REFERENCES
1. CDC. Coronavirus 2020 [31 October, 2020]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/index.html.
2. WHO. Coronavirus 2020 [31 October, 2020]. Available from: https://covid19.who.int/.
3. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. Epub 2020/01/28. doi: 10.1016/s0140-6736(20)30183-5. PubMed PMID: 31986264; PubMed Central PMCID: PMCPMC7159299.
4. Kim GU, Kim MJ, Ra SH, Lee J, Bae S, Jung J, et al. Clinical characteristics of asymptomatic and symptomatic patients with mild COVID-19. Clin Microbiol Infect. 2020. Epub 2020/05/04. doi: 10.1016/j.cmi.2020.04.040. PubMed PMID: 32360780.
5. Kuri-Cervantes L, Pampena MB, Meng W, Rosenfeld AM, Ittner CAG, Weisman AR, et al. Comprehensive mapping of immune perturbations associated with severe COVID-19. Sci Immunol. 2020;5(49). Epub 2020/07/17. doi: 10.1126/sciimmunol.abd7114. PubMed PMID: 32669287; PubMed Central PMCID: PMCPMC7402634.
6. Kuri-Cervantes L, Pampena MB, Meng W, Rosenfeld AM, Ittner CAG, Weisman AR, et al. Immunologic perturbations in severe COVID-19/SARS-CoV-2 infection. bioRxiv. 2020. Epub 2020/06/09. doi: 10.1101/2020.05.18.101717. PubMed PMID: 32511394; PubMed Central PMCID: PMCPMC7263541.
7. Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, et al. Immunology of COVID-19: Current State of the Science. Immunity. 2020. Epub 2020/06/09. doi: 10.1016/j.immuni.2020.05.002..
8. Zheng HY, Zhang M, Yang CX, Zhang N, Wang XC, Yang XP, et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020;17(5):541-3. Epub 2020/03/24. doi: 10.1038/s41423-020-0401-3. PubMed PMID: 32203186; PubMed Central PMCID: PMCPMC7091621.
9. Rydyznski Moderbacher C, Ramirez SI, Dan JM, Grifoni A, Hastie KM, Weiskopf D, et al. Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. Cell. 2020;183(4):996-1012.e19. Epub 2020/10/05. doi: 10.1016/j.cell.2020.09.038. PubMed PMID: 33010815; PubMed Central PMCID: PMCPMC7494270.
10. Norton KA, Gong C, Jamalian S, Popel AS. Multiscale Agent-Based and Hybrid Modeling of the Tumor Immune Microenvironment. Processes (Basel). 2019;7(1). Epub 2019/02/01. doi: 10.3390/pr7010037. PubMed PMID: 30701168; PubMed Central PMCID: PMCPMC6349239.
11. Foy BH, Gonçalves BP, Higgins JM. Unraveling Disease Pathophysiology with Mathematical Modeling. Annu Rev Pathol. 2020;15:371-94. Epub 2020/01/25. doi: 10.1146/annurev-pathmechdis-012419-032557. PubMed PMID: 31977295.
12. Zhang C, Qin L, Li K, Wang Q, Zhao Y, Xu B, et al. A Novel Scoring System for Prediction of Disease Severity in COVID-19. Front Cell Infect Microbiol. 2020;10:318. Epub 2020/06/26. doi: 10.3389/fcimb.2020.00318. PubMed PMID: 32582575; PubMed Central PMCID: PMCPMC7292148.
13. Cadegiani FA, Zimerman RA, Campello de Souza B, McCoy J, Pereira ECRA, Gustavo Wambier C, et al. The AndroCoV Clinical Scoring for COVID-19 Diagnosis: A Prompt, Feasible, Costless, and Highly Sensitive Diagnostic Tool for COVID-19 Based on a 1757-Patient Cohort. Cureus. 2021;13(1):e12565. Epub 2021/01/14. doi: 10.7759/cureus.12565. PubMed PMID: 33437562; PubMed Central PMCID: PMCPMC7793341.
14. Booth AL, Abels E, McCaffrey P. Development of a prognostic model for mortality in COVID-19 infection using machine learning. Mod Pathol. 2020:1-10. Epub 2020/10/18. doi: 10.1038/s41379-020-00700-x. PubMed PMID: 33067522; PubMed Central PMCID: PMCPMC7567420.
15. Ko J, Baldassano SN, Loh PL, Kording K, Litt B, Issadore D. Machine learning to detect signatures of disease in liquid biopsies - a user’s guide. Lab Chip. 2018;18(3):395-405. Epub 2017/12/02. doi: 10.1039/c7lc00955k. PubMed PMID: 29192299; PubMed Central PMCID: PMCPMC5955608.
16. Pinto BGG, Oliveira AER, Singh Y, Jimenez L, Gonçalves ANA, Ogava RLT, et al. ACE2 Expression is Increased in the Lungs of Patients with Comorbidities Associated with Severe COVID-19. medRxiv. 2020. Epub 2020/06/09. doi: 10.1101/2020.03.21.20040261. PubMed PMID: 32511627; PubMed Central PMCID: PMCPMC7276054.
17. Bonafe M, Prattichizzo F, Giuliani A, Storci G, Sabbatinelli J, Olivieri F. Inflamm-aging: Why older men are the most susceptible to SARS-CoV-2 complicated outcomes. Cytokine Growth Factor Rev. 2020. Epub 2020/05/12. doi: 10.1016/j.cytogfr.2020.04.005. PubMed PMID: 32389499.
18. Feldstein LR, Rose EB, Horwitz SM, Collins JP, Newhams MM, Son MBF, et al. Multisystem Inflammatory Syndrome in U.S. Children and Adolescents. N Engl J Med. 2020;383(4):334-46. Epub 2020/07/01. doi: 10.1056/NEJMoa2021680. PubMed PMID: 32598831; PubMed Central PMCID: PMCPMC7346765.
19. CDC. COVID-19 in Children and Teens 2020 [10 Jan 2020]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/daily-life-coping/children/symptoms.html.
20. Afzal A. Molecular diagnostic technologies for COVID-19: Limitations and challenges. J Adv Res. 2020;26:149-59. Epub 2020/08/25. doi: 10.1016/j.jare.2020.08.002. PubMed PMID: 32837738; PubMed Central PMCID: PMCPMC7406419.
21. Ratajczak MZ, Bujko K, Ciechanowicz A, Sielatycka K, Cymer M, Marlicz W, et al. SARS-CoV-2 Entry Receptor ACE2 Is Expressed on Very Small CD45(-) Precursors of Hematopoietic and Endothelial Cells and in Response to Virus Spike Protein Activates the Nlrp3 Inflammasome. Stem Cell Rev Rep. 2020:1-12. Epub 2020/07/22. doi: 10.1007/s12015-020-10010-z. PubMed PMID: 32691370; PubMed Central PMCID: PMCPMC7370872.
22. Lukassen SA-O, Chua RL, Trefzer T, Kahn NC, Schneider MA, Muley T, et al. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient. Embo J. 2020;39(10):e105114 LID - 10.15252/embj.20105114 [doi] LID - e105114.
23. Hirano T, Murakami M. COVID-19: A New Virus, but a Familiar Receptor and Cytokine Release Syndrome. Immunity. 2020;52(5):731-3. Epub 2020/04/24. doi: 10.1016/j.immuni.2020.04.003. PubMed PMID: 32325025; PubMed Central PMCID: PMCPMC7175868.
24. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically. Cell. 2020;181(2):271-80.e8 LID - S0092-8674(20)30229-4 [pii] LID - 10.1016/j.cell.2020.02.052 [doi].
25. Finkel Y, Mizrahi O, Nachshon A, Weingarten-Gabbay S, Morgenstern D, Yahalom-Ronen Y, et al. The coding capacity of SARS-CoV-2. Nature. 2020. Epub 2020/09/10. doi: 10.1038/s41586-020-2739-1. PubMed PMID: 32906143.
26. Wang K, Chen W, Zhang Z, Deng Y, Lian JQ, Du P, et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct Target Ther. 2020;5(1):283. Epub 2020/12/06. doi: 10.1038/s41392-020-00426-x. PubMed PMID: 33277466; PubMed Central PMCID: PMCPMC7714896.
27. Zhou Z, Ren L, Zhang L, Zhong J, Xiao Y, Jia Z, et al. Heightened Innate Immune Responses in the Respiratory Tract of COVID-19 Patients. Cell Host Microbe. 2020;27(6):883-90.e2. Epub 2020/05/15. doi: 10.1016/j.chom.2020.04.017. PubMed PMID: 32407669; PubMed Central PMCID: PMCPMC7196896.
28. To KK, Tsang OT, Leung WS, Tam AR, Wu TC, Lung DC, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis. 2020;20(5):565-74. Epub 2020/03/28. doi: 10.1016/s1473-3099(20)30196-1. PubMed PMID: 32213337; PubMed Central PMCID: PMCPMC7158907.
29. Azkur AK, Akdis M, Azkur D, Sokolowska M, van de Veen W, Brüggen MC, et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy. 2020. Epub 2020/05/13. doi: 10.1111/all.14364. PubMed PMID: 32396996; PubMed Central PMCID: PMCPMC7272948.
30. Catanzaro M, Fagiani F, Racchi M, Corsini E, Govoni S, Lanni C. Immune response in COVID-19: addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2. Signal Transduction and Targeted Therapy. 2020;5(1):84. doi: 10.1038/s41392-020-0191-1.
31. Chi Y, Ge Y, Wu B, Zhang W, Wu T, Wen T, et al. Serum Cytokine and Chemokine Profile in Relation to the Severity of Coronavirus Disease 2019 in China. J Infect Dis. 2020;222(5):746-54. Epub 2020/06/21. doi: 10.1093/infdis/jiaa363. PubMed PMID: 32563194; PubMed Central PMCID: PMCPMC7337752.
32. Picchianti Diamanti A, Rosado MM, Pioli C, Sesti G, Laganà B. Cytokine Release Syndrome in COVID-19 Patients, A New Scenario for an Old Concern: The Fragile Balance between Infections and Autoimmunity. Int J Mol Sci. 2020;21(9). Epub 2020/05/14. doi: 10.3390/ijms21093330. PubMed PMID: 32397174; PubMed Central PMCID: PMCPMC7247555.
33. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell. 2020;181(7):1489-501.e15. Epub 2020/05/31. doi: 10.1016/j.cell.2020.05.015. PubMed PMID: 32473127; PubMed Central PMCID: PMCPMC7237901.
34. Ernst D, Bolton G, Recktenwald D, Cametron MJ, Danesh A, Persad D, et al. Bead Based Flow Cytometric Assays : A Multiplex Assay Platform with Applications in Diagnostic Microbiology. In: Advanced Techniques in Diagnostic Microbiology , Eds : Y.W. Tang and C.W. Stratton. Springer. 2006. p. 427-43.
35. Bassoli C, Oreni L, Ballone E, Foschi A, Perotti A, Mainini A, et al. Role of serum albumin and proteinuria in patients with SARS-CoV-2 pneumonia. Int J Clin Pract. 2020:e13946. Epub 2020/12/18. doi: 10.1111/ijcp.13946. PubMed PMID: 33332691.
36. Payán-Pernía S, Gómez Pérez L, Remacha Sevilla Á F, Sierra Gil J, Novelli Canales S. Absolute Lymphocytes, Ferritin, C-Reactive Protein, and Lactate Dehydrogenase Predict Early Invasive Ventilation in Patients With COVID-19. Lab Med. 2020. Epub 2020/12/19. doi: 10.1093/labmed/lmaa105. PubMed PMID: 33336243.
37. Chen Z, John Wherry E. T cell responses in patients with COVID-19. Nat Rev Immunol. 2020;20(9):529-36. Epub 2020/07/31. doi: 10.1038/s41577-020-0402-6. PubMed PMID: 32728222; PubMed Central PMCID: PMCPMC7389156 Roche, Pieris, Elstar and Surface Oncology. E.J.W. has a patent licensing agreement on the PD1 pathway with Roche/Genentech. E.J.W. is a founder of Arsenal Biosciences. Z.C. declares no competing interests.
38. Wajnberg A, Amanat F, Firpo A, Altman DR, Bailey MJ, Mansour M, et al. Robust neutralizing antibodies to SARS-CoV-2 infection persist for months. Science. 2020;370(6521):1227-30. Epub 2020/10/30. doi: 10.1126/science.abd7728. PubMed PMID: 33115920.
39. Bloch EM, Shoham S, Casadevall A, Sachais BS, Shaz B, Winters JL, et al. Deployment of convalescent plasma for the prevention and treatment of COVID-19. J Clin Invest. 2020;130(6):2757-65. Epub 2020/04/08. doi: 10.1172/jci138745. PubMed PMID: 32254064; PubMed Central PMCID: PMCPMC7259988.
40. Legros V, Denolly S, Vogrig M, Boson B, Siret E, Rigaill J, et al. A longitudinal study of SARS-CoV-2-infected patients reveals a high correlation between neutralizing antibodies and COVID-19 severity. Cell Mol Immunol. 2021;18(2):318-27. Epub 2021/01/08. doi: 10.1038/s41423-020-00588-2. PubMed PMID: 33408342; PubMed Central PMCID: PMCPMC7786875.
41. Box G, E., Hunter W, Hunter S. Statistics for Experimenters: design, discovery and innovation: John Wiley and Sons; 2005.
42. Piyathilake CJ, Badiga S, Burkholder GA, Harada S, Raper JL. The accuracy of HPV genotyping in isolation and in combination with CD4 and HIV viral load for the identification of HIV-infected women at risk for developing cervical cancer. Cancer Med. 2021. Epub 2021/02/20. doi: 10.1002/cam4.3785. PubMed PMID: 33605553.
43. Bland J, Kavanaugh A, Hong LK, Kadkol SS. Development and Validation of Viral Load Assays to Quantitate SARS-CoV-2. J Virol Methods. 2021:114100. Epub 2021/02/19. doi: 10.1016/j.jviromet.2021.114100. PubMed PMID: 33600849.
44. Romeo F, Louge Uriarte E, Delgado SG, González-Altamiranda E, Pereyra S, Morán P, et al. Effect of bovine viral diarrhea virus on subsequent infectivity of bovine gammaherpesvirus 4 in endometrial cells in primary culture: an in vitro model of viral co-infection. J Virol Methods. 2021:114097. Epub 2021/02/19. doi: 10.1016/j.jviromet.2021.114097. PubMed PMID: 33600847.
45. McNab F, Mayer-Barber K, Sher A, Wack A, O’Garra A. Type I interferons in infectious disease. Nat Rev Immunol. 2015;15(2):87-103. Epub 2015/01/24. doi: 10.1038/nri3787. PubMed PMID: 25614319; PubMed Central PMCID: PMCPMC7162685.
46. Buszko M, Park JH, Verthelyi D, Sen R, Young HA, Rosenberg AS. The dynamic changes in cytokine responses in COVID-19: a snapshot of the current state of knowledge. Nat Immunol. 2020;21(10):1146-51. Epub 2020/08/29. doi: 10.1038/s41590-020-0779-1. PubMed PMID: 32855555.
47. Cardone M, Yano M, Rosenberg AS, Puig M. Lessons Learned to Date on COVID-19 Hyperinflammatory Syndrome: Considerations for Interventions to Mitigate SARS-CoV-2 Viral Infection and Detrimental Hyperinflammation. Front Immunol. 2020;11:1131. Epub 2020/06/24. doi: 10.3389/fimmu.2020.01131. PubMed PMID: 32574265; PubMed Central PMCID: PMCPMC7272717.
48. Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, et al. Immunology of COVID-19: current state of the science. Immunity. 2020. doi: 10.1016/j.immuni.2020.05.002. PubMed PMID: PMC7200337.
49. Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M, Chen J, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370(6515). Epub 2020/09/26. doi: 10.1126/science.abd4570. PubMed PMID: 32972995.
50. Rusu D, Blaj M, Ristescu I, Patrascanu E, Gavril L, Lungu O, et al. Outcome Predictive Value of Serum Ferritin in ICU Patients with Long ICU Stay. Medicina (Kaunas). 2020;57(1). Epub 2020/12/31. doi: 10.3390/medicina57010001. PubMed PMID: 33375016; PubMed Central PMCID: PMCPMC7822040.
51. Dahan S, Segal G, Katz I, Hellou T, Tietel M, Bryk G, et al. Ferritin as a Marker of Severity in COVID-19 Patients: A Fatal Correlation. Isr Med Assoc J. 2020;22(8):494-500. Epub 2020/11/26. PubMed PMID: 33236582.
52. Mateus J, Grifoni A, Tarke A, Sidney J, Ramirez SI, Dan JM, et al. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science. 2020;370(6512):89-94. Epub 2020/08/06. doi: 10.1126/science.abd3871. PubMed PMID: 32753554; PubMed Central PMCID: PMCPMC7574914.
53. Gentili M, Nachohen A. Surprising effects of antibodies in severe COVID. Nature. 2021.
54. Poeschla E. Neutralizing SARS-CoV-2. Elife. 2020;9. Epub 2020/12/16. doi: 10.7554/eLife.64496. PubMed PMID: 33320086; PubMed Central PMCID: PMCPMC7738179.
55. Qian, Z. et al. (2013) Innate immune response of human alveolar type II cells infected with severe acute respiratory syndrome-coronavirus. Am J Respir Cell Mol Biol 48 (6), 742-8.
56. Kronbichler, A. et al. (2020) Asymptomatic patients as a source of COVID-19 infections: A systematic review and meta-analysis. Int J Infect Dis 98, 180-186. PMID: 32562846; PMCID: PMC7832751; DOI: 10.1016/j.ijid.2020.06.052
57. Zhao, J. et al. (2020) Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. LID - 10.1093/cid/ciaa344 [doi] LID - ciaa344. Clin Infect Dis.