rehder, G. & Bange, H.W. (2019), N2O emissions from the northern Benguela upwelling system. Geophysical Research Letters , 46(6), 3317–3326.
Bakun, A. (1990), Global climate change and intensification of coastal ocean upwelling. Science , 247, 198–201. https://doi.org/10.1126/science.247.4939.198
Bange, H., Bell, T., Cornejo, M., Freing, A., Uher, G., Upstill-Goddard, R., & Zhang, G. (2009), MEMENTO: a proposal to develop a database of marine nitrous oxide and methane measurements. Environmental Chemistry , 6, 195–197. https://doi.org/10.1071/EN09033
Bonino, G., Di Lorenzo, E., Masina, S., et al. (2019), Interannual to decadal variability within and across the major Eastern Boundary Upwelling Systems. Scientific Reports , 9, 19949. https://doi.org/10.1038/s41598-019-56514-8
Bordbar, M. H., Mohrholz, V., & Schmidt, M. (2021), The relation of wind-driven coastal and offshore upwelling in the Benguela Upwelling System. Journal of Physical Oceanography , 51(10), 3117–3133. https://doi.org/10.1175/JPO-D-20-0297.1
Bordbar, M. H., Mohrholz, V., & Schmidt, M. (2023), Low confidence in multi-decadal trends of wind-driven upwelling across the Benguela Upwelling System. Earth System Dynamics , 14, 1065–1080. https://doi.org/10.5194/esd-14-1065-2023
Borges, A. V. (2005), Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean?Estuaries , 28, 3–27. https://doi.org/10.1007/BF02732750
Borges, A. V., Delille, B., & Frankignoulle, M. (2005), Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystems counts. Geophysical Research Letters , 32(14). https://doi.org/10.1029/2005GL023053
Brandt, P., Bordbar, M. H., Coelho, P., et al. (2024), Physical Drivers of Southwest African Coastal Upwelling and Its Response to Climate Variability and Change. In G. P. von Maltitz et al. (Eds.), Sustainability of Southern African Ecosystems under Global Change: Science for Management and Policy Interventions. Ecological Studies , 248, 221–257. https://doi.org/10.1007/978-3-031-10948-5
Brüchert, V., Currie, B., & Peard, K. R. (2009), Hydrogen sulphide and methane emissions on the central Namibian shelf. Progress in Oceanography , 83, 169–179. https://doi.org/10.1016/j.pocean.2009.07.017
Cai, W.-J., Feely, R. A., Testa, J. M., et al. (2021), Natural and Anthropogenic Drivers of Acidification in Large Estuaries. Annual Review of Marine Science , 13, 1–33. https://doi.org/10.1146/annurev-marine-010419-011004
Cai, W.-J. (2003), Riverine inorganic carbon flux and rate of biological uptake in the Mississippi River plume. Geophysical Research Letters , 30, 1032. https://doi.org/10.1029/2002GL016312
Calvert, S. E., & Price, N. B. (1983), Geochemistry of Namibian shelf sediments. In E. Suess, & J. Thiede (Eds.), Coastal upwelling its sediment record. NATO Conference Series (IV marine sciences) , 10B, 337–375. https://doi.org/10.1007/978-1-4615-6651-9_17
Capelle, D. W., & Tortell, P. D. (2016), Factors controlling methane and nitrous-oxide variability in the southern British Columbia coastal upwelling system. Marine Chemistry , 179, 56–67.
Chou, W.-C., Gong, G.-C., Hung, C.-C., & Wu, Y.-H. (2013), Carbonate mineral saturation states in the East China Sea: present conditions and future scenarios. Biogeosciences , 10, 6453–6467. https://doi.org/10.5194/bg-10-6453-2013
Cohen, Y. (1978), Consumption of dissolved nitrous oxide in an anoxic basin, Saanich Inlet, British Columbia. Nature , 272, 235–237.
Cotovicz Jr., L. C., Knoppers, B. A., Brandini, N., Costa Santos, S. J., & Abril, G. (2015), A strong CO2 sink enhanced by eutrophication in a tropical coastal embayment (Guanabara Bay, Rio de Janeiro, Brazil). Biogeosciences , 12, 6125–6146. https://doi.org/10.5194/bg-12-6125-2015
Dalsgaard, T., Thamdrup, B., Farías, L. & Revsbech, N.P. (2012), Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. Limnology and Oceanography , 57(5), 1331–1346.
Dalsgaard, T., Stewart, F.J., Thamdrup, B., De Brabandere, L., Revsbech, N.P., Ulloa, O., Canfield, D.E. & DeLong, E.F. (2014), Oxygen at nanomolar levels reversibly suppresses process rates and gene expression in anammox and denitrification in the oxygen minimum zone off northern Chile. MBio , 5(6),10–1128.
Damm, E., Helmke, E., Thoms, S., Schauer, U., Nöthig, E., Bakker, K., Kiene, R. P., & Scheider, B. (2010), Methane production in aerobic oligotrophic surface water in the central Arctic Ocean.Biogeosciences , 7(3), 1099–1108.
Dickson, A.G., Sabine, C.L. & Christian, J.R. (2007), Guide to best practices for ocean CO2 measurements.
Emeis, K., Eggert, A., Flohr, A., Lahajnar, N., Nausch, G., Neumann, A., Rixen, T., Schmidt, M., Van der Plas, A. & Wasmund, N. (2018), Biogeochemical processes and turnover rates in the Northern Benguela Upwelling System. Journal of Marine Systems , 188, 63–80.
Eyre, B. D., Camillini, N., Glud, R. N., et al. (2023), The climate benefit of seagrass blue carbon is reduced by methane fluxes and enhanced by nitrous oxide fluxes. Communications Earth & Environment , 4, 374. https://doi.org/10.1038/s43247-023-01022-x
Florez-Leiva, L., Damm, E., & Farías, L. (2013), Methane production induced by dimethylsulfide in surface water of an upwelling ecosystem.Progress in Oceanography , 112, 38–48.
Frame, C., Deal, E., Nevison, C. D., & Casciotti, K. L. (2014), N2O production in the eastern South Atlantic: Analysis of N2O stable isotopic and concentration data.Global Biogeochemical Cycles , 28, 1262–1278. https://doi.org/10.1002/2013GB004790
Friis, K., Körtzinger, A., & Wallace, D. W. R. (2003), The salinity normalization of marine inorganic carbon chemistry data.Geophysical Research Letters , 30, 1085. doi:10.1029/2002GL015898
Grundle, D. S., Löscher, C. R., Krahmann, G., et al. (2017), Low oxygen eddies in the eastern tropical North Atlantic: Implications for N2O cycling. Scientific Reports , 7, 4806. https://doi.org/10.1038/s41598-017-04745-y
Heintz, M.B., Mau, S. & Valentine, D.L. (2012), Physical control on methanotrophic potential in waters of the Santa Monica Basin, Southern California. Limnology and oceanography , 57(2), 420–432.
Hutchings, L., van der Lingen, C., Shannon, L., Crawford, R., Verheye, H., Bartholomae, C., van der Plas, A., Louw, D., Kreiner, A., Ostrowski, M., Fidel, Q., Barlow, R. G., Lamont, T., Coetzee, J., Shillington, F., Veitch, J., Currie, J. C., & Monteiro, P. (2009), The Benguela Current: An ecosystem of four components. Progress in Oceanography , 83, 15–32.
Jayakumar, A., Naqvi, S.W.A. & Ward, B.B. (2009), Distribution and relative quantification of key genes involved in fixed nitrogen loss from the Arabian Sea oxygen minimum zone. Indian Ocean biogeochemical processes and ecological variability , 185, 187–203.
Junker, T., Mohrholz, V., Siegfried, L., & Van der Plas, A. (2017), Seasonal to interannual variability of water mass characteristics and currents on the Namibian shelf. Journal of Marine Systems , 165, 36–46. DOI: 10.1016/j.jmarsys.2016.09.003
Kessler, J.D., Valentine, D.L., Redmond, M.C., Du, M., Chan, E.W., Mendes, S.D., Quiroz, E.W., Villanueva, C.J., Shusta, S.S., Werra, L.M. & Yvon-Lewis, S.A. (2011), A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico. Science , 331(6015), 312–315.
Kock, A. & Bange, H. W. (2015), Counting the Ocean’s Greenhouse Gas Emissions. Eos , 96, 10–13. https://doi.org/10.1029/2015eo023665
Lefèvre, N., & Taylor, A. (2002), Estimatingp CO2 from sea surface temperatures in the Atlantic gyres. Deep Sea Research Part I. Oceanographic Research Papers , 49 (3), 539–554.
Le Quéré, C., Peters, G.P., Andres, R.J., Andrew, R.M., Boden, T.A., Ciais, P., Friedlingstein, P., Houghton, R.A., Marland, G., Moriarty, R. & Sitch, S. (2014), Global carbon budget 2013. Earth Syst. Sci. Data , 6, 235–263.
Lutjeharms, J.R.E. & Meeuwis, J.M. (1987), The extent and variability of South-East Atlantic upwelling. South African Journal of Marine Science , 5(1), 51–62.
Lutjeharms, J.R.E. & Stockton, P. L. (1987), Kinematics of the upwelling front off southern Africa, South African Journal of Marine Science , 5:1, 35–49, DOI: 10.2989/025776187784522612
Mashifane, T. B., Bourbonnais, A., & Fawcett, S. E. (2022), Nitrous oxide dynamics in the southern Benguela upwelling system. Journal of Geophysical Research: Oceans , 127, e2022JC019129. https://doi.org/10.1029/2022JC019129
Millero, F.J. (2010), Carbonate constants for estuarine waters.Marine and Freshwater Research , 61(2), 139–142.
Mohrholz, V., Bartholomae, C.H., Van der Plas, A.K., & Lass, H.U. (2008), The seasonal variability of the northern Benguela undercurrent and its relation to the oxygen budget on the shelf. Continental Shelf Research , 28(3), 424–441.
Mohrholz, V., Eggert, A., Junker, T., Nausch, G., Ohde, T., & Schmidt, M. (2014), Cross-shelf hydrographic and hydrochemical conditions and its short-term variability at the northern Benguela during a normal upwelling season. Journal of Marine Systems , 140B, 92–110. https://doi.org/10.1016/j.jmarsys.2014.04.019
Mollenhauer, G., Inthorn, M., Vogt, T., Zabel, M., Sinninghe Damsté, J. S., & Eglinton, T. I. (2007), Aging of marine organic matter during cross-shelf lateral transport in the Benguela upwelling system revealed by compound-specific radiocarbon dating. Geochemistry, Geophysics, Geosystems , 8, Q09004. https://doi.org/10.1029/2007GC001603
Morgan, E.J., Lavric, J.V., Arévalo-Martínez, D.L., Bange, H.W., Steinhoff, T., Seifert, T. & Heimann, M. (2019), Air–sea fluxes of greenhouse gases and oxygen in the northern Benguela Current region during upwelling events. Biogeosciences , 16(20), 4065–4084.
Muller, A.A., Reason, Ch.J., Mohrholz, V., Schmidt, M., & Eggert, A. (2014), Computing transport budgets along the shelf and across the shelf edge in the northern Benguela during summer (DJF) and winter (JJA).Journal of Marine Systems , 140B, 82–91. https://dx.doi.org/10.1016/j.jmarsys.2014.02.007
Muller, A.A., Mohrholz, V., & Schmidt, M. (2013), The circulation dynamics associated with a northern Benguela upwelling filament during October 2010. Continental Shelf Research, 63, 59–68.
Müller, J.D., Bastkowski, F., Sander, B., Seitz, S., Turner, D.R., Dickson, A.G. & Rehder, G. (2018), Metrology for pH Measurements in Brackish Waters-Part 1: Extending Electrochemical pH T Measurements of TRIS Buffers to Salinities 5–20. Frontiers in Marine Science , 5(176).
Müller, J.D. & Rehder, G. (2018), Metrology of pH measurements in brackish waters—part 2: experimental characterization of purified meta-cresol purple for spectrophotometric pHT measurements. Frontiers in Marine Science , 5(177).
Nevison, C.D., Lueker, T.J. & Weiss, R.F. (2004), Quantifying the nitrous oxide source from coastal upwelling. Global Biogeochemical Cycles , 18(1).
Ohde T., & Dadou I. (2018), Seasonal and annual variability of coastal sulphur plumes in the northern Benguela upwelling system. PLoS ONE , 13 (2): e0192140. https://doi.org/10.1371/journal.pone.0192140
Ohde, Th., & Mohrholz, V. (2011), Interannual variability of Sulphur plumes off the Namibian coast. Int. J. Remote Sensing , 32(24), 9327–9342.doi: 10.1080/01431161.2011.554455.
Reeburgh, W.S. (2007), Oceanic methane biogeochemistry. Chemical reviews , 107(2), 486–513.
Rehder, G., Collier, R.W., Heeschen, K., Kosro, P.M., Barth, J. & Suess, E. (2002), Enhanced marine CH4 emissions to the atmosphere off Oregon caused by coastal upwelling. Global Biogeochemical Cycles , 16(3).
Resplandy, L., Hogikyan, A., Müller, J. D., Najjar, R. G., Bange, H. W., Bianchi, D., et al. (2024), A synthesis of global coastal ocean greenhouse gas fluxes. Global Biogeochemical Cycles , 38, e2023GB007803. https://doi.org/10.1029/2023GB007803
Sabbaghzadeh, B., Arévalo-Martínez, D. L., Glockzin, M., Otto, S., & Rehder, G. (2021), Meridional and crossshelf variability of N2O and CH4 in the Eastern-South Atlantic. Journal of Geophysical Research: Oceans , 126, e2020JC016878. https://doi. org/10.1029/2020JC016878
Santana-Casiano, J.M., González-Dávila, M. & Ucha, I.R. (2009), Carbon dioxide fluxes in the Benguela upwelling system during winter and spring: A comparison between 2005 and 2006. Deep Sea Research Part II: Topical Studies in Oceanography , 56(8-10), 533–541.
Schmale, O., Wäge, J., Mohrholz, V., Wasmund, N., Gräwe, U., Rehder, G., Labrenz, M. & Loick‐Wilde, N. (2018), The contribution of zooplankton to methane supersaturation in the oxygenated upper waters of the central Baltic Sea. Limnology and Oceanography , 63(1), 412–430.
Siegfried L, Schmidt M, Mohrholz V, Pogrzeba H, Nardini P, Böttinger M, et al. (2019), The tropical-subtropical coupling in the Southeast Atlantic from the perspective of the northern Benguela upwelling system.PLoS ONE , 14(1): e0210083. https://doi.org/10.1371/journal.pone.0210083
Siddiqui, C., Rixen, T., Lahajnar, N., et al. (2023), Regional and global impact of CO2 uptake in the Benguela Upwelling System through preformed nutrients. Nature Communications , 14, 2582. https://doi.org/10.1038/s41467-023-38208-y
Tyrrell, T., & Lucas, M. I. (2002), Geochemical evidence of denitrification in the Benguela upwelling system. Continental Shelf Research , 22(17), 2497–2511. https://doi.org/10.1016/S0278-4343(02)00077-8
Uppström, L.R. (1974), The boron/chlorinity ratio of deep-sea water from the Pacific Ocean. Deep-Sea Res . 21, 161–162.
Van der Plas, A. K., Monteiro, P. M. S., & Pascall, A. (2007), Cross shelf biogeochemical characteristics of sediments in the central Benguela and their relationship to overlying water column hypoxia.African Journal of Marine Science , 29, 37–47. https://doi.org/10.2989/ajms.2007.29.1.3.68
Wesslander, K., Omstedt, A. & Schneider, B. (2010), Inter-annual and seasonal variations in the air–sea CO2 balance in the central Baltic Sea and the Kattegat. Continental Shelf Research , 30(14), 1511–1521.
Xue, L., & Cai, W.-J. (2020), Total alkalinity minus dissolved inorganic carbon as a proxy for deciphering ocean acidification mechanisms. Marine Chemistry , 103791.
Zeebe, R., & Wolf-Gladrow, D. (2001), CO2 in seawater: Equilibrium, kinetics, isotopes. Gulf Professional Publishing , 6, 1–346.
Zhang, M., Cheng, Y., Bao, Y., Zhao, C., Wang, G., Zhang, Y., Song, Z., Wu, Z. & Qiao, F. (2022), Seasonal to decadal spatiotemporal variations of the global ocean carbon sink. Global Change Biology , 28(5), 1786–1797.