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Key Points:9

• Machine learning models can predict river sediment oxygen consumption and ex-10

plain up to about 65 percent of the variance.11

• Sediment organic matter chemistry is one of the most important features for pre-12

dicting these respiration rates.13

• Large scale features like climate are also important factors for these predictions14

and they can be used to make maps of respiration rates.15
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Abstract16

River sediment microbial respiration is a key indicator of ecosystem functioning and the17

biogeochemical fluxes across this critical zone link surface and subsurface waters. As such,18

there is tremendous interest in measuring and mapping these respiration rates. Respi-19

ration observations are expensive and labor intensive; there is limited data available to20

the community. An open science, collaborative initiative is collecting samples for respi-21

ration rate analysis and multi-scale metadata; this evolving data set is being used for22

making machine learning (ML) predictions at unsampled sites to help inform continued23

community engagement. However, it is a challenge to find an optimum configuration for24

ML models to work with this feature-rich (i.e. 100+ possible input variables) data set.25

Here, we present results from a two-tiered approach to managing the analysis of this com-26

plex data set: 1) a stacked ensemble of models that automatically optimizes hyperpa-27

rameters and manages the training of many models and 2) feature permutation impor-28

tance to detect the most important features in the models. The major elements of this29

workflow are modular, portable, open, and cloud-based thus making this implementa-30

tion a potential template for other applications. The models developed here predict that31

sediment organic matter chemistry is one of the most important features for predicting32

sediment respiration rate. Other larger-scale, important features fall into the categories33

of climatic, ecological, geological, and fluvial settings. Leveraging these larger-scale fea-34

tures to generate data-driven estimates of river sediment respiration rates reveals spa-35

tially consistent but heterogeneous patterns across the river network of the Columbia36

River Basin.37

Plain Language Summary38

We want to determine the environmental factors that impact the amount of oxy-39

gen and nutrients that are used by microbes in river sediments. River sediment oxygen40

and nutrient use are important to river ecosystems but vary a lot between different lo-41

cations. The number of measurements have been limited but are increasing thanks to42

volunteers participating in an open science project. Here, we use machine learning with43

existing data to make predictions of river sediment microbial oxygen consumption. The44

resulting machine learning models, and their predictions, are then used to estimate which45

aspects of the environment are the most important for making good predictions. It ap-46

pears that the presence/absence of different kinds of nutrients for the microbes may be47

the most important factor in predicting oxygen consumption in sediment. Larger-scale48

factors, especially the climate, geography, and ecology of the river, have important roles,49

too. Finally, we use these models to make a map of oxygen consumption in river sed-50

iments across the Columbia River Basin. Maps like ours can be combined with river flow51

models to get a holistic understanding of river systems as well as guide future sampling52

efforts.53

1 Introduction54

River channels, together with their surrounding features (riverbed sediments, aquifers,55

riparian zones and floodplains), form a holistic entity known as the river corridor (Harvey56

& Gooseff, 2015). Exchanges of water between the actively-flowing surface channel and57

adjacent more slowly flowing surface and subsurface waters are known as hydrologic ex-58

change flows or HEFs (Harvey et al., 2019). Subsurface HEFs include hyporheic exchanges,59

bank exchanges, cross-meander flows, and exchanges with in-river structures such as is-60

lands and longitudinal bars. These processes expose surface water and its constituents61

(e.g., nutrients and contaminants) to mineral surfaces and biological agents (e.g., microbes)62

that catalyze biogeochemical reactions. In particular, aerobic respiration (the mineral-63

ization of organic matter to carbon dioxide in the presence of oxygen) is a critical as-64

pect of sediment contributions to riverine biogeochemical function (Butman et al., 2016;65
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Findlay, 1995; Rode et al., 2015). Biogeochemical reactions in hydrologic exchange zones66

have been shown to be responsible for up to 96% of respiration within riverine ecosys-67

tems (Naegeli & Uehlinger, 1997). As such, these exchange zones have been termed the68

“river’s liver” due to their strong capacity to attenuate contaminants and process sig-69

nificant quantities of organic carbon and other nutrients (Fischer et al., 2005). However,70

estimates of the influence of exchange zones on river corridor biogeochemistry have var-71

ied greatly across systems, ranging from 3% to 96% (Naegeli & Uehlinger, 1997; Battin72

et al., 2003; Ward et al., 2018; Fuss & Smock, 1996; Kaplan & Newbold, 2000; Jones,73

1995), and there is little consensus on the key factors that drive this variation. This leads74

to significant uncertainty in the parameterization of watershed-scale models that can pre-75

dict the cumulative impacts of HEFs and river corridor biogeochemistry at large scales.76

To address this knowledge gap we need quantitative estimates of respiration rates that77

span diverse ecosystems and environmental conditions.78

Recent research by our team has demonstrated that dissolved organic matter (DOM)79

chemistry is strongly correlated to biogeochemical processes in river corridor sediments,80

even more so than other variables such as microbial community composition or gene ex-81

pression (Graham et al., 2018; Stegen et al., 2018; Garayburu-Caruso, Stegen, et al., 2020;82

Ahamed et al., 2023). Here we define DOM chemistry as thermodynamic properties and83

elemental composition inferred through molecular formulae assigned to the wide range84

of water soluble/extractable organic molecules present in samples as characterized by85

ultra-high-resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-86

MS). The central question that this work seeks to explore is: To what extent does DOM87

chemistry impact river sediment respiration rates relative to other features of a river’s88

environmental context?89

We have engaged the global research community through the Worldwide Hydro-90

biogeochemistry Observation Network for Dynamics River Systems (WHONDRS) con-91

sortium (Stegen & Goldman, 2018) to develop consistent distributed data in dynamic92

river corridors across diverse watershed settings. These data include laboratory measure-93

ments of sediment respiration rates and characterization of DOM chemistry by FTICR-94

MS, as well as many other data and metadata variables of potential interest. This manuscript95

describes a machine learning (ML) analysis of a North American continental-scale WHON-96

DRS data set to identify key variables that control sediment respiration rates, develop97

a data-driven predictive model of sediment respiration, and extrapolate observed respi-98

ration rates across large domains by cross-referencing to global river physical and chem-99

istry databases, RiverAtlas (Linke et al., 2019) and GLORICH (Hartmann et al., 2014),100

respectively. These predictions of distributed heterogeneous respiration rates can sub-101

sequently be used in process-based watershed models to better understand the impacts102

of spatial and temporal variability of respiration on cumulative function at watershed103

and basin scales.104

2 Methods and Data105

In this section, we document the data sources, and hence the inputs and outputs106

of the ML models, used in this study. The ML models’ inputs and outputs, also known107

as features and targets, respectively, differ between some of the ML models. First, we108

describe the observations of river sediment respiration rate that form the core founda-109

tion for this study, the WHONDRS data. Then, we outline the larger-scale global databases110

that are used to supplement the WHONDRS data, thus allowing the ML models to make111

predictions at rivers which are not in the WHONDRS data. Finally, we outline the de-112

tails of the ML models.113
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2.1 River respiration rate observations: WHONDRS114

In the summers of 2019 and 2022, the WHONDRS consortium coordinated the col-115

lection of surface water and sediment samples from rivers within the contiguous United116

States using a consistent protocol. Sampling kits were provided to volunteer participants117

along with video and written instructions for consistent sample collection. Site metadata118

were also collected in association with each of the physical samples. The resulting sam-119

ples were sent back to the Pacific Northwest National Laboratory (PNNL) for analysis120

of a number of biogeochemical variables including DOM chemistry using multiple instru-121

ment platforms. Sediment samples were used in laboratory batch experiments to deter-122

mine aerobic respiration rate coefficients using a standardized protocol. The data from123

these two sampling campaigns were published openly on the ESS-DIVE public data repos-124

itory and are referred to herein as S19S (2019 samples, Goldman et al. (2020)) and SSS125

(2022 samples, Forbes et al. (2023)), respectively. The locations of the sampling sites are126

shown in Figure 1. The published data packages continue to be updated as additional127

analyses are completed, and have been used in several published analyses including some128

open, collaborative papers led by WHONDRS community members (Garayburu-Caruso,129

Danczak, et al., 2020; Borton et al., 2022; Stegen et al., 2022; Buser-Young et al., 2023;130

Stadler et al., 2023; Ahamed et al., 2023).131

The variables of the WHONDRS observational data set are designated by ”WH”132

in the data source column of Table S1. All of the variables in the WHONDRS data, ex-133

cept respiration rate, can be used as inputs (i.e. ”features”) for the ML models in this134

study. The respiration rates in the WHONDRS data are the sole outputs (i.e. ”targets”)135

of the ML models. Some sample analyses are ongoing so not all features are available136

in both data sets (S19S and SSS) and therefore the ML models used here are a progres-137

sion of models with fewer and fewer features so that it is possible to include respiration138

rate observations without certain features and make predictions at more river sites. For139

example, SSS sample analysis using FTICR-MS is not yet complete, while it has been140

completed for S19S samples. The following subsections detail the collection of field sam-141

ples and metadata, analysis methods, and postprocessing of the resulting data.142

2.1.1 Collection protocol for samples and metadata143

Garayburu-Caruso, Danczak, et al. (2020) describes details regarding metadata and144

sample collection for the S19S study and similar protocols were used for sample collec-145

tion during 2022. Briefly, shallow sediment samples (1-3 cm depth) were collected at each146

site from depositional zones (Jensen, n.d.). Sediments were sieved in the field to < 2mm147

fraction. Surface water samples were collected at each site using a 60 mL syringe. Sam-148

ples were filtered through a 0.22 µm sterivex filter (EMD Millipore) into vials designated149

for subsequent analysis (e.g., 40 mL glass vial (I-Chem amber VOA glass vials) for dis-150

solved organic carbon (DOC) analysis, and 4 mL glass vials for isotope analysis). In ad-151

dition, unfiltered surface water was also collected at each site. Water and sediment sam-152

ples were stored on ice upon collection and were shipped on blue ice within a day of col-153

lection to Pacific Northwest National Laboratory.154

Once in the laboratory, filtered water samples were stored at 4C until analysis. Sed-155

iment samples were sieved again in the laboratory (< 2mm), homogenized and sub-sampled156

for C/N analysis, flow cytometry and ultrahigh-resolution mass spectrometry, aliquots157

were stored at -20C, 4C or -80C respectively. Additionally, homogenized sediments were158

sub-sampled in triplicate into 40mL clear glass vials (I-Chem amber VOA glass vials)159

with a 0.5cm diameter factory calibrated oxygen sensor dot (Fibox 3; PreSens GmbH,160

Regensburg, Germany). Vials with sediments and unfiltered water from each site were161

kept in the dark inside the environmental chamber at 21C until next-day respiration in-162

cubations.163
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Table 1. Summary of data features used in the ML analyses. For brevity, broad groupings

of variables are shown here; the detailed descriptions of the corresponding individual variables

(feature IDs in the third column) are provided in Table S1 in the Supplemental Information.

Variable Group Number
of Fea-
tures

Feature IDs Description

Ecological Setting 33 0,15-18,23-24,33-
36,39-40,46,65-
79,112,121,125-126

Vegetation type, land cover/use,
watershed features, demo-
graphic variables

Geological Setting 13 2-3,6,13-14,19-
20,25-30

Includes soil and rock character-
istics, and river geomorphology

Fluvial Setting 18 4-5,9-10,37-38,41-
45,47,108,114,119-
120,124,129

River type and slope, reach
geometry, stream order, flow
rates, macrophyte cover

Climatic Setting 20 80-84,90-99,102-
103,110-111,128

Meteorologic and hydrographic
variables over reach and water-
shed

Riverbed Sediment 9 1,11-12,100-
101,105,118,130,132

Grain size, geochemical charac-
teristics

Water Properties 6 21-22,87,106-
107,127

Dissolved oxygen, temperature,
pH, etc.

Microbiology 3 7-8,123 Cell counts

Sediment Organic
Matter Chemistry

26 31-32,48-
64,104,109,113,115-
117,122

Summary measures of FTICR-
MS spectra, e.g. Aromaticity
Index, Nominal Oxidation
State, Gibbs Free Energy, etc.

Global Databases 5 85-86,88-89,131 Geography of colocated GLO-
RICH and RiverAtlas sites

Total Features: 133
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Some features of the WHONDRS site metadata consist of ranked and unranked164

categorical values and special consideration must be made for translating these features165

to be used by the ML models. The following steps were taken during the preprocessing166

of the WHONDRS data to prepare it for the ML workflow. The ranked categorical val-167

ues (e.g. feature ID 129, canopy cover classified as: ”no”, ”partial”, or ”full” coverage)168

are mapped to integers for input to the ML models (i.e. a scale from 1 to 3). Unranked169

categorical features, however, need to be expanded as ”one hot” features. For example,170

feature ID 3 (hydrogeomorphology classes of ”braided”, ”straight”, or ”meandering”) is171

a feature whose classes should have no intrinsic relative magnitudes and as such they should172

not be represented on a scale of integers. One hot features replace the original feature173

with N features, one feature for each class of the unranked category. In the preceding174

example, a braided river would therefore be represented with the three features as 1, 0,175

0. This approach was applied to feature IDs 0, 1, 2, 3, 4, and 5 with 21, 4, 9, 4, 2, and176

2 classes, respectively. Technically, the number of inputs to each ML model that uses these177

one hot features is increased by replacing each unranked categorical feature by its cor-178

responding one hot features. However, for clarity throughout the text and figures, we179

discuss the one hot features that come from an unranked categorical feature as a single180

feature and adjust the number of features listed in the tables describing the ML mod-181

els accordingly. The one hot expanded features are not included in the feature counts;182

only the original feature is counted (e.g. feature ID 0 instead of its 21 one hot features).183

Finally, in the feature permutation importance, below, the one hot features that corre-184

spond to a single unranked categorical feature are always permuted together as a cor-185

related feature block. Additional features can be added to their block if they are suffi-186

ciently correlated.187

Figure 1. Map of the river sites where we have observations from the WHONDRS S19S (red

crosses) and SSS (pink dots) campaigns and where we can make predictions using the merged

RiverAtlas and GLORICH databases (black dots). A small number of WHONDRS S19S sites

are outside this map but are not shown for simplicity. The black box in the upper left corner

corresponds to the domain of the Columbia River Basin map discussed later in the manuscript.
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2.1.2 Respiration rates188

Respiration rates were determined following methods described by Garayburu-Caruso,189

Stegen, et al. (2020) and Stegen et al. (2023). Reactors consisted of 10mL of sieved sed-190

iments and ∼30–35mL of aerated unfiltered water with no headspace or in some cases191

also 2.5 mL of sediments and ∼35–40mL of aerated unfiltered water with no headspace.192

The reactors were shaken at 250 rpm in the dark and 21C for 2h. Dissolved oxygen (DO)193

concentration was measured noninvasively every 15 min for the first hour and every 30194

min during the second hour for S19S and every 5 min for the first 15 min followed by195

every 15 min and every 30 min for the remainder of the incubation time. These mea-196

surements were performed using an oxygen optical meter (Fibox 3; PreSens GmbH, Ger-197

many) to read oxygen sensor dots (optodes) on the inside cover of the vials. Respiration198

rates (mg DO/L water per hour) were calculated as the slope of the linear regression be-199

tween DO concentration and incubation time for each reactor, these were further nor-200

malized to per liter sediment by multiplying the rate by the liters of water in the incu-201

bation and dividing it by the liters of sediment in the equation. Therefore, the normal-202

ized rates units are milligrams of DO per liter of sediment per hour. Sediment and wa-203

ter volume for each reactor along with normalized and unnormalized rates can be found204

in the campaign specific data packages published on ESS-DIVE (referenced above).205

The river sediment respiration rates reported here are always negative values be-206

cause they represent the consumption of oxygen over time. Since using the adjectives207

”larger” and ”smaller” can be confusing with negative values, here we use ”weaker” and208

”stronger” to describe respiration rates that correspond to small amounts of oxygen con-209

sumed (e.g. -1 mg DO/L/hr) and large amounts oxygen consumed (e.g. -1000 mg DO/L/hr).210

2.1.3 FTICR211

For this analysis, ultra-high resolution mass spectrometry data was only available212

for the S19S study. Fourier transform ion cyclotron resonance mass spectrometry (FTICR-213

MS) was used to generate mass spectra associated with water-soluble sediment organic214

matter pools. To access these molecules, field sediments were thawed and extracted with215

Milli-Q water as described in Garayburu-Caruso, Danczak, et al. (2020). The resulting216

supernatant was filtered (0.22µm Sterivex) and analyzed for DOC concentrations mea-217

sured as non-purgeable organic carbon using a Shimadzu combustion carbon analyzer218

TOC-L CSH/CSN E100V with ASI-L autosampler. To allow comparability across sam-219

ples and following WHONDRS standard protocol, samples were normalized to 1.5 mg220

C L−1, acidified to pH 2, and the same volume was extracted with solid phase extrac-221

tion (SPE) PPL cartridges following procedures described by Dittmar et al. (2008).222

FTICR-MS analyses were carried out at the Environmental Molecular Science Lab-223

oratory (EMSL) in Richland, WA, using a 12 tesla (12T) Bruker SolariX FTICR mass224

spectrometer (Bruker, SolariX, Billerica, MA, USA) in negative mode. The instrument225

details and methodology used to assign molecular formulas are described in detail in Garayburu-226

Caruso, Danczak, et al. (2020). Briefly, the Compound Identification algorithm within227

Formularity (Tolic et al., 2017) was used to align mass lists generated using Bruker Data-228

Analysis V4.2 and assign molecular formulas using S/N > 7, and mass measurement er-229

ror of < 0.5 ppm as the criteria. Formulas were assigned considering C, H, O, N, S, and230

P and excluding other elements. Resulting reports were processed using ftmsRanalysis231

(Bramer et al., 2020). This process removed peaks outside of a high confidence m/z range232

(200 m/z–900 m/z ) and/or with a 13C isotopic signature and calculated the molecular233

formula properties used for in our analysis listed in Table S1 (Song et al., 2020; Koch234

& Dittmar, 2006, 2016; LaRowe & Van Cappellen, 2011; Kim et al., 2003).235
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2.2 Cross-referencing observational data with larger-scale databases236

The WHONDRS data contains directly measured river sediment respiration rates,237

in situ chemistry observations, and locally collected site metadata. On the other hand,238

the global river database RiverAtlas (Linke et al., 2019) contains large-scale data such239

as climate indices, land use, soil properties, population metrics, and geographic infor-240

mation (e.g. elevation, slope, and stream order) at every river segment detected to 30 m241

resolution. These features are designated with ”RA” in the data source column of Ta-242

ble S1 and are not present in the original WHONDRS data. We merged WHONDRS and243

RiverAtlas data at each WHONDRS site because both the RiverAtlas large-scale data244

and the WHONDRS locally collected observations have the potential to inform ML mod-245

els of respiration rates. In particular, for each WHONDRS site, the closest RiverAtlas246

river segment was found and that segment’s large-scale features were appended to the247

locally observed WHONDRS features.248

The one feature that is available in both WHONDRS and RiverAtlas data sets is249

stream order, also known as the Horton-Strahler number (Horton, 1945; Strahler, 1957).250

This overlap provides an opportunity to cross-check the process of co-locating the River-251

Atlas river segments to WHONDRS sites. Figure 2 shows that the two data sets’ stream252

orders are broadly consistent with each other. Stream order is an integer number with253

the smallest river segments set to 1 and larger integers representing river segments with254

more segments feeding into them. Stream order is sensitive to the resolution of the to-255

pography data used to find segments and their interconnections because the stream or-256

der numbering starts with the smallest streams that are detectable in the topography.257

The resolution sensitivity is the source of the approximate one-unit systematic offset be-258

tween the WHONDRS and RiverAtlas stream orders. RiverAtlas is based on the 15 arc-259

second resolution (about 500 m at the equator) HydroSHEDS data for determining stream260

order (Linke et al., 2019) while the WHONDRS data were computed with the 30 m res-261

olution National Hydrography Data set Plus (NHDPlus) data set (EPA & USGS, 2022).262

WHONDRS stream orders in Figure 2 are approximately 1 unit larger than RiverAtlas263

values because smaller segments are detectable in NHDPlus compared to HydroSHEDS.264

The 2 outliers in the lower right corner of the plot were manually inspected and deter-265

mined to be an error in the WHONDRS data and were subsequently corrected; they are266

retained here as an example of the importance of this type of cross-checking when merg-267

ing complex data sets. We use the RiverAtlas stream order, and not the WHONDRS stream268

order, when training the ML models in this study because RiverAtlas stream order is269

consistent across the sites we use for training the ML models (i.e. the WHONDRS sites270

where we have respiration rates) and the sites were we will make predictions of respi-271

ration rates (e.g. sites were we only have RiverAtlas data).272

RiverAtlas does not include in situ chemical observations. River water chemistry273

may be helpful for predicting respiration rates so temperature, pH, oxygen concentra-274

tions, and percent saturated oxygen values from the GLObal RIver CHemistry (GLO-275

RICH) data set (Hartmann et al., 2014) were downloaded from PANGEA (Hartmann276

et al., 2019) and merged with the RiverAtlas data in the same way that data at WHON-277

DRS sites were merged with RiverAtlas data described above. In particular, for each site278

in the GLORICH data with temperature and pH and O2 or percent saturated O2, the279

large-scale data from closest RiverAtlas river segment was appended to the in situ chem-280

ical observations. For GLORICH sites with time series or multiple samples, only the av-281

erage values were used. Furthermore, for any GLORICH sites where either the O2 con-282

centrations or the percent saturated O2 was missing, whichever available oxygen value283

that was available was used to reconstruct the corresponding missing oxygen value by284

estimating the saturated O2 at a given site based on its temperature, elevation, and an285

assumed salinity of 0 (Rice et al., 2017; Rajesh & Rehana, 2022). A total of 6,170 GLO-286

RICH sites’ in situ chemistry observations were colocated with larger-scale RiverAtlas287

data.288

–8–



manuscript submitted to JGR: Machine Learning and Computation

Figure 2. Comparison between stream order from the WHONDRS and RiverAtlas databases

at the WHONDRS sites. The lines are the 1:1 line (solid) and the 1:1 line shifted down by ex-

actly one unit (dashed) to highlight the effect of topography resolution differences impacting

stream order in the two databases. Since stream order is always an integer, the 97 data points

plotted here are often plotted on top of each other. There are only 97 WHONDRS stream order

data points since there are multiple samples at some of the S19S WHONDRS sites.

2.3 Machine learning model training289

2.3.1 Ensemble of SuperLearner ensembles290

The machine learning framework used here (Figure 3) is based on an ensemble of291

ensembles approach to automatically train and identify the best performing ML mod-292

els while also accounting for variability due to random train/test data splits and the ran-293

dom initialization of some ML algorithms. Any missing values in the training or test-294

ing data were filled with whole data set mean value for that feature. The innermost layer295

of the ensemble of ensembles is a SuperLearner instance; each SuperLearner is a stack296

of 15 scikit-learn-compatible ML submodels (Table 2) that are trained in parallel and297

the outputs (i.e. predictions) of each submodel are weighted by the submodels’ relative298

scores (i.e. the R2 between the observed and predicted respiration rates in the training299

data). These submodel weights are determined with a non-negative least squares opti-300

mization that is unique to each SuperLearner instance (Owoyele et al., 2021). We use301

predictions of the stacked ensemble of ML models within each SuperLearner, and not302

just predictions from the best performing model, because the stacked ensemble usually303

makes predictions that are as good as or better than the best model within the ensem-304

ble (Wolpert, 1992; Owoyele et al., 2022). We use 5-fold cross-validation (CV) for the305

hyperparameter optimization (HPO) of each submodel independently in each SuperLearner306

instance. A Bayesan search algorithm is used to explore the best hyperparameters for307

each submodel as specified by submodel-specific search domains (Owoyele et al., 2021,308

2022). This approach to HPO means that all of the data (i.e. training and testing sets)309

are used for selecting the best hyperparameters of each submodel but only the training310

set is used to train the models themselves once the hyperparameters have been selected.311

The second layer of the ML framework consists of an ensemble of 10 SuperLearner312

instances; each instance is trained and evaluated on a different randomized 75% train313

and 25% test split of the observational data and each instance runs HPO and trains its314

own submodels independently of the other SuperLearners. We use an ensemble of Su-315

perLearner instances instead of CV to assess the variability of models because we want316
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uniform access to all the ensemble members, not just the best model as judged by the317

model score which is traditionally what is returned by CV. As will be seen below, model318

score alone is not the sole indicator of model performance for this data set. Automated319

HPO, training many ML submodels, and ensembles of SuperLearners sidesteps the need320

to select a single ML model or ML algorithm.321

During training and prediction stages, each SuperLearner is initialized with its con-322

figuration file that lists the submodels, hyperparameter search ranges, and how the sub-323

models are weighted together. For all the ML models trained here, the majority of the324

ML models were trained with the respiration rates first transformed by a log10 filter and325

then scaled by a min-max filter. These transformations were applied to the targets be-326

cause the respiration rates span many orders of magnitude and the log10 filter helps to327

keep the data closer to a Gaussian distribution which is better for most ML regression328

models. One ML model training case was reserved for training a model without the log10329

transformation as a way to check for its impact.330

All the ML model ensemble members were trained on a cloud-based SLURM clus-331

ter in parallel. Each SuperLearner instance’s compute needs were relatively modest (2332

CPU and 16 GB RAM) with training scaling from 15 minutes to up to 3 hours based333

on the size of the training set and the number of features in the ML models. We set up334

a GitHub Action to automate the launch of the ML model training workflow on cloud335

clusters via API calls to the Parallel Works platform. This workflow automatically pushed336

data back to a public repository (see the Open Research section) so that all ML mod-337

els and their corresponding code, training data, predictions, and logs are stored on sep-338

arate branches for reproducibility and traceability of each ML model.339

Table 2: Submodels and corresponding hyperparameter (HP)
search spaces for each SuperLearner instance. All submodels
are from scikit-learn except for XGBoost. HP search spaces are
lists of specific values to be used unless a search method is indi-
cated with a comma after the search range. Search methods are
uniform (”uni”) and log-uniform (”log-uni”).

Submodel and source Hyperparameter search space
Nu support vector regression with
RBF kernel

C = [10−6, 102.5], log-uni
ν = [10−10, 0.99], uni
γ = [10−6, 0.99], log-uni

Nu support vector regression with
linear kernel

C = [10−6, 102.5], log-uni
ν = [10−10, 0.99], uni

Nu support vector regression with
polynomial kernel

C = [10−6, 102.5], log-uni
ν = [10−10, 0.99], uni
Polynomial degree = [1, 2, 3]

Nu support vector regression with
sigmoid kernel

C = [10−6, 102.5], log-uni
ν = [10−10, 0.99], uni
coef0 = [−0.99, 0.99], uni

k-nearest neighbors regression with
uniform weights

N neighbors = [1, 10], uni

k-nearest neighbors regression
distance weighted

N neighbors = [1, 10], uni

Partial least squares regression N components = [1, 10], uni
Multi-layer perceptron regression Hidden layer sizes = [10, 250]

Solver = [lbfgs, sgd, adam]
α = [10−6, 0.99], log-uni
Tolerance = [10−6, 10−2], log-uni
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Continuation of Table 2
Submodel and source Hyperparameter search space
Ridge linear regression Polynomial degree = [1, 2, 3]

α = [10−6, 0.99], log-uni
Lasso linear regression Polynomial degree = [1, 2, 3]

α = [10−6, 0.99], log-uni
Linear regression Polynomial degree = [1, 2, 3]
Elastic net linear regression Polynomial degree = [1, 2, 3]

α = [10−6, 0.99], log-uni
l1 ratio = [10−6, 0.99], log-uni

Huber linear regression Polynomial degree = [1, 2, 3]
α = [10−6, 0.99], log-uni
ϵ = [1.35, 1.9], uni

XGBoost regression N estimators = [100, 10000]
Learn rate = [10−4, 0.99], log-uni
Maximum depth = [2, 3, 4, 5, 6, 7, 8]

Extra trees regression N estimators = [100, 10000]
α = [0, 0.001, 0.01, 0.1]
Max feature = [0.1, 0.3, 0.5, 0.8, 1.0]
Max depth = [2, 3, 4, 5, 6, 7, 8]
Min samples split = [0.1, 0.2, 0.3]
Min samples leaf = [0.1, 0.2, 0.3]
C = [err.2, |err.|,FMSE,Poisson]

End of Table 2

2.3.2 Feature permutation importance340

We use feature permutation importance (FPI) (Ojala & Garriga, 2010) to deter-341

mine which features have the greatest impact on the predictive power of an ML model.342

FPI is a brute-force method that checks the sensitivity of ML model predictions by se-343

lectively mixing up specific subsets of features. To quantify the importance of a feature,344

the values of just that feature are randomly mixed up, leaving the other features in the345

training and testing data sets the same. In all cases, we use the combined training and346

testing data for FPI analysis because there are a relatively small number of data points.347

Then, the relative change in the skill of the ML model’s predictions using data with one348

feature scrambled are represented as the model score R2 without scrambling divided by349

the model score with scrambling; values greater than 1 indicate the ML model’s score350

was reduced by scrambling the feature (i.e., the feature is important). The greater the351

ratio, the more important the feature. FPI is frequently used in ML analyses because352

it can be used with nearly any ML model, it is relatively computationally efficient, and353

random permutations allow for multiple FPI runs to assess the mean and variance of the354

importance results.355

In practice, subsets of features, instead of individual features, are permuted together.356

FPI works best if highly correlated features are permuted together as a block. Other-357

wise, if only one feature is permuted at a time, information encoded in a single permuted358

feature could still be available to the ML model via a different, unpermuted feature that359

is correlated with the permuted feature. Here, we use correlation cutoffs of R = 0.7 and360

0.9 to identify features that may be sufficiently correlated to impact FPI analysis. Our361

approach to grouping features is agglomerative hierarchical clustering where the high-362

est correlated features, with correlations above the cutoff, are first grouped together. The363

next highest correlated features are grouped and so-on as the algorithm iterates over all364

correlations between all features. Groups whose features are correlated with features in365

another group are merged iteratively until we reach the correlation cutoff at which point366
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Figure 3. Schematic of the architecture of the ensemble of ensembles machine learning frame-

work. 15 submodels are weighted in each SuperLearner instance based on their relative perfor-

mance as described in the Methods section. The predictions of 10 SuperLearner instances are

averaged together to account for random variability due to train/test data splits and algorithm

initialization in some of the submodels in each SuperLearner instance. Hyperparameter opti-

mization is performed as part of the training within each SuperLearner instance; hyperparameter

values can be different across SuperLearner instances.

no additional groups are defined or merged. Any features that are not in any groups are367

perturbed independently of all the other remaining individual features and grouped fea-368

tures.369

2.3.3 Machine learning model scenarios370

Based on the many types and scales of data that are available for predicting river371

sediment respiration rates, there are a plethora of possible ML models that could be used372

in this project. A key goal in this work is to explore which features are most important373

for predicting river sediment respiration rates. Here, we take an approach of successively374

reducing the number of features of ML models. This progression is outlined in Table 3.375

The rationale for this progression is as follows for each ML training run ID:376

1. IDs 1 and 2 in Table 3: ML models were trained on a data set with the largest377

possible number of features (from WHONDRS S19S and RiverAtlas co-located data).378

These runs were our main starting point.379

2. ID 3 in Table 3: ML models were retrained using only the top 20 features iden-380

tified by the FPI analysis from IDs 1 and 2. This step is designed to evaluate the381

change in ML models’ predictive power associated with reduction in the number382

of training features.383
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3. ID 4 in Table 3: ML models were trained with an expanded data set including384

WHONDRS S19S and SSS observations and co-located RiverAtlas data. Because385

not all features were available in both S19S and SSS data sets, this step resulted386

in a decreased number of features but an increased number of data points for train-387

ing. Comparison to IDs 1 and 2 provides information on changes in model per-388

formance associated with the reduced feature set but increased training data.389

4. IDs 5-7 in Table 3: In order to predict respiration rates at unsampled locations,390

we retrained the ML models on an even further reduced set of features from the391

merged RiverAtlas (large-scale data) and WHONDRS in situ chemistry (temper-392

ature, pH, O2, and percent saturated O2) and river sediment respiration rates. Fur-393

thermore, some ML models (ID 6) also drop the in situ chemistry data from WHON-394

DRS and only use RiverAtlas large-scale data and WHONDRS respiration rates395

to train the ML models. The ML models from this final stage could then be used396

to predict respiration at many unsampled sites across the Columbia River Basin397

as a concrete demonstration of data-driven extrapolation of respiration rate es-398

timates at nearly any river segment for use in large-scale watershed modeling stud-399

ies.400

3 Results and Discussion401

3.1 Model Predictive Skill402

ML models are often evaluated based on the extent to which the predictions they403

make using the testing data set match the original target values. Figure 4 summarizes404

this model skill test for the S19S-SSS-log10-extrap-r01 (ID 5) and S19S-SSS-nolog-extrap-405

r01 (ID 7) ML model runs. A highly skilled ML model would show a very tight corre-406

spondence between the observed respiration rate (i.e. the target, horizontal axis) and407

the respiration rate predicted by the ML model using the corresponding features at that408

site. The ML models in this work exhibit moderate skill since there is a significant amount409

of scatter in the points. Furthermore, the scatter of the two ML model ensembles seem410

comparable by eye - neither model seems to be better than the other.411

Model skill is quantified by the R2 correlation coefficient ”score” computed from412

the scatter of points in Figure 4.Consistent with the observations above, the model scores413

are not significantly different from each other in Figure 5. Both Figures 4 and 5 show414

that the river sediment respiration rates span several orders of magnitude and they have415

bimodal distributions with many observations of relatively weak respiration rates on the416

left side of each plot and a smaller number of relatively strong respiration rates on the417

right side of each plot.There is a breakpoint between the weak and strong respiration rates418

at about -500 mg DO/L/hr. The ML models generally recover this bimodal distribution419

when evaluated with the testing and training data (Fig. 5 bottom panel). However, all420

the ML models are significantly biased with the predicted, weak respiration rates being421

significantly stronger (i.e. shifted right) relative to the observed respiration rates. This422

bias is an example of the classic tendency for ML models to make predictions near the423

mean value of the training data.424

The S19S-SSS-log10-extrap-r01 (ID 5) and S19S-SSS-nolog-extrap-r01 (ID 7) ML425

training runs were presented first in Figure 4 because their contrast highlights an ML426

model design decision that applies to the rest of the ML models discussed in this work.427

The only difference between these two ML model ensembles is the presence or absence428

of a log10 transform on the river sediment respiration rates as described in the Meth-429

ods section. A log10 transformation was considered because the respiration rates span430

many orders of magnitude and such a transformation could help resolve the biases in ML431

model predictions noted above. Figures 4 and 5 (top panel) show that run ID 7 has only432

a slightly higher model score than run ID 5. On the other hand, the histogram of res-433

piration rate predictions for run ID 5 and all the other run IDs with the log10 transformer434
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Table 3. Summary of the ML training runs discussed in this manuscript. The number of data

points available for the train/test data split is listed in the N pts. column and the number of

features used to train each model is in the N feat. column. In all cases, 25% of the data are used

for the testing set for evaluating the ML models while 75% of the data are used for training the

ML models. The exception to this general rule is that all data points are used for cross-validated

hyperparameter optimization as described in the Methods. The ID for each model is used to

locate a particular model’s results in Figures 5 and 6.

ID ML run branch name N
pts.

N
feat.

Description

1 Summer-2019-log10-r07 227 133 S19S WHONDRS obser-
vations with RiverAtlas
co-located data, all possible
features, FPI corr. cutoff
0.7.

2 Summer-2019-log10-r08 227 133 Same as ID 1, above, except
FPI corr. cutoff set to 0.9.

3 Summer-2019-log10-r09 227 29 Same as ID 1, above, but
trained with only the top 20
features identified by FPI
analysis in ID 1 and 2 (the
top 20 features in each run
were merged).

4 S19S-SSS-log10-r02 367 94 Merged S19S and SSS
WHONDRS observations
and using all features
present in both data sets,
FPI corr. cutoff 0.7.

5 S19S-SSS-log10-extrap-r01 367 78 Merged S19S and SSS
WHONDRS observations
and using only features
available from RiverAtlas
and WHONDRS temp., pH,
O2, and % sat. O2 for use
with making predictions at
sites with GLORICH and
RiverAtlas data, FPI corr.
cutoff 0.7.

6 S19S-SSS-log10-extrap-r03 367 74 Same as ID 5, above, but
using only features available
from RiverAtlas for use with
making predictions at any
RiverAtlas river segment,
FPI corr. cutoff 0.7.

7 S19S-SSS-nolog-extrap-r01 367 78 Same as ID 5, above, but
without a log10 filter on the
sediment respiration rate.
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(i.e. 1-6) exhibit slightly stronger bimodality with a local minima in their histograms that435

are smaller than the local minimum of the histogram of run ID 7 (Fig. 5 bottom panel).436

Furthermore, if we consider -500 mg DO/L/hr as the boundary between weak and strong437

respiration rates,run ID 7 is slightly more likely (5.2%) than run ID 5 (4.4%) to make438

a classification error by predicting weak respiration rates for sites that are actually ob-439

served with strong respiration rates or vice-versa. While there is only a slight difference440

in the performance of ML models with or without the log10 transformation of the res-441

piration rates, we ultimately chose to use ML models with the log10 transformer due to442

the slightly better representation of the bimodal distribution of respiration rates. This443

weak-strong bimodality is a key aspect of the observed river sediment respiration rates444

so the extent to which an ML model can recover bimodality is a more important crite-445

rion than the model score alone.446

When comparing the other ML model runs, ML model ensemble skill is most im-447

proved by increasing the number of data points in the training data (e.g. compare run448

IDs 1-3 to 4-7 of Figure 5, top panel). This observation is consistent with the expecta-449

tion of ML model skill improving with more data and the fact that our training data is450

relatively small at a few hundred data points while ML generally performs better with451

thousands or more data points. Adding training data points, however, does not appear452

to have as large an impact on improving the biases of the ML models; the peaks of the453

histograms of model predictions of respiration rates in Figure 5 (bottom panel) are all454

generally centered at the same two locations. The predicted weak respiration rates ex-455

hibit a consistent bias compared to the observations. However, the broad weak-strong456

respiration rate bimodality is retained across all models. Finally, changes to the num-457

ber of features in each ML model does not have a significant impact on either the model458

skill or model biases (e.g. comparing run IDs 1-2 to 3 or run ID 4 to 5-6 in Figure 5).459

3.2 Feature Importance460

We have been building up to Figure 6 which can now help answer the central ques-461

tion posed in this work, namely: Which features are most important for predicting river462

sediment respiration rates? When interpreting Figure 6 it is important to remember that463

the progression of reducing features of the ML model ensembles outlined in Table 3 means464

that not all features are present in all cases. Comparing run IDs 1 and 2 shows that the465

choice of the FPI correlation cutoff has a minor impact on the results. Larger groups of466

features, which are visible in Figure 6 as blocks of adjacent features with exactly the same467

feature importance mean and standard deviation, tend to have greater importances. Lower468

FPI correlation cutoffs will result in larger groupings of features and vice-versa. This ef-469

fect can be explained by the fact that a greater proportion of the total amount of infor-470

mation available to the ML models is contained in a group with more features than a471

group with fewer features. As the number of features is reduced in the ML model en-472

sembles, the effect of feature grouping is intensified (e.g. the elevated feature importances473

of run IDs 3-7 relative to 1-2) because the proportion of information in a group of fea-474

tures relative to the total amount of information available to the model increases. De-475

spite this effect, feature importances across all run IDs are broadly consistent with each476

other so the FPI correlation cutoff does not have a significant impact on the overall re-477

sults as long as the features we want to compare relative to each other are resolved in478

different groups. Since feature grouping depends on the correlations between features479

for a specific input data set, no single correlation cutoff can be specified for all data. For480

the merged WHONDRS and RiverAtlas data, we found that an FPI correlation cutoff481

of about 0.7 suited the needs of this analysis.482

The features that are consistently considered important across different ML model483

ensembles in Figure 6 can be organized into the broad categories of Table 1:484
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• ecological setting with feature IDs 15-18, 23-24, 33-36, 39-40, 65-75, 76-77, 112,485

121, and 125-126;486

• geological setting with feature IDs 13-14, 19-20, 25-30;487

• fluvial setting with feature IDs 5, 10, 37-38, 41-45, 47, and 119-120;488

• climatic setting with feature IDs 80-84, 90-99, 102-103, 110-111, and 128.489

• riverbed sediment with feature IDs 11-12;490

• water properties with feature IDs 21, 22, 87, and 107; and491

• sediment organic matter chemistry with feature IDs 50-64 and 115.492

This list of important features is long and hard to interpret, so we will leverage the pro-493

gressive reduction of features in ML model IDs 1-7 in Table 3 as a context for highlight-494

ing particular categories of important features. For the cases where we can train ML mod-495

els with all available features, ML model IDs 1 and 2, it is the FTICR data, especially496

feature IDs 50-58 (metrics of average thermodynamic efficiency, Gibbs free energy, ox-497

idation state, and aromaticity of the chemicals detected in the sediment sample), that498

are consistently the most important features. This result is robust to changes in the FPI499

correlation cutoff, the only difference between ML model IDs 1 and 2 (aside from the ran-500

domized differences in train/test splitting during training). FTICR features are also avail-501

able in ML model ID 3 and the FPI analysis suggests that these features are extremely502

important. However, the highly elevated FTICR feature importance in ML model ID 3503

is also amplified by the fact that most of the FTICR features are grouped together as504

a single block and they account for the majority of the information used to train the ML505

models in this ensemble.506

Unfortunately, the FPI analysis for ML model IDs 1-3 also exhibits a very large507

uncertainty. The FTICR features are only available in the S91S subset of the WHON-508

DRS data so ML models 1-3 were trained with only 227 data points. As such, there is509

only one feature, 123 (the count of phototropic cells), in only one ML model ensemble,510

1, whose feature importance is greater than 1 + s where s is the sample standard de-511

viation of the feature importance scores over the ML model ensemble members for a par-512

ticular feature. A feature importance score of 1 is a totally neutral feature (i.e. the ML513

models make similar predictions with or without the feature scrambled). The WHON-514

DRS S19S subset used to train ML model IDs 1-3 is 62% of the merged S19S and SSS515

WHONDRS data that was used to train ML models 4-7. As noted above, model per-516

formance increases significantly with more training data (Fig. 5) but the uncertainties517

of the feature importances remain large, even for ML models 4-7. Despite the large un-518

certainties, there are substantial numbers of features for ML model IDs 4-7 whose fea-519

ture importances are greater than 1+s: 94, 44, 64, and 78 total features for ML model520

IDs 4, 5, 6, and 7, respectively.521

The features with the greatest importances are generally consistent across ML mod-522

els with IDs 4-7. Broadly, it appears that features that fall into the category of climatic523

setting may have the greatest importance followed by ecological, geological, and fluvial524

settings. However, although these blocks of features may have importances substantially525

different from a neutral importance of 1, their uncertainties remain sufficiently high so526

that the uncertainty ranges of feature importance often overlap and it is not possible to527

definitively say which categories of features are more important than the others. Spe-528

cial consideration should be given to the features that fall into the category of readily529

available in situ chemistry observations, principally water temperature, pH, DO, and per-530

cent saturated DO with feature IDs 87, 107, 21, and 22, respectively. These features are531

available in the WHONDRS and GLORICH data and are relatively easy to collect in532

the field with well-established methods and sensors. We initially hypothesized that hav-533

ing local, in situ observations would provide an important environmental context for mak-534

ing predictions of river sediment respiration rate when paired with the large-scale data535

in RiverAtlas. In fact, including or excluding these features is the distinction between536

training ML model IDs 5 and 7 (including temperature, pH, DO, and percent saturated537
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DO) and ML model ID 6 (no in situ data at all). We can see that these features are sig-538

nificantly important (i.e. importances greater than 1 + s) for ML run IDs 4, 5 and 7,539

but they only have modest importance (Fig. 6). This observation is consistent with the540

fact that ML model ID 6 has comparable performance to ML models with IDs 4, 5, and541

7 (Fig. 5). ML model IDs 1 and 2 are our only mechanism for comparing the feature im-542

portances of temperature, pH, DO, and percent saturated DO compared to the additional543

chemistry features available in the WHONDRS data. In both cases of ML models, tem-544

perature, pH, DO, and percent saturated DO do not appear to be critically important.545

This observation is consistent with the lower importances of these features in the other546

ML models (e.g. IDs 4-7).547

3.3 Extrapolation to Unsampled Locations548

The final step in our analysis is to use the ML models trained with the merged WHON-549

DRS and RiverAtlas data to make predictions of river sediment respiration rate across550

the Columbia River Basin. We chose the Columbia River because this river basin has551

the greatest concentration of WHONDRS data; the 2022 SSS sampling campaign was552

focused there (Fig. 1). Since the RiverAtlas data set is global, we could in principle use553

the ML models to make predictions anywhere there are temperature, pH, DO, and per-554

cent saturated DO observations (ML model ID 5) or simply anywhere (ML model ID 6).555

Figure 7 shows river sediment respiration rates across the Columbia River Basin. Res-556

piration rates exhibit patterns that are spatially consistent; most adjacent river segments557

have similar respiration rates with gradual changes along streams. Trends in these pat-558

terns deviate from the underlying topography and relative size of river segments in the559

overall network suggesting that there are many significant factors governing the predic-560

tions of river sediment respiration rates. This observation is consistent with the FPI anal-561

ysis, above, whose results show that many features are important in the ML models. Fi-562

nally, the magnitudes and spatial patterns of the predictions made at every river seg-563

ment in RiverAtlas are broadly consistent with the predictions at the GLORICH sites.564

Histograms of the ML models’ predictions over the Columbia River Basin (Fig. 8),565

however, reveal an important discrepancy between the predictions made by ML mod-566

els including (ML model ID 5) and excluding (ML model ID 6) readily available in situ567

chemistry observations. The ML models with ID 5 and 6 are able to both recreate the568

observed bimodal distribution in river sediment respiration rates (gray lines in Fig. 8)569

albeit with the bias in weak respiration rates discussed above. However, when these mod-570

els are used to predict respiration rates across the Columbia River Basin (i.e. extrap-571

olate), the results from ML model ID 5 exhibit a pronounced bias toward strong respi-572

ration rates while the results from ML model ID 6 are distributed more closely to the573

predictions based on the training data. We explored several avenues for uncovering the574

source of the bias of ML model ID 5. For example, since the WHONDRS data are all575

collected in the summers of 2019 and 2022, they are ∼ 2oC warmer compared to the mean576

temperature across all GLORICH sites. The WHONDRS data also have a correspond-577

ing ∼ 1.3 mg DO/L/hr lower DO bias due to the temperature dependence of DO in wa-578

ter. Shifting all the temperature, pH, DO, and percent saturated DO values in GLO-579

RICH so they have the same mean as the WHONDRS data did not change the bias of580

the predictions at the GLORICH sites (not shown), nor did setting temperature, pH, DO,581

and percent saturated DO to the constant, mean values of the WHONDRS data (Fig. 8).582

The high bias of ML model ID 5 is perplexing given the relatively low importances583

associated with temperature, pH, DO, and percent saturated DO and the fact that ML584

model ID 6 is identical except that its training set excluded temperature, pH, DO, and585

percent saturated DO. The models are likely overfit (i.e. they have trouble generalizing586

to new, unseen data) due to the small number of points in the training data set. Sup-587

porting this conjecture is the observation that for both ML model ID 5 and 6 predictions588

across the Columbia River Basin (red and pink lines) do not exhibit the same strong bi-589
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modality as their predictions made with the training data (gray lines, Fig. 8). There-590

fore, when using the new, unseen, and variable data from 6,171 GLORICH sites and 86,054591

RiverAtlas segments, these ML models have difficulty making clear, decisive predictions592

of which sites have weak or strong respiration rates. For ML model ID 5, in particular,593

it is possible that weak learned correlations between temperature, pH, DO and percent594

saturatd DO and the other features are amplified into bias when using data outside the595

training set. The predictions of river sediment sediment respiration rates in Figure 7 by596

ML model ID 6 are likely ”blurred” or ”smoothed out” with more overlap between the597

segments with weak and strong respiration rates. Despite this overlap, there is still an598

asymmetric distribution in ML model ID 6’s predictions of respiration rates across the599

Columbia River Basin that are broadly consistent with observations.600
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Figure 4. Observed respiration rates (i.e. original respiration rates provided in the WHON-

DRS data which are used as “targets” in training) versus the respiration rates predicted by an

ensemble of machine learning models using most of the other WHONDRS and RiverAtlas data as

inputs. Black (red) symbols are for the S19S-SSS-log10-extrap-r01 (S19S-SSS-nolog-extrap-r01)

ML-runs defined in Table 3. The same data points are plotted in regular units (left) and log10

space (right). Model scores (i.e. the correlation between targets and predicted values in regular

units) for these ML-runs and all other runs used here are in Figure 5. Pale plus signs correspond

to predictions made by each individual SuperLearner instance while the solid circles are the aver-

age prediction across all 10 of the SuperLearner instances that make up the ensemble of models

for each ML workflow run.

4 Conclusions601

This study demonstrates the application of machine learning (ML) methods to de-602

velop predictive models of river sediment respiration based on community-generated dis-603

tributed data. The data-driven models provide new insights into the spatial variability604

of respiration and the relative importance of various input variables (system features)605

to those predictions.606

We analyzed a data set, compiled from community-generated data combined with607

public river databases, containing as many as 367 samples and 133 features. Not all sam-608

ples contained all features, so a progressive ML training process was followed to test the609

impact of numbers of samples and features on ML model performance. The various runs610

also tested impacts of model decisions such as FPI correlation cutoffs and data trans-611

formations.612
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Figure 5. Model scores computed with the testing data (i.e. hold-out data) only (top) and

histograms of predictions made with both the training and testing data (bottom) for the ML-runs

as numbered in Table 3. The color coding with run ID is the same in both panels of this figure as

well as in Figure 6.
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Figure 6. Summary of highly ranked features in the merged WHONDRS and RiverAtlas data

for predicting respiration rates. Dots represent the FPI improvement ratio for each feature listed

in Tables 1 and S1 averaged over all the SuperLearner ensemble members for a particular ML

model ID listed in Table 3. Higher FPI ratios imply greater feature importance. The translucent

rectangles represent the one standard deviation of the FPI improvement ratio among the Super-

Learner instances. Feature ID’s can be looked up in Table 1 and SI Table S1.

4.1 Most Important System Features613

We had hypothesized that organic matter chemistry, as reflected in summary mea-614

sures of FTICR-MS spectra on extractable sediment organic matter, could be a major615

determinant of sediment respiration. The results of the feature permutation importance616

(FPI) analysis support this hypothesis, and indicate that the FTICR data may be the617

most important features in predicting respiration rates. However, because of the rela-618

tively small number of samples with FTICR data, significant uncertainty exists regard-619

ing this conclusion. We are currently analyzing additional samples using FTICR and ex-620

pect that future analyses will show reduced uncertainty.621
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Figure 7. Predicted river sediment respiration rates across the northwest corner of the conti-

nental US (inset of Fig. 1). The network of all RiverAtlas segments in this map domain is color

coded by predictions of river sediment respiration rate from ML model ID 6 at each segment.

Predictions of respiration rate at all sites where there are GLORICH in situ temperature, pH,

and DO or percent saturated DO are made by ML model ID 5 and are color coded dots using the

same colorbar as the river segments. Predictions at GLORICH sites all have a larger solid black

circle behind them so that the color coded dots do not blend into the river network behind. Rel-

ative topography is shaded in the background on a grayscale (sea level is black, darker lowlands,

lighter highlands).

For a set of different ML models trained on data that did not contain FTICR fea-622

tures, the results suggest that large-scale features of climate zone, population, and phys-623

ical geography are important for prediction river sediment respiration rates. These fea-624

tures can be extracted from widely-available public databases. Supplementing these data625

with site-specific (in situ) measurements of river temperature, pH, DO, and percent DO626

saturation showed some benefit to ML model performance, but did not appear to be crit-627

ically important.628

4.2 Transferability and Watershed Model Parameterization629

By selecting those features that are deemed both important to the prediction and630

available in data sets with high spatial coverage, we can extrapolate the understanding631

gained from a relatively small set of sampling locations to large set of locations across632

broad domains of interest. We demonstrated this potential capability by predicting res-633

piration rates in river reaches spanning the Columbia River Basin.634
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Figure 8. Histograms of observed and predicted river sediment respiration rates extrapolated

at a large-scale. Observed respiration rates from the WHONDRS sites (filled gray) and the pre-

dicted respiration rates at the WHONDRS sites by ML model IDs 5 and 6 (solid and dashed gray

lines) have identical counterparts in the bottom panel of Figure 5. The distribution of respira-

tion rate predictions by ML model ID 5 at sites where there are GLORICH in situ temperature,

pH, DO, and percent saturated DO (6,171 sites) are in red while predictions by ML model ID

6 at each RiverAtlas river segment in the northwest corner of the US (86,054 segments) are in

pink. The dashed red line are predictions by ML model ID 5 similar to the red line except that

all temperature, pH, DO, and percent saturated DO are set to their respective constant mean

values from the WHONDRS data while the other larger-scale features are allowed to vary as in

the predictions with the solid red line.

This information can potentially be used in the parameterization of process-based635

watershed models to assess large-scale (cumulative) watershed functions such as total636

carbon dioxide efflux from rivers across watersheds or basins.637

4.3 Future Research638

Although the ML models developed and presented here demonstrated significant639

predictive ability, a high level of uncertainty remains both in the predictions of respira-640

tion rates and the assessments of which features are most important. Ongoing research641

is expanding on this study to both 1) incorporate additional FTICR-MS data into the642

existing models as these analyses are completed for existing samples, and 2) collect ad-643

ditional samples to increase the sample size and spatial coverage, and ostensibly to im-644

prove ML model predictive ability.645

5 Open Research646

WHONDRS data used here were published previously by Goldman et al. (2020)647

and Forbes et al. (2023) in the ESS-DIVE repository (https://ess-dive.lbl.gov/) and are648

licensed for reuse under the Creative Commons Attribution 4.0 International License.649

The data associated specifically with this manuscript are also available on the ESS-DIVE650

repository (Gary et al., 2024). All the ML models (code, model files, preprocessed train-651

ing data, predictions, and Conda environment definition files) are available in the pub-652

lic GitHub repository https://github.com/parallelworks/sl-archive-whondrs which is also653

snapshotted in the ESS-DIVE data package (Gary et al., 2024) together with the scripts654
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that generated the figures in this manuscript. The original RiverAtlas (Linke et al., 2019)655

and GLORICH (Hartmann et al., 2019) data sets are publicly available and their pre-656

processed versions (along with all preprocessing scripts) for use with the ML workflow657

used in this work are available in the public GitHub repository https://github.com/parallelworks/global-658

river-databases.659

Acknowledgments660

SFG, ER, and AVT were supported by the Small Business Innovation Research (SBIR)661

program of the U. S. Department of Energy (DOE), Office of Science, Grant DE-SC0020464.662

TS, AG, VGC and JS were supported by the DOE Office of Biological and Environmen-663

tal Research through the River Corridor Science Focus Area project at Pacific North-664

west National Laboratory. WHONDRS data were generated in part at the Environmen-665

tal Molecular Sciences Laboratory (EMSL; grid.436923.9), a DOE Office of Science User666

Facility sponsored by the DOE Office of Biological and Environmental Research. The667

authors declare that they have no competing financial interests.668

References669

Ahamed, F., You, Y., Burgin, A., Stegen, J. C., Scheibe, T. D., & Song, H.-S.670

(2023). Exploring the determinants of organic matter bioavailability through671

substrate-explicit thermodynamic modeling. Frontiers in Water , 5 . doi:672

10.3389/frwa.2023.1169701673

Battin, T. J., Kaplan, L. A., Newbold, J. D., & Hendricks, S. P. (2003). A mixing674

model analysis of stream solute dynamics and the contribution of a hyporheic675

zone to ecosystem function [Journal Article]. Freshwater Biology , 48 (6),676

995-1014. Retrieved from <GotoISI>://WOS:000182948500005https://677

onlinelibrary.wiley.com/doi/full/10.1046/j.1365-2427.2003.01062.x678

doi: DOI10.1046/j.1365-2427.2003.01062.x679

Borton, M., Collins, S., Graham, E., Garayburu-Caruso, V. A., Goldman, A.,680

de Melo, M., . . . Consortium, W. C. (2022). It takes a village: Using a681

crowdsourced approach to investigate organic matter composition in global682

rivers through the lens of ecological theory. Frontiers in Water , 4 . doi:683

10.3389/frwa.2022.870453684

Bramer, L. M., White, A. M., Stratton, K. G., Thompson, A. M., Claborne, D.,685

Hofmockel, K., & McCue, L. A. (2020). ftmsranalsysi: An r package for686

exploratory data analysis and interactive visualization of ft-ms data. PLoS687

Computational Biology , 16 (3), e1007654. doi: 10.1371/journal.pcbi.1007654688

Buser-Young, J., Garcia, P., Schrenk, M., Regier, P., Ward, N., Biçe, K., . . .689
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