|
Discussion
Antihistamines are safe drugs that are widely used in various allergic
diseases and its clinical application has been shown to have good
efficacy. However, there have been some reports of adverse reactions and
differences in efficacy, some of which are rare and potential. Previous
studies have reported that gene polymorphisms are responsible for
differences in antihistamine use. They include metabolic enzymes, drug
transporters, and drug target gene polymorphisms. In addition, genes
associated with the disease itself have been shown to correlate with
individual differences in antihistamines.
Once the concept of individualized drug use was put forward, it was
widely concerned and recognized. The core of rational drug use is
individual drug administration, no unified drug administration.
Personalized medicine remains a major challenge for healthcare
decision-makers. The study of pharmacogenomics will provide us with an
important idea of personalized medicine. It can provide people with
personalized health guidance, personalized medication guidance, and
personalized physical examination services through analyze the risk or
efficacy of patients by determining their genotypes.
The study of pharmacogenomics is of great significance. Disease
susceptibility genes are continuously discovered by people, people can
infer the possible risk of developing certain diseases through genetic
tests and to conduct health guidance. The in vivo processes of drugs
include absorption, distribution, metabolism, and excretion. Drug
response varies among individuals due to disease heterogeneity,
environmental and genetic factors: doses that are effective in some
patients inevitably become ineffective or cause adverse drug reactions
(ADRs) in others. Gene polymorphism can influence the pharmacokinetics
and pharmacodynamics of drugs, leading to changes in local and systemic
drug exposure and/or changes in drug target function that alter drug
responses. For patients, the occurrence of adverse events may mean
longer hospital stays, higher disease treatment costs, and even higher
mortality rates. Pharmacogenomics will help reduce these potential
adverse events, improving the efficacy, shortening the course of the
disease, and reducing the cost of treatment. Through genetic testing,
doctors can infer the likelihood of adverse reactions, and
pharmacogenomics provides powerful support for doctors’ prescribing
decisions, guiding drug selection and administration. Besides,
pharmacogenomics, which classifies genes according to different drug
effects, has the potential to greatly accelerate the process of new drug
development. Drugs with the goal of human genetic validation are more
likely to be marketed successfully than those without such evidence109,
110. The identification of rare
sequence variations associated with important human phenotypes also
provides a basis for new drug development.
In conclusion, variability in response, especially the risk of adverse
reactions, is an almost inevitable feature of modern drug therapy.
Pharmacogenomic science, such as exome or genome sequencing, provides
new tools for understanding variability in drug responses. Although to
date here have been limited published studies on antihistamines
pharmacogenomics, related antihistamine genomics research has
contributed to the rational drug use of patients to a certain extent.
Previous studies mainly focus on metabolic enzyme genes, while studies
on the coding genes of drug-binding receptors, drug-transport-related
membrane channels, and signal-transduction-related proteins are lacking.
According to the previous research reports, the specific mechanism,
type, and degree of adverse reactions caused by gene polymorphism after
the application of antihistamines are not fully understood. Therefore,
further studies are needed to elucidate these unknown areas to better
guide the rational clinical application of antihistamines, realize
individualized drug administration and treatment, and to avoid the
adverse consequences caused by individual differences.
References
1. Zimmermann AS, Burhenne H, Kaever
V, Seifert R, Neumann D. Systematic analysis of histamine and
N-methylhistamine concentrations in organs from two common laboratory
mouse strains: C57Bl/6 and Balb/c. Inflamm Res . Dec
2011;60(12):1153-9. doi:10.1007/s00011-011-0379-5
2. Seifert R, Strasser A, Schneider
EH, Neumann D, Dove S, Buschauer A. Molecular and cellular analysis of
human histamine receptor subtypes. Trends Pharmacol Sci . Jan
2013;34(1):33-58. doi:10.1016/j.tips.2012.11.001
3. Panula P, Chazot PL, Cowart M, et
al. International Union of Basic and Clinical Pharmacology. XCVIII.
Histamine Receptors. Pharmacol Rev . Jul 2015;67(3):601-55.
doi:10.1124/pr.114.010249
4. Leurs R, Vischer HF, Wijtmans M, de
Esch IJ. En route to new blockbuster anti-histamines: surveying the
offspring of the expanding histamine receptor family. Trends
Pharmacol Sci . Apr 2011;32(4):250-7. doi:10.1016/j.tips.2011.02.004
5. Tiligada E, Zampeli E, Sander K,
Stark H. Histamine H3 and H4 receptors as novel drug targets.Expert Opin Investig Drugs . Oct 2009;18(10):1519-31.
doi:10.1517/14728220903188438
6. Akdis CA, Blaser K. Histamine in
the immune regulation of allergic inflammation. J Allergy Clin
Immunol . Jul 2003;112(1):15-22. doi:10.1067/mai.2003.1585
7. Thurmond RL, Gelfand EW, Dunford
PJ. The role of histamine H1 and H4 receptors in allergic inflammation:
the search for new antihistamines. Nat Rev Drug Discov . Jan
2008;7(1):41-53. doi:10.1038/nrd2465
8. Togias A. H1-receptors:
localization and role in airway physiology and in immune functions.J Allergy Clin Immunol . Oct 2003;112(4 Suppl):S60-8.
doi:10.1016/s0091-6749(03)01878-5
9. Hirschowitz BI. H-2 histamine
receptors. Annu Rev Pharmacol Toxicol . 1979;19:203-44.
doi:10.1146/annurev.pa.19.040179.001223
10. Ghamari N, Zarei O, Arias-Montaño
J-A, et al. Histamine H3 receptor antagonists/inverse agonists: Where do
they go? Pharmacology & Therapeutics . Aug 2019;200:69-84.
doi:10.1016/j.pharmthera.2019.04.007
11. Hofstra C, Desai P, Thurmond R,
Fung-Leung W. Histamine H4 receptor mediates chemotaxis and calcium
mobilization of mast cells. The Journal of pharmacology and
experimental therapeutics . 2003;305(3):1212-21.
doi:10.1124/jpet.102.046581
12. O’Reilly M, Alpert R, Jenkinson
S, et al. Identification of a histamine H4 receptor on human
eosinophils–role in eosinophil chemotaxis. J Recept Signal
Transduct Res . Feb-Nov 2002;22(1-4):431-48. doi:10.1081/rrs-120014612
13. Leurs R, Church MK, Taglialatela
M. H1-antihistamines: inverse agonism, anti-inflammatory actions and
cardiac effects. Clin Exp Allergy . Apr 2002;32(4):489-98.
doi:10.1046/j.0954-7894.2002.01314.x
14. Bakker RA, Schoonus SB, Smit MJ,
Timmerman H, Leurs R. Histamine H(1)-receptor activation of nuclear
factor-kappa B: roles for G beta gamma- and G alpha(q/11)-subunits in
constitutive and agonist-mediated signaling. Mol Pharmacol . Nov
2001;60(5):1133-42. doi:10.1124/mol.60.5.1133
15. Bakker RA, Wieland K, Timmerman
H, Leurs R. Constitutive activity of the histamine H(1) receptor reveals
inverse agonism of histamine H(1) receptor antagonists. Eur J
Pharmacol . Jan 3 2000;387(1):R5-7. doi:10.1016/s0014-2999(99)00803-1
16. Weller K, Maurer M. Desloratadine
inhibits human skin mast cell activation and histamine release. J
Invest Dermatol . Nov 2009;129(11):2723-6. doi:10.1038/jid.2009.134
17. Emanuel MB. Histamine and the
antiallergic antihistamines: a history of their discoveries.Clinical & Experimental Allergy . Jul 1999;29:1-11.
doi:10.1046/j.1365-2222.1999.00004.x-i1
18. Simons FE, Simons KJ. Histamine
and H1-antihistamines: celebrating a century of progress. J
Allergy Clin Immunol . Dec 2011;128(6):1139-1150 e4.
doi:10.1016/j.jaci.2011.09.005
19. Okamura N, Yanai K, Higuchi M, et
al. Functional neuroimaging of cognition impaired by a classical
antihistamine, d-chlorpheniramine. Br J Pharmacol . Jan
2000;129(1):115-23. doi:10.1038/sj.bjp.0702994
20. Church MK, Maurer M, Simons FE,
et al. Risk of first-generation H(1)-antihistamines: a GA(2)LEN position
paper. Allergy . Apr 2010;65(4):459-66.
doi:10.1111/j.1398-9995.2009.02325.x
21. Gray SL, Anderson ML, Dublin S,
et al. Cumulative use of strong anticholinergics and incident dementia:
a prospective cohort study. JAMA Intern Med . Mar
2015;175(3):401-7. doi:10.1001/jamainternmed.2014.7663
22. Timmerman H. Factors involved in
the absence of sedative effects by the second-generation antihistamines.Allergy . 2000;55 Suppl 60:5-10.
doi:10.1034/j.1398-9995.2000.055supp60005.x
23. Chishty M, Reichel A, Siva J,
Abbott NJ, Begley DJ. Affinity for the P-Glycoprotein Efflux Pump at the
Blood-Brain Barrier May Explain the Lack of CNS Side-Effects of Modern
Antihistamines. Journal of Drug Targeting . Jun 2010;9(3):223-228.
doi:10.3109/10611860108997930
24. Yanai K, Yoshikawa T, Yanai A, et
al. The clinical pharmacology of non-sedating antihistamines.Pharmacol Ther . Oct 2017;178:148-156.
doi:10.1016/j.pharmthera.2017.04.004
25. Woosley RL. Cardiac actions of
antihistamines. Annu Rev Pharmacol Toxicol . 1996;36:233-52.
doi:10.1146/annurev.pa.36.040196.001313
26. Taglialatela M, Timmerman H,
Annunziato L. Cardiotoxic potential and CNS effects of first-generation
antihistamines. Trends Pharmacol Sci . Feb 2000;21(2):52-6.
doi:10.1016/s0165-6147(99)01437-6
27. Holgate ST, Canonica GW, Simons
FER, et al. Consensus group on new-generation antihistamines (CONGA):
present status and recommendations. Clinical & Experimental
Allergy . Sep 2003;33(9):1305-1324. doi:10.1046/j.1365-2222.2003.01769.x
28. Deakin M, Williams JG. Histamine
H2-receptor antagonists in peptic ulcer disease. Efficacy in healing
peptic ulcers. Drugs . Nov 1992;44(5):709-19.
doi:10.2165/00003495-199244050-00003
29. Bertaccini G, Coruzzi G. Control
of gastric acid secretion by histamine H2 receptor antagonists and
anticholinergics. Pharmacol Res . Jul-Aug 1989;21(4):339-52.
doi:10.1016/1043-6618(89)90151-5
30. Jacobson BC, Ferris TG, Shea TL,
Mahlis EM, Lee TH, Wang TC. Who is using chronic acid suppression
therapy and why? Am J Gastroenterol . Jan 2003;98(1):51-8.
doi:10.1111/j.1572-0241.2003.07186.x
31. Leary PJ, Tedford RJ, Bluemke DA,
et al. Histamine H2 Receptor Antagonists, Left Ventricular Morphology,
and Heart Failure Risk: The MESA Study. J Am Coll Cardiol . Apr 5
2016;67(13):1544-1552. doi:10.1016/j.jacc.2016.01.045
32. Takahama H, Asanuma H, Sanada S,
et al. A histamine H(2) receptor blocker ameliorates development of
heart failure in dogs independently of beta-adrenergic receptor
blockade. Basic Res Cardiol . Nov 2010;105(6):787-94.
doi:10.1007/s00395-010-0119-y
33. Sabesin SM. Safety issues
relating to long-term treatment with histamine H2-receptor antagonists.Aliment Pharmacol Ther . 1993;7 Suppl 2:35-40.
doi:10.1111/j.1365-2036.1993.tb00597.x
34. Schunack W. What are the
differences between the H2-receptor antagonists? Aliment Pharmacol
Ther . 1987;1 Suppl 1:493S-503S. doi:10.1111/j.1365-2036.1987.tb00658.x
35. Chang WC, Tanoshima R, Ross CJD,
Carleton BC. Challenges and Opportunities in Implementing
Pharmacogenetic Testing in Clinical Settings. Annu Rev Pharmacol
Toxicol . Oct 2 2020;doi:10.1146/annurev-pharmtox-030920-025745
36. Weinshilboum RM, Wang L.
Pharmacogenetics and pharmacogenomics: development, science, and
translation. Annu Rev Genomics Hum Genet . 2006;7:223-45.
doi:10.1146/annurev.genom.6.080604.162315
37. Wang YT, Merl MY, Yang J, Zhu ZX,
Li GH. Opportunities for pharmacists to integrate pharmacogenomics into
clinical practice. Pharmacogenomics J . Apr 2020;20(2):169-178.
doi:10.1038/s41397-019-0119-8
38. Berka K, Hendrychova T,
Anzenbacher P, Otyepka M. Membrane position of ibuprofen agrees with
suggested access path entrance to cytochrome P450 2C9 active site.J Phys Chem A . Oct 20 2011;115(41):11248-55.
doi:10.1021/jp204488j
39. Culhane A, Schröder M, Sultana R,
et al. GeneSigDB: a manually curated database and resource for analysis
of gene expression signatures. Nucleic acids research .
2012;40:D1060-6. doi:10.1093/nar/gkr901
40. Nebert DW, Russell DW. Clinical
importance of the cytochromes P450. Lancet . Oct 12
2002;360(9340):1155-62. doi:10.1016/S0140-6736(02)11203-7
41. Zanger UM, Schwab M. Cytochrome
P450 enzymes in drug metabolism: regulation of gene expression, enzyme
activities, and impact of genetic variation. Pharmacol Ther . Apr
2013;138(1):103-41. doi:10.1016/j.pharmthera.2012.12.007
42. Kuehl P, Zhang J, Lin Y, et al.
Sequence diversity in CYP3A promoters and characterization of the
genetic basis of polymorphic CYP3A5 expression. Nat Genet . Apr
2001;27(4):383-91. doi:10.1038/86882
43. Williams JA, Ring BJ, Cantrell
VE, et al. Comparative metabolic capabilities of CYP3A4, CYP3A5, and
CYP3A7. Drug Metab Dispos . Aug 2002;30(8):883-91.
doi:10.1124/dmd.30.8.883
44. Guengerich FP. Cytochrome P-450
3A4: regulation and role in drug metabolism. Annu Rev Pharmacol
Toxicol . 1999;39:1-17. doi:10.1146/annurev.pharmtox.39.1.1
45. Xiong Y, Yuan Z, Yang J, et al.
CYP3A5*3 and MDR1 C3435T are influencing factors of inter-subject
variability in rupatadine pharmacokinetics in healthy Chinese
volunteers. Journal Article; Research Support, Non-U.S. Gov’t. Eur
J Drug Metab Pharmacokinet . Apr 2016;41(2):117-24.
doi:10.1007/s13318-014-0236-3
46. Maekawa K, Harakawa N, Yoshimura
T, et al. CYP3A4*16 and CYP3A4*18 alleles found in East Asians exhibit
differential catalytic activities for seven CYP3A4 substrate drugs.
Journal Article; Research Support, Non-U.S. Gov’t. Drug Metab
Dispos . Dec 2010;38(12):2100-4. doi:10.1124/dmd.110.034140
47. Akiyoshi T, Saito T, Murase S, et
al. Comparison of the inhibitory profiles of itraconazole and cimetidine
in cytochrome P450 3A4 genetic variants. Comparative Study; Journal
Article; Research Support, N.I.H., Extramural; Research Support,
Non-U.S. Gov’t. Drug Metab Dispos . Apr 2011;39(4):724-8.
doi:10.1124/dmd.110.036780
48. Kikuta Y, Sogawa K, Haniu M, et
al. A novel species of cytochrome P-450 (P-450ib) specific for the small
intestine of rabbits. cDNA cloning and its expression in COS cells.J Biol Chem . Sep 25 1991;266(27):17821-5.
49. DeLozier TC, Kissling GE, Coulter
SJ, et al. Detection of Human CYP2C8, CYP2C9, and CYP2J2 in
Cardiovascular Tissues. Drug Metabolism and Disposition .
2007;35(4):682-688. doi:10.1124/dmd.106.012823
50. Wu S, Moomaw CR, Tomer KB, Falck
JR, Zeldin DC. Molecular cloning and expression of CYP2J2, a human
cytochrome P450 arachidonic acid epoxygenase highly expressed in heart.J Biol Chem . Feb 16 1996;271(7):3460-8.
doi:10.1074/jbc.271.7.3460
51. Hashizume T, Imaoka S, Mise M, et
al. Involvement of CYP2J2 and CYP4F12 in the metabolism of ebastine in
human intestinal microsomes. J Pharmacol Exp Ther . Jan
2002;300(1):298-304. doi:10.1124/jpet.300.1.298
52. Lee CA, Neul D, Clouser-Roche A,
et al. Identification of novel substrates for human cytochrome P450 2J2.Drug Metab Dispos . Feb 2010;38(2):347-56.
doi:10.1124/dmd.109.030270
53. Matsumoto S, Hirama T, Matsubara
T, Nagata K, Yamazoe Y. Involvement of CYP2J2 on the intestinal
first-pass metabolism of antihistamine drug, astemizole. Drug
Metab Dispos . Nov 2002;30(11):1240-5. doi:10.1124/dmd.30.11.1240
54. Lafite P, Dijols S, Zeldin DC,
Dansette PM, Mansuy D. Selective, competitive and mechanism-based
inhibitors of human cytochrome P450 2J2. Arch Biochem Biophys .
Aug 15 2007;464(2):155-68. doi:10.1016/j.abb.2007.03.028
55. Jeong D, Park HG, Lim YR, et al.
Terfenadine metabolism of human cytochrome P450 2J2 containing genetic
variations (G312R, P351L and P115L). Journal Article. Drug Metab
Pharmacokinet . 2018-02-01 2018;33(1):61-66.
doi:10.1016/j.dmpk.2017.10.004 %/ Copyright (c) 2017 The Japanese
Society for the Study of Xenobiotics. Published by Elsevier Ltd. All
rights reserved.
56. Ingelman-Sundberg M, Sim SC,
Gomez A, Rodriguez-Antona C. Influence of cytochrome P450 polymorphisms
on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical
aspects. Pharmacol Ther . Dec 2007;116(3):496-526.
doi:10.1016/j.pharmthera.2007.09.004
57. Tomalik-Scharte D, Lazar A, Fuhr
U, Kirchheiner J. The clinical role of genetic polymorphisms in
drug-metabolizing enzymes. Pharmacogenomics J . Feb
2008;8(1):4-15. doi:10.1038/sj.tpj.6500462
58. Shen H, He MM, Liu H, et al.
Comparative metabolic capabilities and inhibitory profiles of CYP2D6.1,
CYP2D6.10, and CYP2D6.17. Drug Metab Dispos . Aug
2007;35(8):1292-300. doi:10.1124/dmd.107.015354
59. Gardiner S, Begg E.
Pharmacogenetics, drug-metabolizing enzymes, and clinical practice.Pharmacological reviews . 2006;58(3):521-90. doi:10.1124/pr.58.3.6
60. Zastrozhin MS, Skryabin VY,
Smirnov VV, et al. Effects of CYP2D6 activity on the efficacy and safety
of mirtazapine in patients with depressive disorders and comorbid
alcohol use disorder. Journal Article. Can J Physiol Pharmacol .
Aug 2019;97(8):781-785. doi:10.1139/cjpp-2019-0177
61. Kirchheiner J, Nickchen K, Bauer
M, et al. Pharmacogenetics of antidepressants and antipsychotics: the
contribution of allelic variations to the phenotype of drug response.Mol Psychiatry . May 2004;9(5):442-73. doi:10.1038/sj.mp.4001494
62. Sato H, Ito C, Tashiro M, et al.
Histamine H(1) receptor occupancy by the new-generation antidepressants
fluvoxamine and mirtazapine: a positron emission tomography study in
healthy volunteers. Psychopharmacology (Berl) . Nov
2013;230(2):227-34. doi:10.1007/s00213-013-3146-1
63. Ramaekers JG, Conen S, de Kam PJ,
et al. Residual effects of esmirtazapine on actual driving performance:
overall findings and an exploratory analysis into the role of CYP2D6
phenotype. Clinical Trial; Journal Article; Randomized Controlled Trial;
Research Support, Non-U.S. Gov’t. Psychopharmacology (Berl) . May
2011;215(2):321-32. doi:10.1007/s00213-010-2149-4
64. Okubo M, Murayama N, Miura J,
Chiba Y, Yamazaki H. Effects of cytochrome P450 2D6 and 3A5 genotypes
and possible coadministered medicines on the metabolic clearance of
antidepressant mirtazapine in Japanese patients. Journal Article;
Research Support, Non-U.S. Gov’t. Biochem Pharmacol . Jan 1
2015;93(1):104-9. doi:10.1016/j.bcp.2014.11.011
65. Wang Z, Lee B, Pearce D, et al.
Meclizine metabolism and pharmacokinetics: formulation on its
absorption. Clinical Trial, Phase I; Comparative Study; Journal Article;
Randomized Controlled Trial. J Clin Pharmacol . Sep
2012;52(9):1343-9. doi:10.1177/0091270011414575
66. Klaassen CD, Aleksunes LM.
Xenobiotic, bile acid, and cholesterol transporters: function and
regulation. Pharmacol Rev . Mar 2010;62(1):1-96.
doi:10.1124/pr.109.002014
67. Konig J, Muller F, Fromm MF.
Transporters and drug-drug interactions: important determinants of drug
disposition and effects. Pharmacol Rev . Jul 2013;65(3):944-66.
doi:10.1124/pr.113.007518
68. Conen S, Theunissen EL, Vermeeren
A, et al. The role of P-glycoprotein in CNS antihistamine effects.Psychopharmacology (Berl) . Sep 2013;229(1):9-19.
doi:10.1007/s00213-013-3075-z
69. Chen C-j, Chin JE, Ueda K, et al.
Internal duplication and homology with bacterial transport proteins in
the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells.Cell . Nov 7 1986;47(3):381-389. doi:10.1016/0092-8674(86)90595-7
70. Shi H, Lu D, Shu Y, Shi W, Lu S,
Wang K. Expression of multidrug-resistance-related proteins
P-glycoprotein, glutathione-S-transferases, topoisomerase-II and lung
resistance protein in primary gastric cardiac adenocarcinoma.Cancer Invest . May 2008;26(4):344-51.
doi:10.1080/07357900701788072
71. Cordon-Cardo C, O’Brien JP,
Casals D, et al. Multidrug-resistance gene (P-glycoprotein) is expressed
by endothelial cells at blood-brain barrier sites. Proc Natl Acad
Sci U S A . Jan 1989;86(2):695-8. doi:10.1073/pnas.86.2.695
72. Fojo AT, Ueda K, Slamon DJ,
Poplack DG, Gottesman MM, Pastan I. Expression of a multidrug-resistance
gene in human tumors and tissues. Proc Natl Acad Sci U S A . Jan
1987;84(1):265-9. doi:10.1073/pnas.84.1.265
73. Fromm MF. Importance of
P-glycoprotein at blood-tissue barriers. Trends Pharmacol Sci .
Aug 2004;25(8):423-9. doi:10.1016/j.tips.2004.06.002
74. Callen DF, Baker E, Simmers RN,
Seshadri R, Roninson IB. Localization of the human multiple drug
resistance gene, MDR1, to 7q21.1. Hum Genet . Oct
1987;77(2):142-4. doi:10.1007/BF00272381
75. Yi SY, Hong KS, Lim HS, et al. A
variant 2677A allele of the MDR1 gene affects fexofenadine disposition.Clin Pharmacol Ther . Nov 2004;76(5):418-27.
doi:10.1016/j.clpt.2004.08.002
76. Drescher S, Schaeffeler E, Hitzl
M, et al. MDR1
gene polymorphisms and disposition of the P-glycoprotein substrate
fexofenadine. British Journal of Clinical Pharmacology .
2002;53(5):526-534. doi:10.1046/j.1365-2125.2002.01591.x
77. Hagenbuch B, Stieger B. The SLCO
(former SLC21) superfamily of transporters. Mol Aspects Med .
Apr-Jun 2013;34(2-3):396-412. doi:10.1016/j.mam.2012.10.009
78. Tian X, Zamek-Gliszczynski MJ, Li
J, et al. Multidrug resistance-associated protein 2 is primarily
responsible for the biliary excretion of fexofenadine in mice.Drug Metab Dispos . Jan 2008;36(1):61-4.
doi:10.1124/dmd.107.017319
79. Kullak-Ublick GA, Ismair MG,
Stieger B, et al. Organic anion-transporting polypeptide B (OATP-B) and
its functional comparison with three other OATPs of human liver.Gastroenterology . Feb 2001;120(2):525-33.
doi:10.1053/gast.2001.21176
80. Matsushima S, Maeda K, Ishiguro
N, Igarashi T, Sugiyama Y. Investigation of the inhibitory effects of
various drugs on the hepatic uptake of fexofenadine in humans.Drug Metab Dispos . Apr 2008;36(4):663-9.
doi:10.1124/dmd.107.017814
81. Shimizu M, Fuse K, Okudaira K, et
al. Contribution of OATP (organic anion-transporting polypeptide) family
transporters to the hepatic uptake of fexofenadine in humans. Drug
Metab Dispos . Oct 2005;33(10):1477-81. doi:10.1124/dmd.105.004622
82. Akamine Y, Miura M, Sunagawa S,
Kagaya H, Yasui-Furukori N, Uno T. Influence of drug-transporter
polymorphisms on the pharmacokinetics of fexofenadine enantiomers.
Journal Article. Xenobiotica . 2010-11-01 2010;40(11):782-9.
doi:10.3109/00498254.2010.515318
83. Imanaga J, Kotegawa T, Imai H, et
al. The effects of the SLCO2B1 c.1457C>T polymorphism and
apple juice on the pharmacokinetics of fexofenadine and midazolam in
humans. Journal Article; Randomized Controlled Trial; Research Support,
Non-U.S. Gov’t. Pharmacogenetics and Genomics . 2011-02-01
2011;21(2):84-93. doi:10.1097/FPC.0b013e32834300cc
84. Gu J, Mao XH, Yang XZ, Ao HF,
Zhang Z, Li Y. Histamine H4 receptor gene polymorphisms: a potential
predictor of oral H1 antihistamine efficacy for allergic rhinitis.Int Forum Allergy Rhinol . Mar 2017;7(3):268-275.
doi:10.1002/alr.21870
85. Chu JT. Histamine H1 receptor
gene polymorphism acts as a biological indicator of the prediction of
therapeutic efficacy in patients with allergic rhinitis in the Chinese
Han population. J Cell Biochem . Jan 2019;120(1):164-170.
doi:10.1002/jcb.27278
86. Potaczek DP, Okumura K, Nishiyama
C. FCER1A genetic variability and serum IgE levels. Allergy . Sep
2009;64(9):1383. doi:10.1111/j.1398-9995.2009.02090.x
87. Chen CM, Weidinger S, Klopp N, et
al. Common variants in FCER1A influence total serum IgE levels from cord
blood up to six years of life. Allergy . Sep 2009;64(9):1327-32.
doi:10.1111/j.1398-9995.2009.02005.x
88. Potaczek DP, Sanak M, Szczeklik
A. Additive association between FCER1A and FCER1B genetic polymorphisms
and total serum IgE levels. Allergy . Sep 2007;62(9):1095-6.
doi:10.1111/j.1398-9995.2007.01446.x
89. Limb SL, Brown KC, Wood RA, et
al. Adult asthma severity in individuals with a history of childhood
asthma. J Allergy Clin Immunol . Jan 2005;115(1):61-6.
doi:10.1016/j.jaci.2004.09.032
90. Burrows B, Martinez FD, Halonen
M, Barbee RA, Cline MG. Association of asthma with serum IgE levels and
skin-test reactivity to allergens. N Engl J Med . Feb 2
1989;320(5):271-7. doi:10.1056/NEJM198902023200502
91. Andorf S, Borres MP, Block W, et
al. Association of Clinical Reactivity with Sensitization to Allergen
Components in Multifood-Allergic Children. J Allergy Clin Immunol
Pract . Sep - Oct 2017;5(5):1325-1334 e4. doi:10.1016/j.jaip.2017.01.016
92. Zhang Y, Duan S, Lin X, et al.
SNPs in the FCER1A gene region show no association with allergic
rhinitis in a Han Chinese population. PLoS One . Dec 31
2010;5(12):e15792. doi:10.1371/journal.pone.0015792
93. Guo A, Zhu W, Zhang C, et al.
Association of FCER1A genetic polymorphisms with risk for chronic
spontaneous urticaria and efficacy of nonsedating H1-antihistamines in
Chinese patients. Archives of Dermatological Research . 1990-03-01
2014;307(2):183-190. doi:10.1007/s00403-014-1525-z
94. Yan J, Li Q, Luo Y, Yan S, He Y,
Chen X. [Association of CACNA1C gene genetic polymorphism with the
susceptibility as well as prognosis for chronic spontaneous
urticaria]. Journal Article. Zhong Nan Da Xue Xue Bao Yi Xue
Ban . Sep 28 2018;43(9):929-936.
doi:10.11817/j.issn.1672-7347.2018.09.001
95. Feske S. Calcium signalling in
lymphocyte activation and disease. Nat Rev Immunol . Sep
2007;7(9):690-702. doi:10.1038/nri2152
96. Ashmole I, Duffy SM, Leyland ML,
Morrison VS, Begg M, Bradding P. CRACM/Orai ion channel expression and
function in human lung mast cells. J Allergy Clin Immunol . Jun
2012;129(6):1628-35 e2. doi:10.1016/j.jaci.2012.01.070
97. Vig M, DeHaven WI, Bird GS, et
al. Defective mast cell effector functions in mice lacking the CRACM1
pore subunit of store-operated calcium release-activated calcium
channels. Nat Immunol . Jan 2008;9(1):89-96. doi:10.1038/ni1550
98. Li J, Guo A, Chen W, et al.
Association of ORAI1 gene polymorphisms with chronic spontaneous
urticaria and the efficacy of the nonsedating H1 antihistamine
desloratadine. Letter; Research Support, Non-U.S. Gov’t. J Allergy
Clin Immunol . Apr 2017;139(4):1386-1388 e9.
doi:10.1016/j.jaci.2016.10.017
99. Yan S, Chen W, Wen S, et al.
Influence of component 5a receptor 1 (C5AR1) -1330T/G polymorphism on
nonsedating H1-antihistamines therapy in Chinese patients with chronic
spontaneous urticaria. J Dermatol Sci . Dec 2014;76(3):240-5.
doi:10.1016/j.jdermsci.2014.09.012
100. Sandig H, Andrew D, Barnes AA,
Sabroe I, Pease J. 9alpha,11beta-PGF2 and its stereoisomer PGF2alpha are
novel agonists of the chemoattractant receptor, CRTH2. FEBS Lett .
Jan 23 2006;580(2):373-9. doi:10.1016/j.febslet.2005.11.052
101. Huang J-L, Gao P-S, Mathias RA,
et al. Sequence variants of the gene encoding chemoattractant receptor
expressed on Th2 cells (CRTH2) are associated with asthma and
differentially influence mRNA stability. Human Molecular
Genetics . Nov 1 2004;13(21):2691-2697. doi:10.1093/hmg/ddh279
102. Palikhe NS, Kim SH, Ye YM, Hur
GY, Cho BY, Park HS. Association of CRTH2 gene polymorphisms with the
required dose of antihistamines in patients with chronic urticaria.Pharmacogenomics . Mar 2009;10(3):375-83.
doi:10.2217/14622416.10.3.375
103. Li J, Chen W, Peng C, et al.
Human H1 receptor (HRH1) gene polymorphism is associated with the
severity of side effects after desloratadine treatment in Chinese
patients with chronic spontaneous uticaria. Pharmacogenomics J .
Feb 2020;20(1):87-93. doi:10.1038/s41397-019-0094-0
104. Giraud T. QT lengthening and
arrhythmias associated with fexofenadine. Lancet . Jun 12
1999;353(9169):2072-3. doi:10.1016/S0140-6736(05)77890-9
105. Pinto YM, van Gelder IC,
Heeringa M, Crijns HJ. QT lengthening and life-threatening arrhythmias
associated with fexofenadine. Lancet . Mar 20 1999;353(9157):980.
doi:10.1016/s0140-6736(99)01009-0
106. Lu HR, Hermans AN, Gallacher
DJ. Does terfenadine-induced ventricular tachycardia/fibrillation
directly relate to its QT prolongation and Torsades de Pointes? Br
J Pharmacol . Jun 2012;166(4):1490-502.
doi:10.1111/j.1476-5381.2012.01880.x
107. Rao KA, Adlakha A, Verma-Ansil
B, Meloy TD, Stanton MS. Torsades de pointes ventricular tachycardia
associated with overdose of astemizole. Mayo Clin Proc . Jun
1994;69(6):589-93. doi:10.1016/s0025-6196(12)62252-6
108. Sakaguchi T, Itoh H, Ding WG,
et al. Hydroxyzine, a first generation H(1)-receptor antagonist,
inhibits human ether-a-go-go-related gene (HERG) current and causes
syncope in a patient with the HERG mutation. J Pharmacol Sci . Dec
2008;108(4):462-71. doi:10.1254/jphs.08178fp
109. Nelson MR, Tipney H, Painter
JL, et al. The support of human genetic evidence for approved drug
indications. Nat Genet . Aug 2015;47(8):856-60.
doi:10.1038/ng.3314
110. Sanseau P, Agarwal P, Barnes
MR, et al. Use of genome-wide association studies for drug
repositioning. Nat Biotechnol . Apr 10 2012;30(4):317-20.
doi:10.1038/nbt.2151