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Introduction

We supplement the solution process of the two-stage model and the proof of Propositions 1, 4, and 5 in
this supporting material.

SI1.

1. Single decision-maker regime

Since the intertemporal net benefit function is additively separable with respect to the instantaneous sum of
the users’ net benefits, we can solve the problem in two steps: the determination of the total water intake g,
for each period, where g; = Yic Jir» and the allocation of water pumping to each user within period ¢ taking
the total water intake g, as given.

Consider the problem of the second step first:

max Z [Fi(9iz + €52) — Ci(G1)gi2],
iEN

91,2,-29N,2
subject to X;en gir = g¢- By solving the problem, we get
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for all i € V' and for all t € {1,2}, where @; £ a; —a/N and a £ Y,;cy a;. Therefore, the maximized
instantaneous aggregate net benefit for given S;, G;_;, and g; is given by

b
(G, St Ge—1) 2 W(S) + (H(S) +dGe_q)ge — N.gtz' (A.2)



where

wa[ (3+ 7)) bz<§;+2>

H(S) £ ——

Next, we consider the problem of determining the total water intake g, for each period. By solving backword
from period 2, we obtain the following solution:

a—Nc+ NdG
92(G1,S7) = — 2 (A.3)
2b
The problem of the first period in the uncertain case is then given by:
b,
rr;ax W(Sy) + (H(S,) +dGy)g, — ﬁg1 + BE1[m2(92(G1, S2), S2, Go) |54 ]-
1
Subsequently, we get
1 _
Slngle(51) = b7 — N2d2f [(2b — NdB)X — 2b(2bS; — NdBS) — N*d*BR], (A.4)

where X £ a — Nc + NdG, and w12(S,) is given by wo°(S;) = gor¥(S,) + S,.

For the above solution to satisfy the necessary and sufficient conditions, we further require the following
from the second-order condition:

4b% — N2d2 > 0. (A.5)

Using (A.1), (A.3), and (A.4), we get:

single __ (Z )S—, b(z )SZ + 1 X 2b 5 2 Ndzﬁz(Zb —]Vd)2 X 2b§)2
Tur = ie]\raigi ieN 4b ie]\f( ! i5) 4b(4b? —dezﬁ)z(

N3bd*p? 5 N2d3B?(2b — Nd) _ N3bd*pB?
- (4b? — N2d2B)? - (4b? — N2d2B)? (X —2bS)R —

(A.6)

(41)2 _ deZﬁ)Z g%

1 d(2b — NdB)(8b? — N2d?pB — 2Nbd
T[smgle — (C _ dGO)S +— Xz ( ﬁ)( ﬁ )
4b Laicx 4b(4bZ — N2d2p)2
ANDb3d? , . 4b2d(2b — Nd) ANb3d?

- 9 - 42
+ (4b2 — dezﬁ)z (4b2 — dezﬁ)z (X ZbS)R + (4b2 _ dezﬁ)z o,

single = 2\ &2 1 2 1 5
T, o = (Z a;€; +c—dGO)S—b(Z si)S +—Z (X; — 2bg;S) +—Z X}
ieN ien 4b Lajey 4b Lujew

d[NdB2(2b% + N2d? — 2Nbd) + 2b2(4b — Nd — 2Ndp)]
2b(4b% — N2d2pB)?
Nbd?(4b* — N*d?B?) , d(2b — Nd)(4b* — N*d*B?)
(4b2 —_ NZdZB)Z (4b2 — NZdZﬁ)Z
Nbd?(4b2 — N2d?B?)
(4b2 — NZdZﬁ)Z o%,

(X — 2bS)?
(A.7)

(X — 2bS)?

(A.8)
(X — 2bS)R




where X; £ a; — ¢ + dG,.
Similarly, the problem of the first period in the certain case is given by:
_ _ b I
max W(S) + (H(S) +dGy)g, — N.912 + B1,(9,(G1,5), S, Gy).
Subsequently, we get:

single /)@y _ _ — _ _ N _ N292
giEe(S) = N [(2b — NdB)(X — 2bS) — N2d?BR]. (A.9)

In addition, w"(S) is given by wr€(8) = g>"°(S) + 3. Using solutions (A.1), (A.3), and (A.9), we
obtain:

single c 2\ &2 1 N\ 2
T, = a;g|S—>b Z & 18 +— X; — 2bg;S)
ien ien 4b Lajeyw

A.10)
Nd?B?(2b — Nd)? _ N3bd*p? N2d3B%(2b — Nd _ (
- A ) (X —2bS)%2 — p R — A )(X — 2bS)R,
4b(4b? — N?d?p)? (4b%? — N2d?[3)? (4b%? — N2d?[3)?
; _ 1 d(2b — NdB)(8b? — N2d?pB — 2Nbd) _
single __ 2 2
=(c—dGy)S+— Xf - -
Mee = (€= dGS+ g 2 en™ 4b(4b7 — N2d2})? (¥ = 255) a1
N 4Nb3d? 5 4b2d(2b — Nd) X — 2b5IR '
(4b2 — dezﬁ)z (4b2 — dezﬁ)z( ) ’
» _ _ 1 _ 1
e = (Z e+ — dGO)S —b (Z 53)52 + —Z (X, — 2be,S)? + —Z X?
ien ien 4b Laiew 4b Lajew
d[Ndp?(2b? + N?d? — 2Nbd) + 2b%(4b — Nd — 2Ndp)] =2
- 2b(ab% — N2d2})? (X —2bS) (A.12)
Nbd?(4b? — N2d?p? d(2b — Nd)(4b? — N?d?p? _
( Y ., d( )( 5 x — bR,
(4b2 — N2d2ﬁ)2 (4b2 — NZdZﬁ)Z
2. Multiple-user regime
User i’s problem of the second period for given S, and G is:
max Fi(9iz + &53) — Ci(G1) G-
2
Hence, the solution for this is:
a;—c+dG
902(G1,S2) = —————— &5 (A.13)
User i’s problem of the first period in the uncertain case is given by
rgfiXFi(gil +&51) — Ci(Go) g + PE1[m(9i2(G1, S2), Gy, S2)151]-
Subsequently, we obtain:
milti(s,) = ! 2b(X — 2bS,) — dB(X — 2bS) — Nd?*BR A 14
gu1(1)—m[ (X —2bS,) — dB(X — 2bS) — Nd*fR], (A.14)



multi

and wy1""(S,) is given by W{znflti(sﬂ = gglfm(sl) +5;.

For the above solution to satisfy the necessary and sufficient conditions, we require the following from the
second-order condition:

4b% — d2B > 0 (A.15)

Using the solutions (A.13) and (A.14), we get:

. _ _ 4b% — d?B? .
it = (Z aisi) S—b (Z slz) S+ —332 (X; — 2bg;S)?
ien e 16b e

d3B2(2b — dB)(85% — Nd?f — 2Nbd) Nbd*p?
16b*(4b? — Nd2B)? (4b? — Nd2p)2
d3B2(2b — Nd) Nbd*p?
- (4b2 - Nd2p)? (@b? —Na2p)z”

(X — 2bS)? — R? (A.16)

(X — 2bS)R —

, _d(2b —dB)(8b% — Nd?B — 2Nbd) 1
multi _ —dG)S — — 2 _Z 2
T[uz (C 0) 4b(4b2 _ NdZﬁ)z (X st) + 4b ie]\er (A 17)
4ND3d? , . 4b2d(2b — Nd) 4AND3d? '

(X —2bS)R+——— g2

T @ —Nazp)e " T abZ — Nd?B)? @’ — N2’

2= (Y aere-d6)5-5(Y @)+ LISy gpespe Y
qrmulti = a;e +c— - & S . — 2be; — :
“ ien 0 ien 16b3 en ' 4b Lujen '
d(2b — dB)(4b? — d?$?)(8b* — Nd?*B — 2Nbd _ Nbd?(4b? — d?p?

_d( B)( B)( B )(X—2b5)2+ ( B*)

16b3(4b2 — Nd2)? (4b? — Nd?p)?
d(4b% — d2B%)(2b — Nd) Nbd?(4b? — d?B?)
(4b%2 — Nd2pB)? (4b2 — Nd2B)?

R? (A.18)

2

(X — 2bS)R +

Similarly, the problem of the first period in the certain case is given by:
max Fi(giy + &5) = Ci(Go)gix + Br(912(G1, 9), G1, S).
i1
Subsequently, we get:

o 1 _
gmi(§) = 07— Ng [(2b — dB)(X — 2bS) — Nd?BR?]. (A.19)

In addition, w4 (S) is given by wi'i(8) = gmuli(S) + S. Using solutions (A.13) and (A.19), we obtain:

. _ _ 4b% — d?? .
it = (Z aisi) S—b (Z slz) S+ —332 (X; — 2bg;S)?
ien e 16b e

d3B2(2b — dB)(8B2 — Nd?B — 2Nbd) Nbd*p?
16b3(4b% — Nd2B)? (4b2 — Nd2B)?
d3B@2(2b — Nd)
"~ (4b? — Nd?B)?

(X — 2bS)? — R? (A.20)

(X — 2bS)R,

, _ d(2b — dB)(8b® — Nd?B — 2Nbd) 1
multi _ —dG)S — — 2 _Z 2
T[CZ (C 0) 4b(4b2 _ Ndzﬁ)z (X ZbS) + 4b ie]\/’Xl
4NDH3d? 4b2d(2b — Nd)
+ 24
(4b% — Nd?p)? (4b% — Nd?p)?

(A.21)
(X — 2bS)R,




o= (Y aere-d6)5-5(Y @)+ LISy apespe Y
e = ie]\raisi ¢ 0 ie]\rgi 16b3 ien & 4b Lujen !
d(2b — dB)(4b? — d?B?)(8b* — Nd?B — 2Nbd) Nbd?(4b? — d?B?)

16b3(4b2 — Nd23)? (4b? — Nd?p)?
d(4b? — d?B?)(2b — Nd)
(4b2 — Nd2p)?

(X —2b5)? + R? (A.22)

(X — 2bS)R.

SI2.
Proof of Proposition 1

From (A.8) and (A.12), we obtain:

. , Nbd?(4b? — N?d2B?)
single single
DRVsingle =Ty £~ T, o= (4b? — N2d2B)? o’

From (A.5), we can demonstrate DRV g1 > 0.

Similarly, from (A.18) and (A.22), we obtain:

Nbd?(4b? — d??)
(4b% — Nd2p)?

— multi multi — 2
DRVmulti =Ty — T, -

From (A.15), we can demonstrate DRV, ,;;1; > 0.

SI3.

Proof of Proposition 4

First we find a general solution for groundwater intake in the case of an arbitrary number of stages. Let y, =
(Yier - Yae) € I = I X ... X Ty, denote an admissible action rule of the social planner, where [}, is the set

of admissible action rules concerning user i in period t. Let V(t, G,_;, S;) denote the optimal value function
in period t € T given the current groundwater stock G,_; and the realization of surface flow S;,

V(t, G-y, S) & max  E; [Zt TZ_ N[)’t_l [Fi(Vir + €50) — Ci(Gr-)Vil |- €1
€ AS

Yt€lt,...YyTELT

The recursive structure of the returns leads to the following Bellman optimality equation (Bellman 1952;
Basar, 2012):

V(t Gy, Se) = }r/?gl“}i § _EN[Fi(Vir +&S7) = Ci(Gro1)Yie]l + BE 1 [V(E + 1, Gp, Spy1)],
L
V(T +1,G7,5741) = 0. (C.2)

Now we prove the following action rules constitute a unique solution for groundwater intake.

1
Yir(Sr, Gr-1) = b [0;(Sr) — Nd*BGr_4],

X 1 v Nd?Bp _
Vie(Se Gomy) = = [520,(S0) + —— 2 0(S,) — dfp,410(5) — Nd*Bn.R
v L2b 2b
+d(Ver1 — NdBpry1)Geal, t<T-1, (€.3)

where



0,(5,) £ a; — ¢; — 2be;S,,  O(S,) = Z (a—c) = 2bS,
Le

{ 1, t=T
Pe= Uty1 — 2Bpera(Nd — D), t<T-1
{ 2b, =T
Ut = 12bv,yy — N2d?Bpey,, t<T-—1
0 t=T

e ={.377t+1(2b_Nd)+,0t+1' t<T-1
Also consider

WG S A
e T vy [p:©(S) + NdBn.(2b — Nd)R + Ndp,G,_,]. (C4)

Fort =T and T — 1, solving backward from T, we can easily show (C.3) and (C.4) are true. Assume that
they also hold forsome t =k +1 (1 <k <T —2):

" 1 (vksr Ndz[)’pk 2
Vi1 Sk+1, Gi) = [ . —

Vers TS 0;(Sk+1) + o O(Sks1) — ABPr+20(S)
—Nd?Bn 1R + dVisr — NdBpr+2)Grl, (C.5)

vV (k+1,G,S d 5
E, ( o Ske+1) _ [Pr+10(S) + NdBny.1(2b — Nd)R + Ndpy.,1Gy]-
aGk Uk+1

Consider the problem for t = k:
max  ((Sy) + Z_EN[ei(Sk) +dGr1]gu — bz, Ngizk + BE[V(k + 1, Gy, Spy1)|Sk],
L lE

91,k---9IN,k

where Q(S,) 2 Xy a;6)S: — b(Xy €2)SE. By using (C.5), we obtain the following solution:

« 1 Uy Ndzﬁpk —
ik = Vik(Se, Ge—1) = ™ [% 0;(Sk) + TH@(Sk) — dBpr+10(5) (C.6)
=Nd?BmR + d(Vis1 — NdBPiy1)Gr-1]-
By using (C.6), we can demonstrate the following:
aV(k,Gy_1,Sy) d _
ot || = 5 [PkO(S) + NaBn(2b — NOIR + Ndp, Gy} (X))
-1

From equation (C.6) and (C.7), equation (C.3) and (C.5) also holds for t = k. By mathematical induction,
they are true forall t < T — 1.

Subsequently, we find the DRV. The aggregate groundwater intake is given by:

1
[0(Sr) — dezﬁnrR + NdGr_q],

Ur

gr

1 B (C.8)

9t = o [Ve410(Se) — NdBpe10(S) — N?d?n,R + Nd(Vpy1 — NdBpi41)Ge_1l, t<T-1
t

We rewrite (C.8) as:

ge = AO) + P()G—y +P(0)S,, (C.9



where

1
— [Z (a; — ¢;) — dezﬁnTR], t=T
Ur ien

A®) =4, i
~|oes D (@)~ NdBp.OS) ~N2d*pneR|, <1
U iEN
Nd
U_’ t=T
D(t) 2 T
Nd — Nd
Ve ﬁpt+1)’ t<T—1
U
2b
_U_' =T
Y(t) & T
2bv
< T 1.
U

Using this, the groundwater stock G,_; can be transformed into:

ﬁ(1 —®(1))

Gy = Go

—{‘P(t — DS +PE—2)(1—d(t—1))S,, + -+ |P(D) 1_[(1 - (1)) sl}
e-1 o (C.10)
+{1 +(1-o-1)++ 1_[(1 — (1)) }R

t-1
—{A(t “D+(1-P-D)AE—2)+ -+ 1_[(1 - (7)) A(l)}.
=2
In addition, the solutions (C.3) can be transformed into:
* a; A(t) () 1
9it = Vie(Se, Ge—1) = i + N + N Geq + N (1 —Ng + ‘P(t))St, (C.11)

where 4; £ a; — ¢; — % N ,(a; — ¢;). Substitute (C.11) into the aggregate instantaneous net benefit

T(Gaer r Gne Ge-1,S¢) = Z N[Fi(.giz +&5,) — Ci(G1)giz] - (C.12)
i€

Extracting only the terms with SZ, ..., Sz from 7(g,¢, ..., ner Ge—1, S¢) by using (C.10), we obtain

®(6)(Nd — bd (1))
N

—%(1 +w()’s? + [‘P(t —1)252, +W(t — 2)2(1 — o(t — 1))°S2,
t-1 l (C.13)

+oe+ P(1)? 1_[(1 — ®(1))” 52

If we take the expected value of Eo[1(gy¢, -, e Ge—1, Se)], the terms with o2 are generated by replacing
SZ, ..., S%in (C.13) with o2. They give Z,..., Z; in Proposition 4.

SI4.
Proof of Proposition 5



The procedure is the same as in the proof of Proposition 4 (SI3). We first prove the following strategy
constitutes a unique feedback Nash equilibrium solution for

{N' T, g' S, {Uit}iEN,tET' {fit}ie]\r,teT' {Fit}ie]\f,tef' {Hi}ieT}~

1
Yir (G, Sp) = 2D [0;(S7) +dGr_4],

117, Apo;(Prs1+ NPeyr) o A*BPei1
Y (Geey, Sp) = =—|=—0;(5,) — 0;(S o(s,
Vit (Ge—1,Se) 3, |2b i(Se) 2b7,, i(8) + 2 (S (D.1)
dp(d?Bpt., — 0, @ _
- BB = 0ePesd) 5y _ 25, R + A By — ABesn)Go |,
2bUyq
t<T-1,
where
1, t=T
N —1)dBp 2b— Nd)(0,,, — dyp
Bpur — BPre(Nd + d — 2b) — ( )dB P ( - )Desq th+1)’ t<T—-1
t
- { t=T
Ve = 2bvt+1 Nd%Bp,s, t<T-1
- . t=T
e = {.3 1.Ut+1(2b Nd) + pry1, t<T-1
1, t=T
by = ﬁt+1 da? 5Pt+1 f<T -1
0, t=T
@y 2 BA(2b = ND)[APry1(Dpq — ABPrsr) + Ut§0t+1] F<T—1
2bUg4q - .
Moreover, consider
aVi(t,G,_ 1,St)
t-1 [ 9G,_, (Pt +N@.)0; Ok (ptE)(S) (D.2)

+dB i (2b — Nd)R +dpiGro].

Fort =T and T — 1, solving backward from T, we can show that (D.1) and (D.2) are true. Assume they hold
fort =k +1(1<k<T - 2),and we can prove they are also true forall t < T — 1 in the same way as SI3.

The aggregate groundwater intake is given by:

1
gr = —[0(Sr) — Nd*BijrR + NdGr_4],
(I
1 (D.3)
9t =3 = [0:410(Sy) — dBpe10(S) — NA?Bij,R + Nd(ery — dBPrs)Gesl, t<T-1
t
Hence, we rewrite (D.3) as:
ge = A(®) + B()Ge—y + P(D)S,, (D.4)

where



, t=T

1[x L
—[> @ - ) - N R
vrli=

At) 2 . N
3. [ﬁt+1 Z(ai —¢;) — dBpe10(S) — Nd*Bij.R|, t<T-1
t i=1
Nd
‘U_’ t=T
o) 2 - T
Nd —-d
(Ur41 . ﬁpt+1)' t<T—1
Ut
2b
_i)_' =T
P(t) 2 T
2bD
2, t<T-1.
Ut
Using this, the groundwater stock G,_; can be transformed into:
t-1
Gy = 1_[ (1 - EIS(T)) Go
=1
t-1
—{fp(t ~ 1Sy + P = 2) (1= Bt = D) Sy + -+ [FQD) 1_[ (1-3m) Sl}
(D.5)
+{1 + (1 — Pt - 1)) 4ot 1_[(1 —&n(r)) }R
=2
t—1
—{K(t ~D+(1-B- D) -2+ + 1_[ (1-3@) 7\(1)}.
=2
In addition, (D.1) can be transformed into:
git = Vit (St Ge-1) = i + N + N Geq = Zye + N (1 —Ng; + Lp(t)) St (D.6)
where
0, t=T
Zi =3AP [Pe+1 + NPrys = , Na?Bpti1 — NO@ryr — 2b0e1Prsr =
— |———0,(S 0S|, t<T-2.
| o, O NOiDres ®

Substituting (D.6) into the aggregate instantaneous net benefit w(gy¢, ..., gne, Gr—1, S¢) and extracting only
the terms with S2, ..., S2 by using (D.5), we get:

&(t) (Nd —bd(t)
N

) [lTJ(t —1)25% , + P(t — 2)? (1 - Pt - 1))2 sz,
t-1 (D.7)
+o 4 B(1)? 1_[ (1-3@) 512] .

=2

—%(1 + lT’(t))z S2 +

If we take the expected value of Eo[1(gy¢, -, e Ge—1, Se)], the terms with 02 are generated by replacing
SZ,...,S2in(D.7) with o2. They give &,,..., £, in Proposition 5.



