REFERENCES
Abderrazak A, Syrovets T, Couchie D, El Hadri K, Friguet B, Simmet T, et al. (2015). NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biol 4: 296-307.
Aboudounya MM, & Heads RJ (2021). COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-CoV-2 May Bind and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry and Causing Hyperinflammation. Mediators Inflamm 2021: 8874339.
Ahmed SM, Luo L, Namani A, Wang XJ, & Tang X (2017). Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim Biophys Acta Mol Basis Dis 1863: 585-597.
Alamri MA, Tahir Ul Qamar M, Mirza MU, Bhadane R, Alqahtani SM, Muneer I, et al. (2020). Pharmacoinformatics and molecular dynamics simulation studies reveal potential covalent and FDA-approved inhibitors of SARS-CoV-2 main protease 3CL(pro). J Biomol Struct Dyn:1-13.
Antwi-Amoabeng D, Kanji Z, Ford B, Beutler BD, Riddle MS, & Siddiqui F (2020). Clinical outcomes in COVID-19 patients treated with tocilizumab: An individual patient data systematic review. J Med Virol 92:2516-2522.
Barkhausen T, Tschernig T, Rosenstiel P, van Griensven M, Vonberg RP, Dorsch M, et al. (2011). Selective blockade of interleukin-6 trans-signaling improves survival in a murine polymicrobial sepsis model. Crit Care Med 39: 1407-1413.
Batra M, Tian R, Zhang C, Clarence E, Sacher CS, Miranda JN, et al. (2021). Role of IgG against N-protein of SARS-CoV2 in COVID19 clinical outcomes. Sci Rep 11: 3455.
Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. (2020). Remdesivir for the Treatment of Covid-19 - Final Report. N Engl J Med 383: 1813-1826.
Bellezza I, Tucci A, Galli F, Grottelli S, Mierla AL, Pilolli F, et al. (2012). Inhibition of NF-kappaB nuclear translocation via HO-1 activation underlies alpha-tocopheryl succinate toxicity. J Nutr Biochem 23: 1583-1591.
Bera K (2021). Binding and inhibitory effect of ravidasvir on 3CL(pro) of SARS-CoV-2: a molecular docking, molecular dynamics and MM/PBSA approach. J Biomol Struct Dyn: 1-8.
Boregowda U, Perisetti A, Nanjappa A, Gajendran M, Kutti Sridharan G, & Goyal H (2020). Addition of Tocilizumab to the Standard of Care Reduces Mortality in Severe COVID-19: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 7: 586221.
Bronte V, Ugel S, Tinazzi E, Vella A, De Sanctis F, Cane S, et al. (2020). Baricitinib restrains the immune dysregulation in patients with severe COVID-19. J Clin Invest 130: 6409-6416.
Brouqui P, Giraud-Gatineau A, & Raoult D (2020). Remdesivir investigational trials in COVID-19: a critical reappraisal. New Microbes New Infect: 100707.
Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. (2020a). A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med 382: 1787-1799.
Cao Y, Wei J, Zou L, Jiang T, Wang G, Chen L, et al. (2020b). Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): A multicenter, single-blind, randomized controlled trial. J Allergy Clin Immunol 146: 137-146 e133.
Cauchois R, Koubi M, Delarbre D, Manet C, Carvelli J, Blasco VB, et al. (2020). Early IL-1 receptor blockade in severe inflammatory respiratory failure complicating COVID-19. Proc Natl Acad Sci U S A 117: 18951-18953.
Cavalli G, & Dagna L (2021). The right place for IL-1 inhibition in COVID-19. Lancet Respir Med 9: 223-224.
Cavalli G, De Luca G, Campochiaro C, Della-Torre E, Ripa M, Canetti D, et al. (2020). Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol 2: e325-e331.
Chen IY, Chang SC, Wu HY, Yu TC, Wei WC, Lin S, et al. (2010). Upregulation of the chemokine (C-C motif) ligand 2 via a severe acute respiratory syndrome coronavirus spike-ACE2 signaling pathway. J Virol 84: 7703-7712.
Chen IY, Moriyama M, Chang MF, & Ichinohe T (2019). Severe Acute Respiratory Syndrome Coronavirus Viroporin 3a Activates the NLRP3 Inflammasome. Front Microbiol 10: 50.
Chen Y, Guo Y, Pan Y, & Zhao ZJ (2020). Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun.
Choudhury A, Das NC, Patra R, & Mukherjee S (2021). In silico analyses on the comparative sensing of SARS-CoV-2 mRNA by the intracellular TLRs of humans. J Med Virol 93: 2476-2486.
Choudhury A, & Mukherjee S (2020). In silico studies on the comparative characterization of the interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs. J Med Virol 92:2105-2113.
Cong Y, Ulasli M, Schepers H, Mauthe M, V’Kovski P, Kriegenburg F, et al. (2020). Nucleocapsid Protein Recruitment to Replication-Transcription Complexes Plays a Crucial Role in Coronaviral Life Cycle. J Virol 94.
Conrozier T, Lohse A, Balblanc JC, Dussert P, Royer PY, Bossert M, et al. (2020). Biomarker variation in patients successfully treated with tocilizumab for severe coronavirus disease 2019 (COVID-19): results of a multidisciplinary collaboration. Clin Exp Rheumatol 38:742-747.
Costa AG, Ramasawmy R, Val FFA, Ibiapina HNS, Oliveira AC, Tarrago AM, et al. (2018). Polymorphisms in TLRs influence circulating cytokines production in Plasmodium vivax malaria: TLR polymorphisms influence cytokine productions in malaria-vivax. Cytokine 110:374-380.
D’Alessandro A, Thomas T, Dzieciatkowska M, Hill RC, Francis RO, Hudson KE, et al. (2020). Serum Proteomics in COVID-19 Patients: Altered Coagulation and Complement Status as a Function of IL-6 Level. J Proteome Res 19: 4417-4427.
D’Ardes D, Boccatonda A, Rossi I, Guagnano MT, Santilli F, Cipollone F, et al. (2020). COVID-19 and RAS: Unravelling an Unclear Relationship. Int J Mol Sci 21.
Deftereos S, Giannopoulos G, Vrachatis DA, Siasos G, Giotaki SG, Cleman M, et al. (2020). Colchicine as a potent anti-inflammatory treatment in COVID-19: can we teach an old dog new tricks? Eur Heart J Cardiovasc Pharmacother 6: 255.
Dong M, Zhang J, Ma X, Tan J, Chen L, Liu S, et al. (2020). ACE2, TMPRSS2 distribution and extrapulmonary organ injury in patients with COVID-19. Biomed Pharmacother 131: 110678.
Ebihara N, Matsuda A, Nakamura S, Matsuda H, & Murakami A (2011). Role of the IL-6 classic- and trans-signaling pathways in corneal sterile inflammation and wound healing. Invest Ophthalmol Vis Sci 52:8549-8557.
Eguchi S, Kawai T, Scalia R, & Rizzo V (2018). Understanding Angiotensin II Type 1 Receptor Signaling in Vascular Pathophysiology. Hypertension 71: 804-810.
El Jammal T, Gerfaud-Valentin M, Seve P, & Jamilloux Y (2020). Inhibition of JAK/STAT signaling in rheumatologic disorders: The expanding spectrum. Joint Bone Spine 87: 119-129.
Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S, Belij-Rammerstorfer S, et al. (2020). Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 396: 467-478.
Franzetti M, Forastieri A, Borsa N, Pandolfo A, Molteni C, Borghesi L, et al. (2021). IL-1 Receptor Antagonist Anakinra in the Treatment of COVID-19 Acute Respiratory Distress Syndrome: A Retrospective, Observational Study. J Immunol 206: 1569-1575.
Fujisue K, Sugamura K, Kurokawa H, Matsubara J, Ishii M, Izumiya Y, et al. (2017). Colchicine Improves Survival, Left Ventricular Remodeling, and Chronic Cardiac Function After Acute Myocardial Infarction. Circ J 81: 1174-1182.
Gallagher PE, Ferrario CM, & Tallant EA (2008). MAP kinase/phosphatase pathway mediates the regulation of ACE2 by angiotensin peptides. Am J Physiol Cell Physiol 295: C1169-1174.
Gandolfini I, Delsante M, Fiaccadori E, Zaza G, Manenti L, Degli Antoni A, et al. (2020). COVID-19 in kidney transplant recipients. Am J Transplant 20: 1941-1943.
Garbers C, Aparicio-Siegmund S, & Rose-John S (2015). The IL-6/gp130/STAT3 signaling axis: recent advances towards specific inhibition. Curr Opin Immunol 34: 75-82.
Gorgolas Hernandez-Mora M, Cabello Ubeda A, Prieto-Perez L, Villar Alvarez F, Alvarez Alvarez B, Rodriguez Nieto MJ, et al. (2021). Compassionate use of tocilizumab in severe SARS-CoV2 pneumonia. Int J Infect Dis 102: 303-309.
Goulopoulou S, McCarthy CG, & Webb RC (2016). Toll-like Receptors in the Vascular System: Sensing the Dangers Within. Pharmacol Rev 68: 142-167.
Grassin-Delyle S, Abrial C, Salvator H, Brollo M, Naline E, & Devillier P (2020). The Role of Toll-Like Receptors in the Production of Cytokines by Human Lung Macrophages. J Innate Immun 12: 63-73.
Hadjadj J, Castro CN, Tusseau M, Stolzenberg MC, Mazerolles F, Aladjidi N, et al. (2020). Early-onset autoimmunity associated with SOCS1 haploinsufficiency. Nat Commun 11: 5341.
Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, & van Goor H (2004). Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 203: 631-637.
Hariyanto TI, Halim DA, Jodhinata C, Yanto TA, & Kurniawan A (2021). Colchicine treatment can improve outcomes of coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. Clin Exp Pharmacol Physiol.
He Y, Hara H, & Nunez G (2016). Mechanism and Regulation of NLRP3 Inflammasome Activation. Trends Biochem Sci 41: 1012-1021.
Helms J, Kremer S, Merdji H, Clere-Jehl R, Schenck M, Kummerlen C, et al. (2020). Neurologic Features in Severe SARS-CoV-2 Infection. N Engl J Med 382: 2268-2270.
Herold T, Jurinovic V, Arnreich C, Lipworth BJ, Hellmuth JC, von Bergwelt-Baildon M, et al. (2020). Elevated levels of IL-6 and CRP predict the need for mechanical ventilation in COVID-19. J Allergy Clin Immunol 146: 128-136 e124.
Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 181: 271-280 e278.
Hu B, Huang S, & Yin L (2021). The cytokine storm and COVID-19. J Med Virol 93: 250-256.
Huang AT, Garcia-Carreras B, Hitchings MDT, Yang B, Katzelnick LC, Rattigan SM, et al. (2020a). A systematic review of antibody mediated immunity to coronaviruses: kinetics, correlates of protection, and association with severity. Nat Commun 11: 4704.
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. (2020b). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395: 497-506.
Huet T, Beaussier H, Voisin O, Jouveshomme S, Dauriat G, Lazareth I, et al. (2020). Anakinra for severe forms of COVID-19: a cohort study. Lancet Rheumatol 2: e393-e400.
Jamilloux Y, El Jammal T, Vuitton L, Gerfaud-Valentin M, Kerever S, & Seve P (2019). JAK inhibitors for the treatment of autoimmune and inflammatory diseases. Autoimmun Rev 18: 102390.
Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, et al. (2020). Structure of M(pro) from SARS-CoV-2 and discovery of its inhibitors. Nature 582: 289-293.
Kaman K, Azmy V, Chichra A, Britto-Leon C, & Price C (2021). Cytokine profiles in severe SARS-CoV-2 infection requiring extracorporeal membrane oxygenation support. Respir Med Case Rep 33: 101376.
Kang S, Yang M, Hong Z, Zhang L, Huang Z, Chen X, et al. (2020). Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm Sin B 10: 1228-1238.
Kawasaki T, & Kawai T (2014). Toll-like receptor signaling pathways. Front Immunol 5: 461.
Kirchdoerfer RN, Cottrell CA, Wang N, Pallesen J, Yassine HM, Turner HL, et al. (2016). Pre-fusion structure of a human coronavirus spike protein. Nature 531: 118-121.
Klemm T, Ebert G, Calleja DJ, Allison CC, Richardson LW, Bernardini JP, et al. (2020). Mechanism and inhibition of the papain-like protease, PLpro, of SARS-CoV-2. EMBO J 39: e106275.
Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H, et al. (2016). Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun 7: 11624.
Kuhn AM, Tzieply N, Schmidt MV, von Knethen A, Namgaladze D, Yamamoto M, et al. (2011). Antioxidant signaling via Nrf2 counteracts lipopolysaccharide-mediated inflammatory responses in foam cell macrophages. Free Radic Biol Med 50: 1382-1391.
Kwarteng A, Asiedu E, Sylverken AA, Larbi A, Sakyi SA, & Asiedu SO (2021). Molecular characterization of interactions between the D614G variant of SARS-CoV-2 S-protein and neutralizing antibodies: A computational approach. Infect Genet Evol 91: 104815.
La Rosee F, & La Rosee P (2020). Ruxolitinib in COVID-19 Hyperinflammation and Haematologic Malignancies. Acta Haematol:1-3.
Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581: 215-220.
Lariccia V, Magi S, Serfilippi T, Toujani M, Gratteri S, & Amoroso S (2020). Challenges and Opportunities from Targeting Inflammatory Responses to SARS-CoV-2 Infection: A Narrative Review. J Clin Med 9.
Lawrence T, & Fong C (2010). The resolution of inflammation: anti-inflammatory roles for NF-kappaB. Int J Biochem Cell Biol 42: 519-523.
Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al.(2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426: 450-454.
Liang Y, Zhou HF, Tong M, Chen L, Ren K, & Zhao GJ (2019). Colchicine inhibits endothelial inflammation via NLRP3/CRP pathway. Int J Cardiol 294: 55.
Liu F, Li L, Xu M, Wu J, Luo D, Zhu Y, et al. (2020). Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J Clin Virol 127: 104370.
Liu X, Zhang X, Ding Y, Zhou W, Tao L, Lu P, et al. (2017). Nuclear Factor E2-Related Factor-2 Negatively Regulates NLRP3 Inflammasome Activity by Inhibiting Reactive Oxygen Species-Induced NLRP3 Priming. Antioxid Redox Signal 26: 28-43.
Logunov DY, Dolzhikova IV, Zubkova OV, Tukhvatulin AI, Shcheblyakov DV, Dzharullaeva AS, et al. (2020). Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet 396: 887-897.
Luo P, Liu Y, Qiu L, Liu X, Liu D, & Li J (2020). Tocilizumab treatment in COVID-19: A single center experience. J Med Virol 92:814-818.
Mahdi M, Motyan JA, Szojka ZI, Golda M, Miczi M, & Tozser J (2020). Analysis of the efficacy of HIV protease inhibitors against SARS-CoV-2’s main protease. Virol J 17: 190.
Maiese K, Chong ZZ, Shang YC, & Wang S (2012). Erythropoietin: new directions for the nervous system. Int J Mol Sci 13:11102-11129.
Manenti L, Maggiore U, Fiaccadori E, Meschi T, Antoni AD, Nouvenne A, et al. (2021). Reduced mortality in COVID-19 patients treated with colchicine: Results from a retrospective, observational study. PLoS One 16: e0248276.
Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. (2020). Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol 77: 683-690.
Mareev VY, Orlova YA, Plisyk AG, Pavlikova EP, Akopyan ZA, Matskeplishvili ST, et al. (2021). Proactive anti-inflammatory therapy with colchicine in the treatment of advanced stages of new coronavirus infection. The first results of the COLORIT study. Kardiologiia 61: 15-27.
McBride R, van Zyl M, & Fielding BC (2014). The coronavirus nucleocapsid is a multifunctional protein. Viruses 6:2991-3018.
Mehta RM, Bansal S, Bysani S, & Kalpakam H (2021). A shorter symptom onset to remdesivir treatment (SORT) interval is associated with a lower mortality in moderate-to-severe COVID-19: A real-world analysis. Int J Infect Dis 106: 71-77.
Mody V, Ho J, Wills S, Mawri A, Lawson L, Ebert M, et al. (2021). Identification of 3-chymotrypsin like protease (3CLPro) inhibitors as potential anti-SARS-CoV-2 agents. Commun Biol 4: 93.
Monteil V, Dyczynski M, Lauschke VM, Kwon H, Wirnsberger G, Youhanna S, et al. (2021). Human soluble ACE2 improves the effect of remdesivir in SARS-CoV-2 infection. EMBO Mol Med 13: e13426.
Moradian N, Gouravani M, Salehi MA, Heidari A, Shafeghat M, Hamblin MR, et al. (2020). Cytokine release syndrome: inhibition of pro-inflammatory cytokines as a solution for reducing COVID-19 mortality. Eur Cytokine Netw 31: 81-93.
Mossel EC, Wang J, Jeffers S, Edeen KE, Wang S, Cosgrove GP, et al. (2008). SARS-CoV replicates in primary human alveolar type II cell cultures but not in type I-like cells. Virology 372: 127-135.
Nasa P, Singh A, Upadhyay S, Bagadia S, Polumuru S, Shrivastava PK, et al. (2020). Tocilizumab Use in COVID-19 Cytokine-release Syndrome: Retrospective Study of Two Centers. Indian J Crit Care Med 24: 771-776.
Nataraj C, Oliverio MI, Mannon RB, Mannon PJ, Audoly LP, Amuchastegui CS, et al. (1999). Angiotensin II regulates cellular immune responses through a calcineurin-dependent pathway. J Clin Invest 104: 1693-1701.
Neubauer A, Wiesmann T, Vogelmeier CF, Mack E, Skevaki C, Gaik C, et al. (2020). Ruxolitinib for the treatment of SARS-CoV-2 induced acute respiratory distress syndrome (ARDS). Leukemia 34:2276-2278.
Nieto-Torres JL, DeDiego ML, Verdia-Baguena C, Jimenez-Guardeno JM, Regla-Nava JA, Fernandez-Delgado R, et al. (2014). Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathog 10:e1004077.
Nishimoto N, Terao K, Mima T, Nakahara H, Takagi N, & Kakehi T (2008). Mechanisms and pathologic significances in increase in serum interleukin-6 (IL-6) and soluble IL-6 receptor after administration of an anti-IL-6 receptor antibody, tocilizumab, in patients with rheumatoid arthritis and Castleman disease. Blood 112: 3959-3964.
Olagnier D, Farahani E, Thyrsted J, Blay-Cadanet J, Herengt A, Idorn M, et al. (2020). SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate. Nat Commun 11:4938.
Otterbein LE, Bach FH, Alam J, Soares M, Tao Lu H, Wysk M, et al.(2000). Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 6: 422-428.
Pelaia C, Calabrese C, Garofalo E, Bruni A, Vatrella A, & Pelaia G (2021). Therapeutic Role of Tocilizumab in SARS-CoV-2-Induced Cytokine Storm: Rationale and Current Evidence. Int J Mol Sci 22.
Perlman S, & Netland J (2009). Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol 7: 439-450.
Pesu M, Laurence A, Kishore N, Zwillich SH, Chan G, & O’Shea JJ (2008). Therapeutic targeting of Janus kinases. Immunol Rev 223:132-142.
Pontali E, Volpi S, Signori A, Antonucci G, Castellaneta M, Buzzi D, et al. (2021). Efficacy of early anti-inflammatory treatment with high doses of intravenous anakinra with or without glucocorticoids in patients with severe COVID-19 pneumonia. J Allergy Clin Immunol 147: 1217-1225.
Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. (2020). Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis 71: 762-768.
Rathnayake AD, Zheng J, Kim Y, Perera KD, Mackin S, Meyerholz DK, et al. (2020). 3C-like protease inhibitors block coronavirus replication in vitro and improve survival in MERS-CoV-infected mice. Sci Transl Med 12.
Reichard JF, Motz GT, & Puga A (2007). Heme oxygenase-1 induction by NRF2 requires inactivation of the transcriptional repressor BACH1. Nucleic Acids Res 35: 7074-7086.
Richardson PJ, Ottaviani S, Prelle A, Stebbing J, Casalini G, & Corbellino M (2020). CNS penetration of potential anti-COVID-19 drugs. J Neurol 267: 1880-1882.
Roche (2020). An update on the phase III COVACTA trial of
Actemra/RoActemra in hospitalised patients with severe COVID-19 associated
pneumonia.
Rodriguez-Garcia JL, Sanchez-Nievas G, Arevalo-Serrano J, Garcia-Gomez C, Jimenez-Vizuete JM, & Martinez-Alfaro E (2021). Baricitinib improves respiratory function in patients treated with corticosteroids for SARS-CoV-2 pneumonia: an observational cohort study. Rheumatology (Oxford) 60: 399-407.
Rosas IO, Brau N, Waters M, Go RC, Hunter BD, Bhagani S, et al.(2021). Tocilizumab in Hospitalized Patients with Severe Covid-19 Pneumonia. N Engl J Med.
Ruan Q, Yang K, Wang W, Jiang L, & Song J (2020). Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 46: 846-848.
Rut W, Lv Z, Zmudzinski M, Patchett S, Nayak D, Snipas SJ, et al.(2020). Activity profiling and crystal structures of inhibitor-bound SARS-CoV-2 papain-like protease: A framework for anti-COVID-19 drug design. Sci Adv 6.
Sagar S, Rathinavel AK, Lutz WE, Struble LR, Khurana S, Schnaubelt AT, et al. (2021). Bromelain inhibits SARS-CoV-2 infection via targeting ACE-2, TMPRSS2, and spike protein. Clin Transl Med 11: e281.
Santa Cruz A, Mendes-Frias A, Oliveira AI, Dias L, Matos AR, Carvalho A, et al. (2021). Interleukin-6 Is a Biomarker for the Development of Fatal Severe Acute Respiratory Syndrome Coronavirus 2 Pneumonia. Front Immunol 12: 613422.
Seif F, Aazami H, Khoshmirsafa M, Kamali M, Mohsenzadegan M, Pornour M, et al. (2020). JAK Inhibition as a New Treatment Strategy for Patients with COVID-19. Int Arch Allergy Immunol 181: 467-475.
Shen WJ, Asthana S, Kraemer FB, & Azhar S (2018). Scavenger receptor B type 1: expression, molecular regulation, and cholesterol transport function. J Lipid Res 59: 1114-1131.
Shin D, Mukherjee R, Grewe D, Bojkova D, Baek K, Bhattacharya A, et al. (2020). Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 587: 657-662.
Smith TRF, Patel A, Ramos S, Elwood D, Zhu X, Yan J, et al.(2020). Immunogenicity of a DNA vaccine candidate for COVID-19. Nat Commun 11: 2601.
Sohn KM, Lee SG, Kim HJ, Cheon S, Jeong H, Lee J, et al. (2020). COVID-19 Patients Upregulate Toll-like Receptor 4-mediated Inflammatory Signaling That Mimics Bacterial Sepsis. J Korean Med Sci 35:e343.
Sproston NR, El Mohtadi M, Slevin M, Gilmore W, & Ashworth JJ (2018). The Effect of C-Reactive Protein Isoforms on Nitric Oxide Production by U937 Monocytes/Macrophages. Front Immunol 9: 1500.
Stebbing J, Sanchez Nievas G, Falcone M, Youhanna S, Richardson P, Ottaviani S, et al. (2021). JAK inhibition reduces SARS-CoV-2 liver infectivity and modulates inflammatory responses to reduce morbidity and mortality. Sci Adv 7: eabe4724.
Takahashi S, Yoshiya T, Yoshizawa-Kumagaye K, & Sugiyama T (2015). Nicotianamine is a novel angiotensin-converting enzyme 2 inhibitor in soybean. Biomed Res 36: 219-224.
Thepmankorn P, Bach J, Lasfar A, Zhao X, Souayah S, Chong ZZ, et al. (2021). Cytokine storm induced by SARS-CoV-2 infection: The spectrum of its neurological manifestations. Cytokine 138:155404.
Thimmulappa RK, Lee H, Rangasamy T, Reddy SP, Yamamoto M, Kensler TW, et al. (2006a). Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J Clin Invest 116: 984-995.
Thimmulappa RK, Scollick C, Traore K, Yates M, Trush MA, Liby KT, et al. (2006b). Nrf2-dependent protection from LPS induced inflammatory response and mortality by CDDO-Imidazolide. Biochem Biophys Res Commun 351: 883-889.
To KF, & Lo AW (2004). Exploring the pathogenesis of severe acute respiratory syndrome (SARS): the tissue distribution of the coronavirus (SARS-CoV) and its putative receptor, angiotensin-converting enzyme 2 (ACE2). J Pathol 203: 740-743.
Tomani JCD, Kagisha V, Tchinda AT, Jansen O, Ledoux A, Vanhamme L, et al. (2020). The Inhibition of NLRP3 Inflammasome and IL-6 Production by Hibiscus noldeae Baker f. Derived Constituents Provides a Link to Its Anti-Inflammatory Therapeutic Potentials. Molecules 25: in press.
Toniati P, Piva S, Cattalini M, Garrafa E, Regola F, Castelli F, et al. (2020). Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: A single center study of 100 patients in Brescia, Italy. Autoimmun Rev 19: 102568.
Ucciferri C, Auricchio A, Di Nicola M, Potere N, Abbate A, Cipollone F, et al. (2020). Canakinumab in a subgroup of patients with COVID-19. Lancet Rheumatol 2: e457-ee458.
van den Berg DF, & Te Velde AA (2020). Severe COVID-19: NLRP3 Inflammasome Dysregulated. Front Immunol 11: 1580.
Vijayan V, Wagener F, & Immenschuh S (2018). The macrophage heme-heme oxygenase-1 system and its role in inflammation. Biochem Pharmacol 153: 159-167.
Vogelpoel LT, Hansen IS, Visser MW, Nagelkerke SQ, Kuijpers TW, Kapsenberg ML, et al. (2015). FcgammaRIIa cross-talk with TLRs, IL-1R, and IFNgammaR selectively modulates cytokine production in human myeloid cells. Immunobiology 220: 193-199.
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, & Veesler D (2020). Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 183: 1735.
Walsh EE, Frenck R, Falsey AR, Kitchin N, Absalon J, Gurtman A, et al. (2020). RNA-Based COVID-19 Vaccine BNT162b2 Selected for a Pivotal Efficacy Study. medRxiv.
Wang LY, Cui JJ, Ouyang QY, Zhan Y, Guo CX, & Yin JY (2020). Remdesivir and COVID-19. Lancet 396: 953-954.
Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, et al. (2020a). Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell 181: 894-904 e899.
Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. (2020b). Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 395: 1569-1578.
Wei C, Wan L, Yan Q, Wang X, Zhang J, Yang X, et al. (2020). HDL-scavenger receptor B type 1 facilitates SARS-CoV-2 entry. Nat Metab 2: 1391-1400.
Wen Y, Liu Y, Tang T, Lv L, Liu H, Ma K, et al. (2016). NLRP3 inflammasome activation is involved in Ang II-induced kidney damage via mitochondrial dysfunction. Oncotarget 7: 54290-54302.
Wong SK, Li W, Moore MJ, Choe H, & Farzan M (2004). A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J Biol Chem 279: 3197-3201.
Wrapp D, De Vlieger D, Corbett KS, Torres GM, Wang N, Van Breedam W, et al. (2020). Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies. Cell 181: 1004-1015 e1015.
Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. (2020a). Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med 180: 934-943.
Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, et al. (2020b). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B 10:766-788.
Wu J, Yang X, Zhang YF, Zhou SF, Zhang R, Dong XQ, et al. (2009). Angiotensin II upregulates Toll-like receptor 4 and enhances lipopolysaccharide-induced CD40 expression in rat peritoneal mesothelial cells. Inflamm Res 58: 473-482.
Xu X, Han M, Li T, Sun W, Wang D, Fu B, et al. (2020). Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci U S A 117: 10970-10975.
Yamamoto M, Matsuyama S, Li X, Takeda M, Kawaguchi Y, Inoue JI, et al. (2016). Identification of Nafamostat as a Potent Inhibitor of Middle East Respiratory Syndrome Coronavirus S Protein-Mediated Membrane Fusion Using the Split-Protein-Based Cell-Cell Fusion Assay. Antimicrob Agents Chemother 60: 6532-6539.
Yan R, Zhang Y, Li Y, Xia L, Guo Y, & Zhou Q (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367: 1444-1448.
Yang J, Wang W, Chen Z, Lu S, Yang F, Bi Z, et al. (2020). A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature 586: 572-577.
Yin W, Mao C, Luan X, Shen DD, Shen Q, Su H, et al. (2020). Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 368: 1499-1504.
Zegeye MM, Lindkvist M, Falker K, Kumawat AK, Paramel G, Grenegard M, et al. (2018). Activation of the JAK/STAT3 and PI3K/AKT pathways are crucial for IL-6 trans-signaling-mediated pro-inflammatory response in human vascular endothelial cells. Cell Commun Signal 16: 55.
Zhang H, Penninger JM, Li Y, Zhong N, & Slutsky AS (2020). Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med 46: 586-590.
Zhang J, Hao Y, Ou W, Ming F, Liang G, Qian Y, et al. (2020). Serum interleukin-6 is an indicator for severity in 901 patients with SARS-CoV-2 infection: a cohort study. J Transl Med 18: 406.
Zhou JH, Wu B, Wang WX, Lei F, Cheng X, Qin JJ, et al. (2020a). No significant association between dipeptidyl peptidase-4 inhibitors and adverse outcomes of COVID-19. World J Clin Cases 8: 5576-5588.
Zhou L, Huntington K, Zhang S, Carlsen L, So EY, Parker C, et al.(2020b). MEK inhibitors reduce cellular expression of ACE2, pERK, pRb while stimulating NK-mediated cytotoxicity and attenuating inflammatory cytokines relevant to SARS-CoV-2 infection. Oncotarget 11:4201-4223.
Zhu FC, Guan XH, Li YH, Huang JY, Jiang T, Hou LH, et al. (2020). Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 396:479-488.
Zinovkin RA, & Grebenchikov OA (2020). Transcription Factor Nrf2 as a Potential Therapeutic Target for Prevention of Cytokine Storm in COVID-19 Patients. Biochemistry (Mosc) 85: 833-837.