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Abstract14

In this work, the impacts of spurious numerical salinity mixing (Mnum) on the larger-15

scale flow and tracer fields are characterized using idealized simulations. The idealized16

model is motivated by realistic simulations of the Texas-Louisiana shelf and features os-17

cillatory near-inertial wind forcing. Mnum can exceed the physical mixing from the tur-18

bulence closure (Mphy) in frontal zones and within the mixed layer. This suggests sim-19

ulated mixing processes in frontal zones may be driven largely by Mnum. Near-inertial20

alongshore wind stress amplitude is varied to identify a base case that maximizes the ra-21

tio of Mnum to Mphy. We then we test the sensitivity of the base case with three tracer22

advection schemes (MPDATA, U3HC4, and HSIMT) and conduct ensemble runs with23

perturbed bathymetry. Instability growth is evaluated with several analysis methods:24

volume-integrated eddy kinetic energy (EKE) and available potential energy (APE),25

surface and bottom isohaline variability, and alongshore-averaged salinity sections. While26

all schemes have similar total mixing, HSIMT simulations have over double the volume-27

integrated Mnum and 20% less Mphy relative to other schemes, which suppresses the28

release of APE and reduces the EKE by roughly 25%. HSIMT instabilities are confined29

shoreward relative to the other schemes. This results in reduced isohaline variability and30

steeper isopycnals, evidence that enhanced numerical mixing suppresses instability growth.31

Plain Language Summary32

Mixing plays a fundamental role in maintaining the general circulation of the ocean33

by dissipating energy and redistributing tracers, or fluid properties used to track aspects34

of ocean circulation. Numerical ocean models often parameterize physical mixing pro-35

cesses because their resolution is too coarse to resolve them. Numerical models are also36

prone to numerical mixing, a type of spurious mixing arising from the discretization of37

tracer transport by currents. Recent studies have shown numerical mixing can exceed38

the physical mixing in high resolution models. Here, we study where numerical salinity39

mixing is significant in the water column and how it impacts the larger-scale circulation40

and tracer fields in a 500 m resolution, idealized model of the Texas-Louisiana shelf. We41

find that numerical mixing dominates physical mixing in frontal zones associated with42

small-scale eddies. To study the impacts of that mixing, we perform an ensemble by vary-43

ing the numerical scheme for tracer transport. We find that the scheme with excessive44

numerical mixing suppresses the eddies and prevents the release of their primary energy45

source. Future studies may use these results as a blueprint to better understand how nu-46

merical mixing impacts specific processes near frontal zones and therefore affects model47

fidelity.48

1 Introduction49

Mixing, or the irreversible loss of scalar variance by turbulent processes, is a fun-50

damental ocean process because it redistributes tracers and dissipates energy. Recent51

studies have focused on characterizing numerical mixing – defined as the spurious mix-52

ing generated by the discretization of tracer advection – because it can be a significant53

fraction of, or even exceed, the physical mixing. Physical mixing is defined in this study54

as the destruction of tracer variance prescribed by turbulence closure schemes (Burchard55

& Rennau, 2008; MacCready et al., 2018), whereas numerical mixing is generally asso-56

ciated with imperfect discretization of tracer advection. Significant numerical mixing rel-57

ative to physical mixing has been demonstrated for high resolution estuarine models (Ralston58

et al., 2017; Rennau & Burchard, 2009; Wang et al., 2021), submesoscale resolving re-59

gional models (Schlichting et al., 2023), and a wide range of global models (Griffies et60

al., 2000; Holmes et al., 2021; Ilıcak et al., 2012; Megann, 2018).61

It has been known for decades that spurious mixing can degrade the fidelity of nu-62

merical ocean models, driving the model toward unrealistic ocean states. A prominent63
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early example of this was discovered by George Veronis, who showed that the Laplacian64

diffusion implemented in an ocean circulation model caused unphysical upwelling in west-65

ern boundary currents (Veronis, 1975). The problem resulted from the misalignment of66

the diffusion tensor and isopycnals, which aliased the prescribed horizontal diffusion as67

diapycnal diffusion over steeply sloped isopycnals (Griffies et al., 2000) and caused false68

upwelling near western boundary currents. The “Veronis effect” was not mitigated un-69

til ocean models employed a rotated diffusion tensor (Redi, 1982) to minimize spurious70

diapycnal mixing. Numerical mixing is one source of spurious mixing; there are several71

others in modern ocean models (see Megann et al., 2022).72

While it is often thought of as a source of error in coarse-resolution simulations,73

numerical mixing can be used in high-resolution simulations as a way to eliminate grid-74

scale kinetic energy and tracer variance. For example, odd-ordered advection schemes75

that are numerically dissipative are commonly used in coastal and large eddy simulation76

(LES) applications (Leonard et al., 1993; Roman et al., 2010; Shchepetkin & McWilliams,77

1998; Wu & Zhu, 2010). In these cases, numerical mixing can be used to improve model78

stability and fidelity by preventing energy cascading to small scales from gathering at79

the grid-scale, thereby dominating the solution and creating an unphysical ocean state.80

Unlike physical mixing, numerical mixing is not easily controlled by model param-81

eters. This is because numerical mixing is sensitive to many components of the model82

setup such as the advection scheme (Fofonova et al., 2021; Kalra et al., 2019; Wang et83

al., 2021) and grid resolution (Holmes et al., 2021; Ralston et al., 2017; Schlichting et84

al., 2023). It also depends on the resolved flow velocity and tracer gradients (Schlichting85

et al., 2023; Holmes et al., 2021; Wang et al., 2021). Numerical mixing can be negative86

for advection schemes that attempt to reduce diffusion (e.g., flux-corrected or flux-limited87

schemes). In this case, tracers may be redistributed up-gradient and spuriously create88

grid-scale tracer variance. The nonlinear nature of the problem makes it difficult to quan-89

tify the larger-scale impacts of numerical mixing without targeted numerical experiments90

(Fofonova et al., 2021; Kalra et al., 2019), though it is generally thought that numeri-91

cal mixing impacts the larger-scale flow and tracer fields differently than the physical mix-92

ing in primitive equation models. This is different from implicit LES models, where part93

of the turbulence cascade is resolved and numerical mixing (in the form of viscous dis-94

sipation) reproduces qualitative features of the theoretical and prescribed mixing (Domaradzki95

et al., 2003; Thornber et al., 2007), since the near grid-scale turbulent mixing in these96

cases is more isotropic.97

It is unclear whether numerical mixing reduces the accuracy of very high resolu-98

tion primitive equation ocean models capable of permitting or resolving submesoscale99

processes, since at the resolved scales, the physical mixing is not isotropic. Submesoscales100

are characterized by O(1) Rossby and Richardson numbers, a dual cascade of energy, and101

large vertical motions (McWilliams, 2016; Taylor & Thompson, 2023). Thus, we can ex-102

pect there to be substantial differences in the character of numerical mixing at these en-103

ergetic scales, compared to less energetic mesoscales. Submesoscales are important for104

many oceanographic processes, for example, 1) they restratify the mixed layer and thus105

play an important role in structuring the ocean’s heat budget (Boccaletti et al., 2007;106

Su et al., 2018), 2) their ageostrophic motions can create a ventilation pathway for bot-107

tom trapped material (Qu, Thomas, Wienkers, et al., 2022) and exchange tracers across108

the mixed layer base (Balwada et al., 2021), and 3) their convergent motions (i.e., fronts)109

congregate marine organisms and biogenic surfactants (McWilliams, 2019; Ruiz et al.,110

2019). Therefore, it is critical to understand and quantify numerical mixing at sub-kilometer111

scales as regional coastal models and limited domain open ocean models push towards112

submesoscale-resolving resolution.113

Schlichting et al. (2023) quantified volume-integrated numerical and physical mix-114

ing of salinity (defined respectively as Mnum and Mphy in Section 3) in a submesoscale-115

resolving simulation of the Texas-Louisiana (TXLA) shelf. They found numerical mix-116
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Figure 1. TXLA model surface ζf−1 (a), |∇hs| (b), and mixed layer depth (MLD) (c) on

July 4, 2010 04:30 UTC. The child domain is marked by the black box. Mnum (d), Mphy (e),

and Mtot (f) depth-integrated from the base of the mixed layer to the free surface. Note the

absolute values are shown in (d) and (f) to account for negative numerical mixing. Here, bulk

Mnum/Mtot = 24% in the child domain. Mnum is elevated near the southern boundary of the

parent domain and within several bays/estuaries due to coarse grid resolution and close proxim-

ity to the open boundary. The colorbars are saturated to emphasize fronts.

ing constitutes about half the total (Mtot = Mnum+Mphy) mixing and that numer-117

ical mixing is correlated with the magnitude of the horizontal salinity gradients |∇hs| =118 (
(∂xs)

2 + (∂ys)
2
)1/2

, implying that numerical mixing is significant at fronts associated119

with submesoscale eddies. These eddies are often found during summer as weakly up-120

coast winds superimposed with a diurnal land sea breeze cause freshwater from the Mis-121

sissippi/Atchafalaya river plume to pool over the shelf (Hetland, 2017), which generates122

strong inertial currents (Kobashi & Hetland, 2020; Qu, Thomas, Wienkers, et al., 2022).123

An example with the two-way nested TXLA model is shown in Fig. 1 to motivate fur-124

ther analysis.125

The fronts, marked by normalized relative vorticity ζf−1 > 1, where ζ = ∂xv −126

∂yu and f is the Coriolis parameter, are characterized by sharp horizontal salinity gra-127

dients. Numerical mixing is depth-integrated from the base of the mixed layer to the free128
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surface and compared with the physical- and total mixing. The mixed layer depth (MLD)129

is defined using the standard vertical density difference cutoff of 0.03 kg m−3 (de Boyer Montégut130

et al., 2004). As discussed previously, numerical mixing is significant at fronts due to large131

horizontal salinity gradients. For the child model domain in Fig. 1, numerical mixing132

constitutes about 24% of the total mixing. Other definitions of MLD may be used (see133

Thomson & Fine, 2003), but these do not change the general result that the ratio of numerical-134

to physical mixing grows as the lower limit of integration shoals. For example, depth-135

integrating over the top one m of the water column to the free surface increases this ra-136

tio to 52%. When the eddies are less perturbed by regional forcing (e.g., Fig. 2 of Schlicht-137

ing et al., 2023), this ratio can exceed 75%. This implies that even as the horizontal res-138

olution is pushed towards submesoscale resolving, mixing processes in the frontal zone139

may be numerically driven. More broadly, this reinforces the idea that numerical mix-140

ing can dominate in regions where physical mixing is weak (Kalra et al., 2019; Wang et141

al., 2021).142

The primary goal of this paper is to characterize and quantify the numerical mix-143

ing in a submesoscale eddy-resolving model, and to gain insight into how this numeri-144

cal mixing impacts the larger-scale ocean state. It is difficult to address this with a re-145

alistic model due in part to the large computational cost, but also the difficulty in quan-146

tifying the difference in model states with different numerical mixing in a complex, re-147

alistic model. We therefore use an idealized model based on Hetland (2017) that cap-148

tures many of the characteristics of the submesoscale eddy field seen in the realistic model.149

We use three different advection schemes as a way to modify the numerical mixing across150

different simulations. We then assess the impact of these different advection schemes through151

alongshore means in the idealized model – an analysis that is not possible in the real-152

istic model. Our primary finding is that numerical mixing suppresses the release of avail-153

able potential energy, impacting the eddy field and the offshore extent of the fresh wa-154

ter front.155

2 Numerical models156

Both models are implementations of the Regional Ocean Modeling System (ROMS,157

Shchepetkin & McWilliams, 2005) configured as part of the Coupled-Ocean-Atmosphere-158

Waves-Sediment-Transport model (COAWST, ver. 3.7, Warner et al., 2010).159

2.1 Realistic ROMS model160

The two-way nested TXLA model setup is described in Schlichting et al. (2023).161

The sub-domain marked with a black box in Fig. 1 is the higher-resolution child model162

(which is nested in a coarser resolution parent model): in this paper we exclusively use163

the child model. Only details necessary to compare with the idealized model are provided.164

The horizontal resolution of the child model spans from approximately 255 m close to165

the coast to 357 m near the offshore boundary with a mean resolution of 315 m. The model166

uses 30 vertical layers with functions (vtransform=2, vstretching=4) and stretching pa-167

rameters (θs = 5, θb = 0.4). The vertical resolution in the top m of the water column168

ranges from 13 cm close to the coast to 73 cm near the southern boundary, with a mean169

resolution of 38 cm. The lowest vertical resolution is about 36 m over the continental170

slope. As discussed above, this model exhibits significant numerical mixing near the ocean171

surface. To elucidate the causes and effects of this numerical mixing, we created an ide-172

alized model in a similar regime to the realistic model.173

2.2 Idealized ROMS model174

The model configuration follows Hetland (2017) and is based on a water mass anal-175

ysis of summer conditions over the TXLA shelf (see his Fig. 5). ROMS is configured as176

–5–



manuscript submitted to Journal of Advances in Modeling Earth Systems

Figure 2. Idealized model initial conditions. Plan view of surface salinity (a) with isohalines

overlaid every g kg−1 and cross-sections of potential temperature (b) and alongshore velocity (c)

with isopycnals overlayed every 0.5 kg m−3. The cross-sections are shown at the red dashed line

in (a).

a reentrant shelf with periodic alongshore boundary conditions and a wall at the coast177

(Fig. 2). The domain is 97 km in the along- and across-shore directions with a horizon-178

tal resolution of 500 m. The vertical grid parameters are the same as the realistic model.179

The minimum water depth is five m at the coast and approximately 103 m at the off-180

shore boundary with a bottom slope of 0.001. Over the initially stratified region, the ver-181

tical resolution is about 16 cm in the top one m of the water column and one m over the182

entire water column, with the coarsest vertical resolution being 6.8 m close to the bot-183

tom. A small amount of random noise equal to 1% of the local depth is added to the bathymetry184

to force instabilities. The offshore boundary conditions for the free surface and depth-185

averaged currents use a Chapman-Flather combination (Chapman, 1985; Flather, 1976).186

The three-dimensional variables use a no gradient condition at the offshore boundary.187

While a no-gradient boundary condition is unrealistic, we analyze the near-inertial wind188

ensemble runs described in Section 4 before eddies interact with the offshore boundary.189

The model is run on an f plane with the Coriolis parameter f set to 10−4 s−1 (∼190

43.5◦N) such that the inertial period is about 17.4 hours. Multidimensional Positive Def-191

inite Advection (MPDATA) is used for tracer advection (Smolarkiewicz & Margolin, 1998)192

for all runs until specified otherwise. The k−ϵ turbulence closure scheme is used to pa-193

rameterize the vertical mixing (Umlauf & Burchard, 2003; Warner et al., 2005). No ex-194

plicit lateral mixing scheme is prescribed. The model initial conditions (Fig. 2) are spec-195

ified in terms of two non-dimensional parameters: the Richardson Number (Ri = N2f2M−4)196

and slope Burger number S = Nf−1α. N is the buoyancy frequency, M2 is the mag-197

nitude of the lateral buoyancy gradients | (∇hb)
2 |, and α is the bottom slope. The re-198

sulting values of Ri and S are 1.0 and 0.1, respectively. The initial salinity varies only199

in the horizontal with a constant across-shore gradient inshore of 50 m depth with M2 =200

10−6s−2. The initial temperature field varies only in the vertical with N2 = 10−4s−2.201

Density ρ uses a linear equation of state:202

ρ = 1027
[
1 + 7.6× 10−4(s− 35)− 1.7× 10−4(θ − 25)

]
, (1)203
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where s is the salinity and θ is the temperature. The alongshore flow is initialized with204

geostrophic vertical shear and no flow at the bottom. The bottom boundary layer uses205

a logarithmic velocity profile with a bottom roughness of 0.003 m.206

3 Analysis methods207

3.1 Energetics208

Volume-integrated energetics are used to explore how baroclinic instability affects209

the stratification and eddy kinetic energy. A Reynolds decomposition u = u + u′ is210

used to divide the flow into a mean u and fluctuating u′ component, with u denoting211

the horizontal velocity vector. Due to the periodic boundary condition, we follow Hetland212

(2017) and define u with an alongshore mean:213

u =
1

L

∫ L

0

u dx (2)214

such that u′ is the perturbation from the alongshore mean. The total kinetic energy (TKE),215

mean kinetic energy (MKE), and eddy kinetic energy (EKE) are defined as (Cushman-216

Roisin & Beckers, 2011):217

TKE =
1

2
(u2 + v2), (3)218

219

MKE =
1

2
(u2 + v2), (4)220

221

EKE =
1

2
(u′2 + v′

2

). (5)222

Note that Hetland (2017) defined MKE as a function of u only and thus EKE was cal-223

culated as 1
2 (u

′2 +v2). This is because the alongshore mean of the across-shore veloc-224

ity v is initially zero and negligible without wind forcing. However, this is not the case225

when oscillatory alongshore wind forcing is added, so we calculate v′ with reference to226

an alongshore mean. Volume-integrated versions of Eqs. 3-5 over the initially stratified227

region will be used to determine when to analyze mixing and to get an understanding228

of how wind forcing affects instability development. They are normalized by the initial229

MKE (MKE0) so the initial TKE and MKE are one. Thus,230

TKEn =

∫∫∫
TKE dV∫∫∫
MKE0 dV

, (6)231

232

MKEn =

∫∫∫
MKE dV∫∫∫
MKE0 dV

, (7)233

234

EKEn =

∫∫∫
EKE dV∫∫∫
MKE0 dV

. (8)235

3.2 Volume-averaged salinity variance236

Li et al. (2018) showed that salinity variance can be used to characterize the strat-237

ification within a control volume. The salinity variance is also defined using a Reynolds238

decomposition. We split the salinity into a volume-averaged (s) and fluctuating (s′tot)239

component such that the total variance is written as240

s′
2

tot = (s− s)2, −→ s =
1

V

∫∫∫
s dV. (9)241

This can be decomposed into vertical (s′
2

v ) and horizontal (s′
2

h ) components. For exam-242

ple, s′
2

v = (s − s̃)2 is defined with the vertically-averaged salinity s̃. After some ma-243

nipulation, it follows that the volume-averaged total salinity variance can be decomposed244

as:245

1

V

∫∫∫
s′

2

tot dV =
1

V

∫∫∫
s′

2

h dV +
1

V

∫∫∫
s′

2

v dV. (10)246
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Eq. 10 is the volume-averaged version of Eq. 8 from Li et al. (2018). s′
2

h can be calcu-247

lated by quantifying s′
2

tot and s′
2

v individually and subtracting the two. Previous stud-248

ies have reported estimates of
∫∫∫

s′
2

tot dV (Wang & Geyer, 2018; Burchard et al., 2019).249

However, this can be difficult to physically interpret because it scales with V . Volume-250

averaging alleviates this and allows for direct comparison with other estuaries and coastal251

regions.252

3.3 Quantification of mixing253

Physical mixing is defined as the dissipation of salinity variance (Burchard & Ren-254

nau, 2008; MacCready et al., 2018):255

Mphy = 2κv (∂zs)
2
, (11)256

where κv is the vertical salinity diffusivity.257

Numerical salinity mixing is calculated following Burchard and Rennau (2008):258

Mnum =
A{s2} − (A{s})2

∆t
, (12)259

where A is the advection operator (i.e., MPDATA) and ∆t is the online timestep. While260

Klingbeil et al. (2014) improves the Burchard and Rennau (2008) algorithm, it is not coded261

into the ROMS source code. Mnum and Mphy are calculated online so errors associated262

with offline analysis do not contaminate the calculations (Schlichting et al., 2023).263

3.4 2D Frontogenesis function264

Future studies may benefit from understanding how Mnum changes as horizontal265

tracer gradients are sharpened by frontogenesis and weakened by frontoloysis. One way266

to conceptualize this is with the frontogenesis function FGF (Hoskins, 1982; McWilliams,267

2021). In two-dimensions, this describes whether advective processes are sharpening (FGF >268

0) or weakening (FGF < 0) horizontal buoyancy gradients. FGF is defined as the dot269

product of the tracer gradients with their Lagrangian rate of change. While typically ex-270

pressed in terms of lateral buoyancy gradients, we write FGF in terms of salinity be-271

cause surface stratification is provided only by salinity:272

FGF =
1

2

D

Dt
(∇hs)

2
, (13)273

where D
Dt = ∂t(.) + uh · ∇h(.) is the material derivative excluding the vertical term.274

Eq. 13 can be normalized so that it may compared directly with other dynamical275

properties. For example, Barkan et al. (2019) showed that divergence δ = (∂xu+∂yv)276

is a dominant parameter driving submesoscale frontogenesis. FGF can be normalized277

by f such that it may be compared to a rotational timescale. FGF can be further nor-278

malized by ∇hs, which we define as the normalized frontogenesis function nFGF :279

nFGF =
1

2f (∇hs)
2

D

Dt
(∇hs)

2
, (14)280

which is O(1) when submesoscale frontogenesis and frontolysis occurs. Thus, Eq. 14 de-281

scribes the time rate of change of the distance between two isohalines relative to the Cori-282

olis parameter. In other words, the normalized rate of cross-frontal convergence and di-283

vergence. For example, nFGF = 1 indicates horizontal salinity gradients will collapse284

over one rotational timescale. nFGF = −1 indicates a front will expand over a rota-285

tional timescale.286
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4 Results287

4.1 Unforced- and base case288

We start with a brief description of the near-inertial wind ensemble then compare289

the temporal evolution of the instabilities between the unforced- and base case. An overview290

of how wind forcing affects properties related to mixing in other ensemble members are291

provided in Appendix A because they are not directly related to the primary objective292

of this study. A total of 15 ensemble members, each with different wind forcing, were run293

for 20 days (Fig. A1). Each member is named according to the amplitude of the near-294

inertial (0.92f) alongshore wind stress τx0 . The spatially-uniform wind stress τx is cal-295

culated as296

τx = τx0 sin(0.92ft) , (15)297

where t is time. The first three days are set to zero so wind forcing starts as the insta-298

bilities begin forming (Fig. 3). The wind stress is prescribed to mimic the near-resonance299

between the diurnal winds over the TXLA shelf and the regional inertial frequency (Qu,300

Thomas, Hetland, & Kobashi, 2022). The same bathymetry is used in all ensemble mem-301

bers.302

The base case (0.1 Pa ensemble member, Fig. 3) was identified as the ensemble mem-303

ber with the maximum ratio of volume-integrated Mnum to Mphy (Fig. A1 d). The base304

case features a τx amplitude that is slightly more energetic than the magnitude of the305

diurnal wind stress amplitude in the realistic simulation. However, as we show later (Fig.306

5), the representation of frontogenesis and frontolysis is statistically similar to the re-307

alistic model. By selecting the ensemble member with maximum Mnum to Mphy, we308

assume it is easier to identify the larger-scale impacts of Mnum on the solution with the309

tracer advection experiments. All quantities hereafter are analyzed inshore of the ini-310

tially stratified region, indicated by the black contours in Fig. 2 (a).311

Normalized volume-integrated energetics for the case with no wind forcing are shown312

by dashed-dotted lines in Fig. 3 (b). As indicated by EKEn and consistent with Hetland313

(2017), the eddy field in the unforced case forms as an organized disturbance after day314

three. By day ten, the instabilities are mature and never interact with offshore bound-315

ary. The TKE and MKE decrease as the instabilities develop due to the bottom fric-316

tion, which provides a forward cascade of energy via dissipation in the bottom bound-317

ary layer.318

Volume-averaged Mphy and Mnum are shown for three depth ranges: 1) The en-319

tire water column (Fig. 3 c), 2) from the base of the mixed layer to the free surface (Fig.320

3 d), and the top one m to the free surface (Fig. 3 e). All quantities are volume-averaged321

so changes to V for the different depth ranges are taken into account. For all depth ranges,322

both mixing quantities increase as the instabilities form, but exhibit different temporal323

variability. However, bulk values are computed with volume-integrals because we are in-324

terested in the integrated effects that changing the wind forcing has on mixing. From325

days 7.5-15, the ratio of bulk Mnum to Mphy is 6.5%. For the entire water column, Mphy326

increases until the instabilities are mature then reaches near steady-state as they pen-327

etrate further into the water column and relax the mean flow. Mnum maximizes near328

day seven then decreases for the remainder of the simulation as |∇hs| weakens.329

Volume-averaging from the base of the mixed layer increases the ratio of bulk Mnum330

to Mphy to 24.9%, indicating that numerical mixing becomes more important in the mixed331

layer. From days 8-11, Mnum declines by over an order of magnitude before returning332

to previous levels. This variability is not seen in time series of Mnum for the ensemble333

members with wind forcing, which all reach a near periodic state in days 8-11. Identi-334

fying the exact cause of this decrease is beyond the scope of this paper. Mphy reaches335

steady state on day ten as with the entire water column. Over the top one m of the wa-336

ter column, Mnum rapidly increases as the eddies develop and is comparable to Mphy337
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Figure 3. Comparison between the base- and unforced case. (a) Alongshore wind stress τx

prescribed at each surface grid cell. (b) Normalized, volume-integrated energetics as defined in

text. (c) Volume-averaged Mnum and Mphy. The absolute value is taken to account for negative

volume-integrated Mnum before the instabilities form. As in (c), but depth-integrated from the

base of the mixed layer to the free surface (d) and from the top one m to the free surface (e). (f)

Volume-averaged salinity variance decomposition as defined in Eq. 10. The shaded areas indicate

time used for computation of bulk values.

for froms Days 7.5-15, then gradually declines as the fronts are dissipated by bottom fric-338

tion. The ratio of bulk Mnum to Mphy increases to 104.8%. These results validate the339

arguments suggested in Section 1; that is, even in a 500 m resolution idealized model,340

mixing processes near the frontal zone may be driven by Mnum.341

Energetics and mixing rates are related to the volume-averaged salinity variance.342

Until day four, s′
2

tot consists only of s′
2

h due to the initial conditions, as shown in Fig. 3343

(f). s′
2

tot slightly increases until the instabilities mature on day ten as the isopycnal slope344

–10–



manuscript submitted to Journal of Advances in Modeling Earth Systems

is reduced. s′
2

h is gradually converted to s′
2

v via differential advection of horizontal salin-345

ity gradients (Li et al., 2018) and restratification by mixed layer instabilities (Boccaletti346

et al., 2007). As the eddies are dissipated by bottom friction, the water column is mixed347

horizontally such that s′
2

h decreases. In the estuarine community, this process is referred348

to as tidal straining (Simpson et al., 1990). The key difference in our model is this pro-349

cess is forced by submesoscale baroclinic instabilities – not tidal forcing. s′
2

tot is O(3(g kg−1)2),350

less than half that of the TXLA child model domain (Fig. 7 of Schlichting et al. (2023))351

and about an order of magnitude less than partially mixed estuaries such as the Hud-352

son or Changjiang (Li et al., 2018; Warner et al., 2020). This is due to the small salin-353

ity range used to specify the initial conditions s = [∼ 28, 35], whereas over the TXLA354

shelf s = [0,∼ 37].355

The solid lines in Fig. 3 represent the same quantities discussed above for the base356

case, which has a wind stress amplitude of 0.1 Pa. The winds energize the velocity field,357

as shown by the normalized energetics (Fig. 3 b). Winds also increase Mphy and Mnum358

for all vertical limits of integration. The exception is Mphy vertically integrated over the359

top one m because the mean vertical salinity gradient is decreased by the winds (e.g.,360

Fig. A1). The nonlinear superinertial oscillations shown in the volume-averaged mix-361

ing quantities are qualitatively related to deepening of the mixed layer (not shown) and362

not discussed further. The ratio of bulk Mnum to Mphy over the whole water column,363

base of the mixed layer, and top one m are as follows: 15.4%, 49.3%, and 210.8%.364

Additionally, s′
2

tot and s′
2

v are lower than the unforced case because Mphy destroys365

vertical salinity variance by definition. However, s′
2

h remains comparable to the unforced366

case. The wind-forced eddies extend further beyond the initially stratified region and fea-367

tures sharper fronts relative to the unforced case (as approximated by |∇hs|, Fig. A1368

b).369

To qualitatively demonstrate the base case eddies are comparable with the real-370

istic model, Fig. 4 shows plan view plots of ζf−1, |∇hs|, δf−1, and nFGF on day 15371

at the surface. Snapshots of ζf−1 in the realistic model when eddies are well developed372

are found readily in previous studies (Hetland, 2017; Kobashi & Hetland, 2020; Qu, Thomas,373

Hetland, & Kobashi, 2022). As with the realistic model, |Mnum| is strongest at fronts374

by several orders of magnitude and is associated with sharp |∇hs|. As Barkan et al. (2019)375

suggests, nFGF is negatively correlated with δf−1. That is, frontogenesis is associated376

with convergent flows and frontolysis is associated with divergent flows.377

A statistical comparison between the realistic model and base case is shown with378

joint probability density functions (JPDFs) of Mnum and nFGF in the surface layer in379

Fig. 5. The absolute value of Mnum is taken to account for negative values. The cyan380

line marks the maximum probability of Mnum in each nFGF bin sorted by active fronts381

(ζf−1 > 1). The yellow line displays all cells in the surface layer. The TXLA model382

JPDF was constructed using a week of model output where the eddies are relatively un-383

perturbed by various forcing (compare Fig. 1 to Fig. 2 of Schlichting et al. (2023)).384

Several conclusions are drawn from Fig. 5: 1) the strongest occurrences of fron-385

togenesis produce the sharpest horizontal salinity gradients and thus the strongest Mnum,386

2) numerical mixing experiences the largest variability when frontogenesis and frontol-387

ysis are weak (i.e., nFGF ∼ [−1, 1]), which constitutes the majority of grid cells in the388

surface layer, 3) frontogenesis and frontolysis in the base case is representative of the re-389

alistic model, and 4) nFGF is skewed towards frontogenesis. An interesting result is that390

Mnum is significant even for strongly frontolytic processes. This reinforces the idea that391

lateral tracer gradients are a dominant parameter modulating Mnum, even if those gra-392

dients are being instantaneously weakened. In addition, the base case features smaller393

Mnum and nFGF ranges due to coarser lateral resolution and a smaller salinity range394

(see Section 2). The impacts of lateral resolution on Mnum are further elucidated by cyan395

lines, where weak frontogenesis and frontolysis feature Mnum maximum in each nFGF396
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Figure 4. Plan view plots of surface ζf−1 (a), |∇hs| (b), nFGF (c), and δf−1 (d) for the

base case on day 15 as defined in text. |∇hs| values in (b) offshore of the instabilities are set to

10−6 g kg−1 m−1 to saturate the colorbar because they are poorly defined.

bin (Fig. 5 b) about half an order of magnitude stronger than the same range for the397

realistic model (Fig. 5 a). In addition, the maximum Mnum in each nFGF bin for the398

entire surface layer converges to same quantity sorted by fronts when |nFGF | ∼ 2. While399

determining a proper scaling between ζf−1 and nFGF or δf−1 is beyond the scope of400

this paper, it makes intuitive sense for strong fronts and eddies to be present in regions401

of strong frontogenesis and frontolysis.402

4.2 Tracer advection experiments403

Next, we study the sensitivity of the base case with three tracer advection schemes404

available in the COAWST source code. The schemes used are MPDATA (Smolarkiewicz,405

1984; Smolarkiewicz & Margolin, 1998), third-order upwind in the horizontal with a ver-406

tical fourth-order centered scheme (U3HC4 Shchepetkin & McWilliams, 1998), and third407

high-order spatial interpolation at the middle temporal level with a total variation di-408

minishing scheme (HSIMT, Wu & Zhu, 2010; Wu, 2023). MPDATA is second order ac-409

curate but features anti-diffusive properties. Kalra et al. (2019) also studied the sensi-410

tivity of Mnum and Mphy in four idealized test cases using COAWST with the same schemes.411

An overview of the schemes can be found in their Section 2.2 and references therein.412

We conduct 30 day ensemble runs of the base case by varying the model bathymetry413

to ensure differences between advection schemes are robust. That is, 1% random noise414

added to the bathymetry is regenerated for each ensemble member. 95% confidence in-415
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Figure 5. Joint probability density function (JPDF) of surface |Mnum| and nFGF for the

realistic model from June 20-26, 2010 (a). The cyan line highlights the maximum value of the

JPDF in each nFGF bin sorted by active fronts (ζ/f > 1) and the yellow line marks the same

calculation but the entire surface layer. (b) Same as (a), but for the base case from days 7.5-15

inshore of the initially stratified region. In (b), we removed the first three across-shore boundary

points near the coastal wall due to strong convergence and divergence regions generated by the

winds.

tervals of volume-integrated, ensemble-averaged energetics and mixing quantities are pro-416

vided to characterize the variability (denoted with an overbar). All quantities in Fig. 6417

are smoothed with a 16 hour rolling mean (denoted with angle brackets) to remove the418

primary oscillations caused by the wind and improve readability. We used a larger across-419

shore domain (194 km) so the eddies never interact with boundary. Volume integration420

was performed from the coast to 97 km across-shore, which represents the boundary of421

the original domain. In addition, the eddies from several ensemble members approximately422

reach this location by Day 30 (Fig. 7). We deemed eight ensemble members sufficient423

to capture variability caused by changing the bathymetry noise, as shown by the con-424

fidence intervals of each quantity shown in Fig. 6.425
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Figure 6. Time series of EKEn,ens (a), APEn,ens (b), Mtot,ens (c), and Mphy,ens and

Mnum,ens (d) as defined in text. The angle brackets denote a 16 hour rolling mean and the over-

line denotes an ensemble average. The shaded areas represent values within the 95% confidence

intervals about the ensemble means. In (d), Mphy,ens is shown with solid lines and Mnum,ens is

shown with dashed lines.

We start with analysis of the double-averaged, volume-integrated EKE:426

EKEn,ens = ⟨
∫∫∫

EKE dV ⟩
[∫∫∫

MKE0 dV

]−1

. (16)427

Differences between schemes are detectable shortly after the eddies begin forming. HSIMT428

features the lowest EKEn,ens throughout the simulation. By Day 30, HSIMT’s ensemble-429

averaged EKEn,ens is nearly 25% less than the other schemes. The confidence intervals430

of EKEn,ens between U3HC4 and MPDATA overlap for much of the simulation, requir-431

ing further analysis to identify whether the numerical schemes are significantly differ-432

ent.433

Following Hetland (2017), we compare the tracer advection schemes using the avail-434

able potential energy (APE), which is defined as435

APE = −ρ0b
′z , (17)436
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where b′ = b− bref is the buoyancy anomaly with reference buoyancy bref . Here, b =437

−g(ρ0−ρ)ρ−1
0 with ρ0 = 1025 kg m−3. bref is defined using the temperature-dependent438

part of Eq. 1 so the across-shore buoyancy gradient is zero. APE also has contributions439

from the sea surface height anomalies, however, these were determined to be negligible440

(not shown, see Appendix B of Hetland, 2017).441

APE can be directly related to the isopycnal slope (Brink, 2016; Brink & Seo, 2016).442

As baroclinic instabilities relax the mean flow, the slope of the initially tilted isopycnals443

is reduced (Hetland, 2017; Zhang & Hetland, 2018). A less developed eddy field will fea-444

ture steeper isopycnals in the initially stratified region and more APE, corresponding445

to bottom isohalines (and isopycnals) more similar to the initial conditions. A more de-446

veloped eddy field will feature bottom isohalines that have moved closer to the coast and447

less APE. Regarding the surface salinity structure, a more developed eddy field will fea-448

ture isohalines that extend further offshore. This can be visualized qualitatively in Fig.449

7, which depicts the ensemble members with the highest EKEn on Day 30 for each ad-450

vection scheme.451

The volume-integrated double-averaged APE is normalized by its initial value APE0:452

APEn,ens = ⟨
∫∫∫

APE dV ⟩
[∫∫∫

APE0 dV

]−1

. (18)453

APEn,ens is shown in Fig. 6 (b) for each scheme and is consistent with arguments454

posed above. By day five, HSIMT has more APEn,ens than the other schemes and this455

grows with respect to time. U3HC4 has more APEn,ens than MPDATA for the entire456

simulation, although these differences remain marginal until day 15. The APEn,ens for457

all schemes decreases below their initial values, plateaus, then eventually rise above their458

initial values. The APEn,ens decreases as the isopycnal slope is reduced in the initially459

stratified region. Later increases in APEn,ens are caused by wind-induced mixing off-460

shore of the eddy field where the isopycnal slope is controlled by temperature. There,461

wind mixing increases the isopycnal slope, which compensates for the APEn,ens decrease462

in the initially stratified region. If volume-integration were performed inshore of the ini-463

tially stratified region, APEn,ens would continuously decline below its initial values (not464

shown).465

While the EKEn,ens remains similar between U3HC4 and MPDATA, differences466

in their bottom salinity structure (Fig. 7 g-i) qualitatively support the idea that higher467

numerical mixing in U3HC4 reduces the amount of energy that can be extracted from468

the horizontal density gradient. That is, MPDATA isohalines are more pinched coast to469

the coast than U3HC4. Differences in the surface salinity structure also validate this ar-470

gument (Fig. 7 a-c) , with MPDATA experiencing the furthest offshore development of471

the 34.5 g kg−1 isohaline. U3HC4 features spurious 35 g kg−1 isohalines throughout the472

water column because the scheme is non-monotonic. The argument that MPDATA and473

U3HC4 produce more-developed eddies is further supported with surface ζf−1 (Fig. 7).474

In the end, the differences between U3HC4 and MPDATA are marginal. U3HC4 locally475

produces the sharpest fronts, but PDFs of ζf−1 (not shown) are nearly identical.476

Bulk values and ratios of the decomposed, ensemble-averaged integrated mixing477

quantities are shown in Tab. 1. For example, the double-averaged, integrated total mix-478

ing is written as:479

Mtot,ens = ⟨
∫∫∫

Mtot dV ⟩ (19)480

and likewise for the physical Mphy,ens and numerical mixing Mnum,ens. HSIMT runs481

have substantially more numerical mixing than the other schemes and moderately less482

physical mixing. Mphy,ens constitutes 86% of Mtot,ens for MPDATA, 83% for U3HC4,483

and 66% for HSIMT. Mtot,ens is very similar between the different advection schemes.484
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Figure 7. Snapshots of surface salinity (a-c), surface ζf−1 (d-f), and bottom salinity (g-i) on

Day 30. Each column represents a different tracer advection scheme ensemble member with the

largest EKEn on Day 30. Isohalines are shown every 0.5 g kg−1 over the range of the colorbar in

(a-c) and (g-i). The 35 g kg−1 contours in the U3HC4 ensemble member are spurious.

Instantaneously, Mnum,ens is larger in HSIMT runs relative to other schemes at485

all times. These results suggest that as instabilities form, the increased Mnum,ens sup-486

presses instability growth by preventing the release of APE. Weaker eddies decrease the487

relative amount of Mphy,ens because they do not penetrate as deeply into the water col-488

umn. Therefore, the impacts of Mnum,ens on the larger-scale flow are similar to larger-489

scale models and not like an implicit LES discussed in Section 1. In other words, the so-490

lution is sensitive to the type of mixing that occurs, even if the Mtot,ens is similar be-491

tween different advection schemes.492

Finally, we provide quantitative estimates of the differences in salinity structure493

between the advection schemes. This is done using cross-sections of alongshore- and ensemble-494

averaged salinity (s) on days 7.5 and 30 for MPDATA and the relative differences ∆s495

with other schemes are shown in Fig. 8. This allows us to examine whether the differ-496

ences in salinity structure shown in Fig. 7 are robust and not due to analysis of the high-497
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Table 1. Sensitivity of ensemble-averaged mixing quantities to the tracer advection scheme.

Ratios of bulk (denoted by Σ) volume-integrated physical, numerical, and total mixing inshore of

97 km from Days 7.5-30. Note these are not smoothed with a 16 hour rolling mean. Bulk values

have units of 107(g kg)2 m3s−1.

Scheme ΣMphy,ens ΣMnum,ens ΣMtot,ens Mphy,ens/Mtot,ens Mnum,ens/Mtot,ens

MPDATA 9.90 1.59 11.49 0.86 0.14
U3HC4 9.39 1.98 11.37 0.83 0.17
HSIMT 7.66 3.88 11.54 0.66 0.34

est EKE ensemble members. Alongshore- and ensemble-averaged isopycnals are also over-498

laid every 0.5 kg m−3. The 1027 kg m−3 isopycnal approximately represents the bound-499

aries of the salinity stratified region (Fig. 8 a).500

On day 7.5, ∆s between HSIMT and MPDATA is small, with a two layer struc-501

ture that is fresher near the bottom and saltier from the middle of the water column to502

the surface (Fig. 8 c). The differences between U3HC4 and MPDATA are lesser, and ∆s503

is slightly fresher towards the bottom inshore of the initially stratified region and saltier504

near the surface (Fig. 8 e). Differences in isopycnal structure between schemes are marginal505

on day 7.5, but by day 30, the mean isopycnal slope has reduced for all advection schemes.506

The surface position of the 1027 kg m−3 isopycnal is approximately 10 km further off-507

shore in the MPDATA case than in the HSIMT case and five km further offshore in the508

MPDATA case than in the U3HC4, consistent with previous arguments.509

On day 30, ∆s between HSIMT and MPDATA is saltier by up 0.5 g kg−1 in the510

upper half of the water column offshore of 30 km. In the lower half of the water column,511

∆s is fresher by over -0.75 g kg−1 close to the bottom. Inshore of 30 km, ∆s is persis-512

tently fresher. Regarding U3HC4, ∆s is smaller in magnitude than HSIMT nearly ev-513

erywhere except for a saltier band that extends diagonally through the water column from514

15-40 km.515

5 Discussion516

Previous studies suggest numerical mixing impacts the larger-scale flow and tracer517

structure differently than physical mixing in simulations of estuarine and coastal flows518

using primitive equation models (Fofonova et al., 2021; Kalra et al., 2019; Kärnä & Bap-519

tista, 2016; Ralston et al., 2017). However, these studies come with one of the follow-520

ing caveats or challenges: 1) mixing is not quantified directly or online (Fofonova et al.,521

2021; Kärnä & Baptista, 2016), 2) the domains are highly idealized (Fofonova et al., 2021;522

Kalra et al., 2019), and 3) quantitative relationships between numerical mixing and model523

skill in realistic domains requires an extensive array of field observations (Kärnä & Bap-524

tista, 2016; Ralston et al., 2017). The current study is novel because we explicitly quan-525

tify the numerical mixing in an idealized domain that is able to realize a complex ocean526

state that resembles conditions in a realistic simulation. While the base case is not fully527

realistic due to the idealized bathymetry and lack of river forcing, eddy structure (Fig.528

4) and frontogenesis/frontolysis (Fig. 5) are representative of the realistic model. The529

idealized domain allows for a large ensemble of simulations, as well as clear metrics for530

comparisons across the ensemble through alongshore averages.531

A primary result of our study is that excessive numerical mixing can damp the re-532

lease of APE by suppressing submesoscale baroclinic instabilities. To demonstrate this,533
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Figure 8. Cross-sections of alongshore- and ensemble- averaged salinity (indicated by double

overline) for MPDATA on Days 7.5 (a) and 30 (b). Relative differences between the same quanti-

ties for HSIMT (c-d) and U3HC4 (e-f). Isopycnals are overlaid every 0.5 kg m−3 for each scheme.

Note the bathymetry noise is smoothed by the averaging, so the isopycnals do not appear to

reach the seafloor.

we varied numerical mixing through the choice of advection scheme, each with different534

numerical mixing, in order to relate an alongshore average state to the magnitude of nu-535

merical mixing. Even though simulations using all of the different advection schemes are536

submesoscale eddy-resolving, in that they all have qualitatively similar energetic eddy537

fields, Mnum impacts the larger-scale flow and tracer fields in such a way that simula-538

tions with higher numerical mixing have higher integrated APE and lower integrated539

EKE, indicating the suppression of baroclinic instabilities that release APE. Thus, nu-540

merical mixing is quite distinct from, e.g., models that use numerical mixing only to re-541

move energy at the grid scale in a downward cascade toward small scales, discussed in542

Section 1. In other words, though the numerical mixing is primarily at the fronts, the543

submesoscale eddies themselves are altered such that their impact on altering the ini-544

tial state is reduced.545

Mnum dominates Mphy in frontal zones due to their sharp lateral salinity gradi-546

ents, consistent with previous studies (Kalra et al., 2019; Holmes et al., 2021; Ralston547

et al., 2017; Wang et al., 2021). Our analysis of nFGF in the surface layer of both mod-548

els suggest the strongest Mnum occurs in intense regions of frontogenesis and frontol-549

ysis. However, frontogenesis produces stronger Mnum than frontolysis because the hor-550

izontal gradients are actively being sharpened. Mnum is significant within the mixed layer551

and dominates at shallow depths (e.g., the top one m of the water column) where Mphy552
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is weak because of weak vertical tracer gradients. These results suggest mixing processes553

within frontal zones may be predominantly driven by Mnum. Future studies may use554

our results as a blueprint to investigate the impacts of Mnum on specific processes such555

as symmetric instability (Dong et al., 2021) or the subduction of surface waters due to556

inertially-modulated frontal convergence (Qu, Thomas, Wienkers, et al., 2022).557

A limitation of this study is that we had to vary the tracer advection scheme to558

understand the impacts of Mnum. An implicit assumption is that MPDATA simulations559

are taken to be the “truth” because they produce the most developed instabilities, how-560

ever, this should be treated with caution because analytical solutions are unavailable.561

Kalra et al. (2019) examined the same advection schemes in a suite of idealized exper-562

iments and did not not observe excessive Mnum with HSIMT. Since our model is ide-563

alized, it is unclear if the trends observed in this study will translate to realistic numer-564

ical simulations. In addition, although U3HC4 produced a similar eddy field to MPDATA,565

spurious water formation may be problematic for estuarine and coastal flows where sig-566

nificant lateral freshwater forcing is present.567

Another limitation of this study is that we did not add explicit horizontal mixing,568

which has been shown to reduce Mnum (Griffies et al., 2000; Holmes et al., 2021; Ilıcak569

et al., 2012). It is worth noting that HSIMT run times were 40% faster on average than570

MPDATA and 32% faster than U3HC4, although the simulations were not optimized for571

computational efficiency. The relative differences in computational efficiency between these572

schemes has been suggested previously (Wu & Zhu, 2010; Wu, 2023) but requires more573

investigation. Thus, future studies may tune the lateral mixing scheme to leverage HSIMT’s574

increased computational efficiency in realistic simulations if unacceptable levels of nu-575

merical mixing are found.576

6 Conclusions577

The primary finding of this study is that excessive numerical salinity mixing par-578

tially suppresses submesoscale baroclinic instabilities. We showed this with an idealized579

ROMS model of the TXLA shelf developed by Hetland (2017) in a modified domain with580

oscillatory near-inertial wind forcing. Use of the idealized model was motivated by re-581

sults from an O(300m) realistic simulation (Schlichting et al., 2023). In both models,582

numerical mixing dominates physical mixing in frontal zones and remains significant within583

the mixed layer, consistent with previous studies. Our focus was understanding the im-584

pacts of numerical mixing on the larger-scale ocean state and tracer fields. Future work585

with front refined simulations may use these results as a template to investigate how spe-586

cific frontal processes such as symmetric instability or inertially-modulated frontogen-587

esis are affected by numerical mixing.588

First, we identified and analyzed a base case relative to a case with no wind forc-589

ing. The base case was selected from an ensemble with variable oscillatory, near-inertial590

wind stress amplitude. Joint probability density functions of the normalized frontoge-591

nesis function and numerical mixing indicate the sharpening and destruction of horizon-592

tal salinity gradients in the base case well represents the realistic model. The base case593

also had the maximum ratio of numerical to physical mixing relative to the other ensem-594

ble members, which made the impacts of numerical mixing easier to identify.595

Then, we tested the sensitivity of the base case with three tracer advection schemes596

(MPDATA, U3HC4, and HSIMT) to examine how changing mixing rates affect insta-597

bility growth. We performed ensemble runs with variable bathymetry to ensure differ-598

ences between schemes were robust. Instability development was evaluated with several599

analysis methods: volume-integrated EKE, APE, surface and bottom isohaline posi-600

tion, and alongshore averaged salinity and density sections. While the bulk total mix-601

ing remained similar between each schene, HSIMT runs featured over double the numer-602
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Figure A1. (a) Wind speed as a function of τx
0 calculated using Eq. A1, with each dot rep-

resenting a different numerical simulation. The amplitude of the diurnal wind stress magnitude

spatially- and temporally averaged for the entire realistic simulation of the child domain (see

Fig. 7 a of Schlichting et al., 2023) with 95% confidence intervals is shown with the red dashed

line and shaded areas. Bulk Mnum (b) and Mphy (c). (d) Ratio of bulk Mnum to Mphy ex-

pressed expressed as a percent. Spatially- and temporally-averaged |∇hs| (e), |∂zs| (f), and κv

(f). Quantities in (b)-(f) are calculated in the initially stratified region for two time periods and

the horizontal dashed lines show unforced case values for their respective time periods coded by

color.

ical mixing and ∼20% less physical mixing. HSIMT runs featured weaker EKE, higher603

APE, reduced offshore spreading/variability of surface isohalines relative to the initially604

stratified region, and increased isopycnal slope. Numerical mixing prevented the release605

of APE, which suppressed the growth of instabilities. MPDATA featured a slightly more606

developed eddy field relative to U3HC4 but required the longest run times. U3HC4 runs607

featured spurious water formation as a result of the schemes non-monotonicity. While608

insignificant for the U3HC4 runs, the inaccuracies caused by spurious numerical mixing609

are likely to be more problematic in simulations that include freshwater fluxes, where610

negative salinity water could be created. These schemes should be tested in future stud-611

ies with realistic simulations so their benefits and drawbacks may be better understood.612

Open Research613

Model analysis was done in Python ver 3.9 and the accompanying code is available614

at https://zenodo.org/records/10735283. Output for the realistic TXLA model are615

available at https://hafen.geos.tamu.edu/thredds/catalog/catalog.html. Out-616

put from the idealized simulations is available upon request.617

Appendix A Ensemble of near-inertial wind amplitude618

The impacts of varying the near-inertial alongshore wind stress amplitude τx0 on619

bulk mixing quantities associated with each ensemble member are shown in Fig. A1. In620

addition, we show spatially- and temporally averaged parameters related to each mix-621
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ing quantity to better understand how the bulk mixing quantities change in response to622

different τx0 . To provide a sense of scale for τx0 , we plot the amplitude of the wind speed623

Uwind by solving the equation624

τx0 = ρaCdU
2
wind , (A1)

where ρa is the density of air and Cd is the drag coefficient set to a constant value of 0.0015.625

Uwind of the ensemble runs span from < 1ms−1 to tropical storm force winds (29 ms−1,626

until the model blew up).627

All bulk quantities are shown from days 5-20 and days 7.5-15 to indicate the trends628

are robust. The x-axes are on a log10 scale. The time-averaged amplitude of the diur-629

nal (inertial) wind stress magnitude from the realistic model (Fig. 7 a of Schlichting et630

al., 2023) is shown to contextualize the base case. The base case wind is slightly more631

energetic than the mean values observed during the realistic model simulation. The re-632

alistic surface forcing is highly variable, but spatially-averaged values rarely exceeded633

10 ms−1.634

τx0 values from 10−3−10−2 Pa have little impact on volume-integrated Mnum (Fig.635

A1 b) or Mphy (Fig. A1 c). As τx0 increases, Mnum rapidly grows until plateauing from636

τx0 =0.1-0.3 Pa, then rapidly decreases. In linear space, this qualitatively resembles a Chi-637

squared distribution with few degrees of freedom such that the peak is biased towards638

zero. The time- and spatially-averaged |∇hs| peaks at 0.1 Pa then begins to rapidly de-639

crease (Fig. A1 e). As the wind stress amplitude approaches 1 Pa, winds suppress the640

instabilities, causing Mnum to decrease. For example, strong winds create pulses over641

the ocean surface (not shown). A background |∇hs| is still maintained because fronts642

are not allowed to form and there is not explicit lateral mixing.643

Volume-integrated Mnum is more sensitive to the winds relative to Mphy. Mnum644

peaks at 0.1 Pa and Mphy peaks at 0.4 Pa. As the near-inertial wind amplitude increases,645

the instabilities are eventually suppressed while the water column continues to be ver-646

tically mixed. The parameters governing Mphy are shown in Fig. A1 (f). The magni-647

tude of the time-and spatially-averaged averaged vertical salinity gradient |∂zs| exhibits648

an inverse sigmoid relationship with τx0 (exponential decay in linear space). For ensem-649

ble runs with the largest τx0 , instabilities are entirely suppressed and wind mixing reduces650

|∂zs| to nill. The mean vertical eddy diffusivity κv exhibits exponential growth (linear651

growth in linear space). The increased growth of Mphy despite the decrease in |∂zs| high-652

lights the covariance between κv and |∂zs|.653
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