REFERENCES
1. CDC. Coronavirus 2020 [31 October, 2020]. Available from:
https://www.cdc.gov/coronavirus/2019-ncov/index.html.
2. WHO. Coronavirus 2020 [31 October, 2020]. Available from:
https://covid19.who.int/.
3. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features
of patients infected with 2019 novel coronavirus in Wuhan, China.
Lancet. 2020;395(10223):497-506. Epub 2020/01/28. doi:
10.1016/s0140-6736(20)30183-5. PubMed PMID: 31986264; PubMed Central
PMCID: PMCPMC7159299.
4. Kim GU, Kim MJ, Ra SH, Lee J, Bae S, Jung J, et al. Clinical
characteristics of asymptomatic and symptomatic patients with mild
COVID-19. Clin Microbiol Infect. 2020. Epub 2020/05/04. doi:
10.1016/j.cmi.2020.04.040. PubMed PMID: 32360780.
5. Kuri-Cervantes L, Pampena MB, Meng W, Rosenfeld AM, Ittner CAG,
Weisman AR, et al. Comprehensive mapping of immune perturbations
associated with severe COVID-19. Sci Immunol. 2020;5(49). Epub
2020/07/17. doi: 10.1126/sciimmunol.abd7114. PubMed PMID: 32669287;
PubMed Central PMCID: PMCPMC7402634.
6. Kuri-Cervantes L, Pampena MB, Meng W, Rosenfeld AM, Ittner CAG,
Weisman AR, et al. Immunologic perturbations in severe
COVID-19/SARS-CoV-2 infection. bioRxiv. 2020. Epub 2020/06/09. doi:
10.1101/2020.05.18.101717. PubMed PMID: 32511394; PubMed Central PMCID:
PMCPMC7263541.
7. Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, et al.
Immunology of COVID-19: Current State of the Science. Immunity. 2020.
Epub 2020/06/09. doi: 10.1016/j.immuni.2020.05.002..
8. Zheng HY, Zhang M, Yang CX, Zhang N, Wang XC, Yang XP, et al.
Elevated exhaustion levels and reduced functional diversity of T cells
in peripheral blood may predict severe progression in COVID-19 patients.
Cell Mol Immunol. 2020;17(5):541-3. Epub 2020/03/24. doi:
10.1038/s41423-020-0401-3. PubMed PMID: 32203186; PubMed Central PMCID:
PMCPMC7091621.
9. Rydyznski Moderbacher C, Ramirez SI, Dan JM, Grifoni A, Hastie KM,
Weiskopf D, et al. Antigen-Specific Adaptive Immunity to SARS-CoV-2 in
Acute COVID-19 and Associations with Age and Disease Severity. Cell.
2020;183(4):996-1012.e19. Epub 2020/10/05. doi:
10.1016/j.cell.2020.09.038. PubMed PMID: 33010815; PubMed Central PMCID:
PMCPMC7494270.
10. Norton KA, Gong C, Jamalian S, Popel AS. Multiscale Agent-Based and
Hybrid Modeling of the Tumor Immune Microenvironment. Processes (Basel).
2019;7(1). Epub 2019/02/01. doi: 10.3390/pr7010037. PubMed PMID:
30701168; PubMed Central PMCID: PMCPMC6349239.
11. Foy BH, Gonçalves BP, Higgins JM. Unraveling Disease Pathophysiology
with Mathematical Modeling. Annu Rev Pathol. 2020;15:371-94. Epub
2020/01/25. doi: 10.1146/annurev-pathmechdis-012419-032557. PubMed PMID:
31977295.
12. Zhang C, Qin L, Li K, Wang Q, Zhao Y, Xu B, et al. A Novel Scoring
System for Prediction of Disease Severity in COVID-19. Front Cell Infect
Microbiol. 2020;10:318. Epub 2020/06/26. doi: 10.3389/fcimb.2020.00318.
PubMed PMID: 32582575; PubMed Central PMCID: PMCPMC7292148.
13. Cadegiani FA, Zimerman RA, Campello de Souza B, McCoy J, Pereira
ECRA, Gustavo Wambier C, et al. The AndroCoV Clinical Scoring for
COVID-19 Diagnosis: A Prompt, Feasible, Costless, and Highly Sensitive
Diagnostic Tool for COVID-19 Based on a 1757-Patient Cohort. Cureus.
2021;13(1):e12565. Epub 2021/01/14. doi: 10.7759/cureus.12565. PubMed
PMID: 33437562; PubMed Central PMCID: PMCPMC7793341.
14. Booth AL, Abels E, McCaffrey P. Development of a prognostic model
for mortality in COVID-19 infection using machine learning. Mod Pathol.
2020:1-10. Epub 2020/10/18. doi: 10.1038/s41379-020-00700-x. PubMed
PMID: 33067522; PubMed Central PMCID: PMCPMC7567420.
15. Ko J, Baldassano SN, Loh PL, Kording K, Litt B, Issadore D. Machine
learning to detect signatures of disease in liquid biopsies - a user’s
guide. Lab Chip. 2018;18(3):395-405. Epub 2017/12/02. doi:
10.1039/c7lc00955k. PubMed PMID: 29192299; PubMed Central PMCID:
PMCPMC5955608.
16. Pinto BGG, Oliveira AER, Singh Y, Jimenez L, Gonçalves ANA, Ogava
RLT, et al. ACE2 Expression is Increased in the Lungs of Patients with
Comorbidities Associated with Severe COVID-19. medRxiv. 2020. Epub
2020/06/09. doi: 10.1101/2020.03.21.20040261. PubMed PMID: 32511627;
PubMed Central PMCID: PMCPMC7276054.
17. Bonafe M, Prattichizzo F, Giuliani A, Storci G, Sabbatinelli J,
Olivieri F. Inflamm-aging: Why older men are the most susceptible to
SARS-CoV-2 complicated outcomes. Cytokine Growth Factor Rev. 2020. Epub
2020/05/12. doi: 10.1016/j.cytogfr.2020.04.005. PubMed PMID: 32389499.
18. Feldstein LR, Rose EB, Horwitz SM, Collins JP, Newhams MM, Son MBF,
et al. Multisystem Inflammatory Syndrome in U.S. Children and
Adolescents. N Engl J Med. 2020;383(4):334-46. Epub 2020/07/01. doi:
10.1056/NEJMoa2021680. PubMed PMID: 32598831; PubMed Central PMCID:
PMCPMC7346765.
19. CDC. COVID-19 in Children and Teens 2020 [10 Jan 2020].
Available from:
https://www.cdc.gov/coronavirus/2019-ncov/daily-life-coping/children/symptoms.html.
20. Afzal A. Molecular diagnostic technologies for COVID-19: Limitations
and challenges. J Adv Res. 2020;26:149-59. Epub 2020/08/25. doi:
10.1016/j.jare.2020.08.002. PubMed PMID: 32837738; PubMed Central PMCID:
PMCPMC7406419.
21. Ratajczak MZ, Bujko K, Ciechanowicz A, Sielatycka K, Cymer M,
Marlicz W, et al. SARS-CoV-2 Entry Receptor ACE2 Is Expressed on Very
Small CD45(-) Precursors of Hematopoietic and Endothelial Cells and in
Response to Virus Spike Protein Activates the Nlrp3 Inflammasome. Stem
Cell Rev Rep. 2020:1-12. Epub 2020/07/22. doi:
10.1007/s12015-020-10010-z. PubMed PMID: 32691370; PubMed Central PMCID:
PMCPMC7370872.
22. Lukassen SA-O, Chua RL, Trefzer T, Kahn NC, Schneider MA, Muley T,
et al. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in
bronchial transient. Embo J. 2020;39(10):e105114 LID -
10.15252/embj.20105114 [doi] LID - e105114.
23. Hirano T, Murakami M. COVID-19: A New Virus, but a Familiar Receptor
and Cytokine Release Syndrome. Immunity. 2020;52(5):731-3. Epub
2020/04/24. doi: 10.1016/j.immuni.2020.04.003. PubMed PMID: 32325025;
PubMed Central PMCID: PMCPMC7175868.
24. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T,
Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and
Is Blocked by a Clinically. Cell. 2020;181(2):271-80.e8 LID -
S0092-8674(20)30229-4 [pii] LID - 10.1016/j.cell.2020.02.052
[doi].
25. Finkel Y, Mizrahi O, Nachshon A, Weingarten-Gabbay S, Morgenstern D,
Yahalom-Ronen Y, et al. The coding capacity of SARS-CoV-2. Nature. 2020.
Epub 2020/09/10. doi: 10.1038/s41586-020-2739-1. PubMed PMID: 32906143.
26. Wang K, Chen W, Zhang Z, Deng Y, Lian JQ, Du P, et al. CD147-spike
protein is a novel route for SARS-CoV-2 infection to host cells. Signal
Transduct Target Ther. 2020;5(1):283. Epub 2020/12/06. doi:
10.1038/s41392-020-00426-x. PubMed PMID: 33277466; PubMed Central PMCID:
PMCPMC7714896.
27. Zhou Z, Ren L, Zhang L, Zhong J, Xiao Y, Jia Z, et al. Heightened
Innate Immune Responses in the Respiratory Tract of COVID-19 Patients.
Cell Host Microbe. 2020;27(6):883-90.e2. Epub 2020/05/15. doi:
10.1016/j.chom.2020.04.017. PubMed PMID: 32407669; PubMed Central PMCID:
PMCPMC7196896.
28. To KK, Tsang OT, Leung WS, Tam AR, Wu TC, Lung DC, et al. Temporal
profiles of viral load in posterior oropharyngeal saliva samples and
serum antibody responses during infection by SARS-CoV-2: an
observational cohort study. Lancet Infect Dis. 2020;20(5):565-74. Epub
2020/03/28. doi: 10.1016/s1473-3099(20)30196-1. PubMed PMID: 32213337;
PubMed Central PMCID: PMCPMC7158907.
29. Azkur AK, Akdis M, Azkur D, Sokolowska M, van de Veen W, Brüggen MC,
et al. Immune response to SARS-CoV-2 and mechanisms of
immunopathological changes in COVID-19. Allergy. 2020. Epub 2020/05/13.
doi: 10.1111/all.14364. PubMed PMID: 32396996; PubMed Central PMCID:
PMCPMC7272948.
30. Catanzaro M, Fagiani F, Racchi M, Corsini E, Govoni S, Lanni C.
Immune response in COVID-19: addressing a pharmacological challenge by
targeting pathways triggered by SARS-CoV-2. Signal Transduction and
Targeted Therapy. 2020;5(1):84. doi: 10.1038/s41392-020-0191-1.
31. Chi Y, Ge Y, Wu B, Zhang W, Wu T, Wen T, et al. Serum Cytokine and
Chemokine Profile in Relation to the Severity of Coronavirus Disease
2019 in China. J Infect Dis. 2020;222(5):746-54. Epub 2020/06/21. doi:
10.1093/infdis/jiaa363. PubMed PMID: 32563194; PubMed Central PMCID:
PMCPMC7337752.
32. Picchianti Diamanti A, Rosado MM, Pioli C, Sesti G, Laganà B.
Cytokine Release Syndrome in COVID-19 Patients, A New Scenario for an
Old Concern: The Fragile Balance between Infections and Autoimmunity.
Int J Mol Sci. 2020;21(9). Epub 2020/05/14. doi: 10.3390/ijms21093330.
PubMed PMID: 32397174; PubMed Central PMCID: PMCPMC7247555.
33. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR,
et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans
with COVID-19 Disease and Unexposed Individuals. Cell.
2020;181(7):1489-501.e15. Epub 2020/05/31. doi:
10.1016/j.cell.2020.05.015. PubMed PMID: 32473127; PubMed Central PMCID:
PMCPMC7237901.
34. Ernst D, Bolton G, Recktenwald D, Cametron MJ, Danesh A, Persad D,
et al. Bead Based Flow Cytometric Assays : A Multiplex Assay Platform
with Applications in Diagnostic Microbiology. In: Advanced Techniques in
Diagnostic Microbiology , Eds : Y.W. Tang and C.W. Stratton. Springer.
2006. p. 427-43.
35. Bassoli C, Oreni L, Ballone E, Foschi A, Perotti A, Mainini A, et
al. Role of serum albumin and proteinuria in patients with SARS-CoV-2
pneumonia. Int J Clin Pract. 2020:e13946. Epub 2020/12/18. doi:
10.1111/ijcp.13946. PubMed PMID: 33332691.
36. Payán-Pernía S, Gómez Pérez L, Remacha Sevilla Á F, Sierra Gil J,
Novelli Canales S. Absolute Lymphocytes, Ferritin, C-Reactive Protein,
and Lactate Dehydrogenase Predict Early Invasive Ventilation in Patients
With COVID-19. Lab Med. 2020. Epub 2020/12/19. doi:
10.1093/labmed/lmaa105. PubMed PMID: 33336243.
37. Chen Z, John Wherry E. T cell responses in patients with COVID-19.
Nat Rev Immunol. 2020;20(9):529-36. Epub 2020/07/31. doi:
10.1038/s41577-020-0402-6. PubMed PMID: 32728222; PubMed Central PMCID:
PMCPMC7389156 Roche, Pieris, Elstar and Surface Oncology. E.J.W. has a
patent licensing agreement on the PD1 pathway with Roche/Genentech.
E.J.W. is a founder of Arsenal Biosciences. Z.C. declares no competing
interests.
38. Wajnberg A, Amanat F, Firpo A, Altman DR, Bailey MJ, Mansour M, et
al. Robust neutralizing antibodies to SARS-CoV-2 infection persist for
months. Science. 2020;370(6521):1227-30. Epub 2020/10/30. doi:
10.1126/science.abd7728. PubMed PMID: 33115920.
39. Bloch EM, Shoham S, Casadevall A, Sachais BS, Shaz B, Winters JL, et
al. Deployment of convalescent plasma for the prevention and treatment
of COVID-19. J Clin Invest. 2020;130(6):2757-65. Epub 2020/04/08. doi:
10.1172/jci138745. PubMed PMID: 32254064; PubMed Central PMCID:
PMCPMC7259988.
40. Legros V, Denolly S, Vogrig M, Boson B, Siret E, Rigaill J, et al. A
longitudinal study of SARS-CoV-2-infected patients reveals a high
correlation between neutralizing antibodies and COVID-19 severity. Cell
Mol Immunol. 2021;18(2):318-27. Epub 2021/01/08. doi:
10.1038/s41423-020-00588-2. PubMed PMID: 33408342; PubMed Central PMCID:
PMCPMC7786875.
41. Box G, E., Hunter W, Hunter S. Statistics for Experimenters: design,
discovery and innovation: John Wiley and Sons; 2005.
42. Piyathilake CJ, Badiga S, Burkholder GA, Harada S, Raper JL. The
accuracy of HPV genotyping in isolation and in combination with CD4 and
HIV viral load for the identification of HIV-infected women at risk for
developing cervical cancer. Cancer Med. 2021. Epub 2021/02/20. doi:
10.1002/cam4.3785. PubMed PMID: 33605553.
43. Bland J, Kavanaugh A, Hong LK, Kadkol SS. Development and Validation
of Viral Load Assays to Quantitate SARS-CoV-2. J Virol Methods.
2021:114100. Epub 2021/02/19. doi: 10.1016/j.jviromet.2021.114100.
PubMed PMID: 33600849.
44. Romeo F, Louge Uriarte E, Delgado SG, González-Altamiranda E,
Pereyra S, Morán P, et al. Effect of bovine viral diarrhea virus on
subsequent infectivity of bovine gammaherpesvirus 4 in endometrial cells
in primary culture: an in vitro model of viral co-infection. J Virol
Methods. 2021:114097. Epub 2021/02/19. doi:
10.1016/j.jviromet.2021.114097. PubMed PMID: 33600847.
45. McNab F, Mayer-Barber K, Sher A, Wack A, O’Garra A. Type I
interferons in infectious disease. Nat Rev Immunol. 2015;15(2):87-103.
Epub 2015/01/24. doi: 10.1038/nri3787. PubMed PMID: 25614319; PubMed
Central PMCID: PMCPMC7162685.
46. Buszko M, Park JH, Verthelyi D, Sen R, Young HA, Rosenberg AS. The
dynamic changes in cytokine responses in COVID-19: a snapshot of the
current state of knowledge. Nat Immunol. 2020;21(10):1146-51. Epub
2020/08/29. doi: 10.1038/s41590-020-0779-1. PubMed PMID: 32855555.
47. Cardone M, Yano M, Rosenberg AS, Puig M. Lessons Learned to Date on
COVID-19 Hyperinflammatory Syndrome: Considerations for Interventions to
Mitigate SARS-CoV-2 Viral Infection and Detrimental Hyperinflammation.
Front Immunol. 2020;11:1131. Epub 2020/06/24. doi:
10.3389/fimmu.2020.01131. PubMed PMID: 32574265; PubMed Central PMCID:
PMCPMC7272717.
48. Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, et al.
Immunology of COVID-19: current state of the science. Immunity. 2020.
doi: 10.1016/j.immuni.2020.05.002. PubMed PMID: PMC7200337.
49. Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M, Chen J, et al.
Inborn errors of type I IFN immunity in patients with life-threatening
COVID-19. Science. 2020;370(6515). Epub 2020/09/26. doi:
10.1126/science.abd4570. PubMed PMID: 32972995.
50. Rusu D, Blaj M, Ristescu I, Patrascanu E, Gavril L, Lungu O, et al.
Outcome Predictive Value of Serum Ferritin in ICU Patients with Long ICU
Stay. Medicina (Kaunas). 2020;57(1). Epub 2020/12/31. doi:
10.3390/medicina57010001. PubMed PMID: 33375016; PubMed Central PMCID:
PMCPMC7822040.
51. Dahan S, Segal G, Katz I, Hellou T, Tietel M, Bryk G, et al.
Ferritin as a Marker of Severity in COVID-19 Patients: A Fatal
Correlation. Isr Med Assoc J. 2020;22(8):494-500. Epub 2020/11/26.
PubMed PMID: 33236582.
52. Mateus J, Grifoni A, Tarke A, Sidney J, Ramirez SI, Dan JM, et al.
Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed
humans. Science. 2020;370(6512):89-94. Epub 2020/08/06. doi:
10.1126/science.abd3871. PubMed PMID: 32753554; PubMed Central PMCID:
PMCPMC7574914.
53. Gentili M, Nachohen A. Surprising effects of antibodies in severe
COVID. Nature. 2021.
54. Poeschla E. Neutralizing SARS-CoV-2. Elife. 2020;9. Epub 2020/12/16.
doi: 10.7554/eLife.64496. PubMed PMID: 33320086; PubMed Central PMCID:
PMCPMC7738179.
55. Qian, Z. et al. (2013) Innate immune response of human alveolar type
II cells infected with severe acute respiratory syndrome-coronavirus. Am
J Respir Cell Mol Biol 48 (6), 742-8.
56. Kronbichler, A. et al. (2020) Asymptomatic patients as a source of
COVID-19 infections: A systematic review and meta-analysis. Int J Infect
Dis 98, 180-186. PMID: 32562846;
PMCID: PMC7832751;
DOI: 10.1016/j.ijid.2020.06.052
57. Zhao, J. et al. (2020) Antibody responses to SARS-CoV-2 in patients
of novel coronavirus disease 2019. LID - 10.1093/cid/ciaa344 [doi]
LID - ciaa344. Clin Infect Dis.