REFERENCES
Abderrazak A, Syrovets T, Couchie D, El Hadri K, Friguet B, Simmet
T, et al. (2015). NLRP3 inflammasome: from a danger signal sensor
to a regulatory node of oxidative stress and inflammatory diseases.
Redox Biol 4: 296-307.
Aboudounya MM, & Heads RJ (2021). COVID-19 and Toll-Like Receptor 4
(TLR4): SARS-CoV-2 May Bind and Activate TLR4 to Increase ACE2
Expression, Facilitating Entry and Causing Hyperinflammation. Mediators
Inflamm 2021: 8874339.
Ahmed SM, Luo L, Namani A, Wang XJ, & Tang X (2017). Nrf2 signaling
pathway: Pivotal roles in inflammation. Biochim Biophys Acta Mol Basis
Dis 1863: 585-597.
Alamri MA, Tahir Ul Qamar M, Mirza MU, Bhadane R, Alqahtani SM, Muneer
I, et al. (2020). Pharmacoinformatics and molecular dynamics
simulation studies reveal potential covalent and FDA-approved inhibitors
of SARS-CoV-2 main protease 3CL(pro). J Biomol Struct Dyn:1-13.
Antwi-Amoabeng D, Kanji Z, Ford B, Beutler BD, Riddle MS, & Siddiqui F
(2020). Clinical outcomes in COVID-19 patients treated with tocilizumab:
An individual patient data systematic review. J Med Virol 92:2516-2522.
Barkhausen T, Tschernig T, Rosenstiel P, van Griensven M, Vonberg RP,
Dorsch M, et al. (2011). Selective blockade of interleukin-6
trans-signaling improves survival in a murine polymicrobial sepsis
model. Crit Care Med 39: 1407-1413.
Batra M, Tian R, Zhang C, Clarence E, Sacher CS, Miranda JN, et
al. (2021). Role of IgG against N-protein of SARS-CoV2 in COVID19
clinical outcomes. Sci Rep 11: 3455.
Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC,
et al. (2020). Remdesivir for the Treatment of Covid-19 - Final Report.
N Engl J Med 383: 1813-1826.
Bellezza I, Tucci A, Galli F, Grottelli S, Mierla AL, Pilolli F,
et al. (2012). Inhibition of NF-kappaB nuclear translocation via HO-1
activation underlies alpha-tocopheryl succinate toxicity. J Nutr Biochem
23: 1583-1591.
Bera K (2021). Binding and inhibitory effect of ravidasvir on 3CL(pro)
of SARS-CoV-2: a molecular docking, molecular dynamics and MM/PBSA
approach. J Biomol Struct Dyn: 1-8.
Boregowda U, Perisetti A, Nanjappa A, Gajendran M, Kutti Sridharan G, &
Goyal H (2020). Addition of Tocilizumab to the Standard of Care Reduces
Mortality in Severe COVID-19: A Systematic Review and Meta-Analysis.
Front Med (Lausanne) 7: 586221.
Bronte V, Ugel S, Tinazzi E, Vella A, De Sanctis F, Cane S, et
al. (2020). Baricitinib restrains the immune dysregulation in patients
with severe COVID-19. J Clin Invest 130: 6409-6416.
Brouqui P, Giraud-Gatineau A, & Raoult D (2020). Remdesivir
investigational trials in COVID-19: a critical reappraisal. New Microbes
New Infect: 100707.
Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. (2020a). A
Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe
Covid-19. N Engl J Med 382: 1787-1799.
Cao Y, Wei J, Zou L, Jiang T, Wang G, Chen L, et al. (2020b).
Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19):
A multicenter, single-blind, randomized controlled trial. J Allergy Clin
Immunol 146: 137-146 e133.
Cauchois R, Koubi M, Delarbre D, Manet C, Carvelli J, Blasco VB,
et al. (2020). Early IL-1 receptor blockade in severe inflammatory
respiratory failure complicating COVID-19. Proc Natl Acad Sci U S A
117: 18951-18953.
Cavalli G, & Dagna L (2021). The right place for IL-1 inhibition in
COVID-19. Lancet Respir Med 9: 223-224.
Cavalli G, De Luca G, Campochiaro C, Della-Torre E, Ripa M, Canetti
D, et al. (2020). Interleukin-1 blockade with high-dose anakinra
in patients with COVID-19, acute respiratory distress syndrome, and
hyperinflammation: a retrospective cohort study. Lancet Rheumatol
2: e325-e331.
Chen IY, Chang SC, Wu HY, Yu TC, Wei WC, Lin S, et al. (2010).
Upregulation of the chemokine (C-C motif) ligand 2 via a severe acute
respiratory syndrome coronavirus spike-ACE2 signaling pathway. J Virol
84: 7703-7712.
Chen IY, Moriyama M, Chang MF, & Ichinohe T (2019). Severe Acute
Respiratory Syndrome Coronavirus Viroporin 3a Activates the NLRP3
Inflammasome. Front Microbiol 10: 50.
Chen Y, Guo Y, Pan Y, & Zhao ZJ (2020). Structure analysis of the
receptor binding of 2019-nCoV. Biochem Biophys Res Commun.
Choudhury A, Das NC, Patra R, & Mukherjee S (2021). In silico analyses
on the comparative sensing of SARS-CoV-2 mRNA by the intracellular TLRs
of humans. J Med Virol 93: 2476-2486.
Choudhury A, & Mukherjee S (2020). In silico studies on the comparative
characterization of the interactions of SARS-CoV-2 spike glycoprotein
with ACE-2 receptor homologs and human TLRs. J Med Virol 92:2105-2113.
Cong Y, Ulasli M, Schepers H, Mauthe M, V’Kovski P, Kriegenburg F,
et al. (2020). Nucleocapsid Protein Recruitment to
Replication-Transcription Complexes Plays a Crucial Role in Coronaviral
Life Cycle. J Virol 94.
Conrozier T, Lohse A, Balblanc JC, Dussert P, Royer PY, Bossert M,
et al. (2020). Biomarker variation in patients successfully treated
with tocilizumab for severe coronavirus disease 2019 (COVID-19): results
of a multidisciplinary collaboration. Clin Exp Rheumatol 38:742-747.
Costa AG, Ramasawmy R, Val FFA, Ibiapina HNS, Oliveira AC, Tarrago
AM, et al. (2018). Polymorphisms in TLRs influence circulating
cytokines production in Plasmodium vivax malaria: TLR polymorphisms
influence cytokine productions in malaria-vivax. Cytokine 110:374-380.
D’Alessandro A, Thomas T, Dzieciatkowska M, Hill RC, Francis RO, Hudson
KE, et al. (2020). Serum Proteomics in COVID-19 Patients: Altered
Coagulation and Complement Status as a Function of IL-6 Level. J
Proteome Res 19: 4417-4427.
D’Ardes D, Boccatonda A, Rossi I, Guagnano MT, Santilli F, Cipollone
F, et al. (2020). COVID-19 and RAS: Unravelling an Unclear
Relationship. Int J Mol Sci 21.
Deftereos S, Giannopoulos G, Vrachatis DA, Siasos G, Giotaki SG, Cleman
M, et al. (2020). Colchicine as a potent anti-inflammatory
treatment in COVID-19: can we teach an old dog new tricks? Eur Heart J
Cardiovasc Pharmacother 6: 255.
Dong M, Zhang J, Ma X, Tan J, Chen L, Liu S, et al. (2020). ACE2,
TMPRSS2 distribution and extrapulmonary organ injury in patients with
COVID-19. Biomed Pharmacother 131: 110678.
Ebihara N, Matsuda A, Nakamura S, Matsuda H, & Murakami A (2011). Role
of the IL-6 classic- and trans-signaling pathways in corneal sterile
inflammation and wound healing. Invest Ophthalmol Vis Sci 52:8549-8557.
Eguchi S, Kawai T, Scalia R, & Rizzo V (2018). Understanding
Angiotensin II Type 1 Receptor Signaling in Vascular Pathophysiology.
Hypertension 71: 804-810.
El Jammal T, Gerfaud-Valentin M, Seve P, & Jamilloux Y (2020).
Inhibition of JAK/STAT signaling in rheumatologic disorders: The
expanding spectrum. Joint Bone Spine 87: 119-129.
Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S, Belij-Rammerstorfer
S, et al. (2020). Safety and immunogenicity of the ChAdOx1
nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2,
single-blind, randomised controlled trial. Lancet 396: 467-478.
Franzetti M, Forastieri A, Borsa N, Pandolfo A, Molteni C, Borghesi
L, et al. (2021). IL-1 Receptor Antagonist Anakinra in the
Treatment of COVID-19 Acute Respiratory Distress Syndrome: A
Retrospective, Observational Study. J Immunol 206: 1569-1575.
Fujisue K, Sugamura K, Kurokawa H, Matsubara J, Ishii M, Izumiya
Y, et al. (2017). Colchicine Improves Survival, Left Ventricular
Remodeling, and Chronic Cardiac Function After Acute Myocardial
Infarction. Circ J 81: 1174-1182.
Gallagher PE, Ferrario CM, & Tallant EA (2008). MAP kinase/phosphatase
pathway mediates the regulation of ACE2 by angiotensin peptides. Am J
Physiol Cell Physiol 295: C1169-1174.
Gandolfini I, Delsante M, Fiaccadori E, Zaza G, Manenti L, Degli Antoni
A, et al. (2020). COVID-19 in kidney transplant recipients. Am J
Transplant 20: 1941-1943.
Garbers C, Aparicio-Siegmund S, & Rose-John S (2015). The
IL-6/gp130/STAT3 signaling axis: recent advances towards specific
inhibition. Curr Opin Immunol 34: 75-82.
Gorgolas Hernandez-Mora M, Cabello Ubeda A, Prieto-Perez L, Villar
Alvarez F, Alvarez Alvarez B, Rodriguez Nieto MJ, et al. (2021).
Compassionate use of tocilizumab in severe SARS-CoV2 pneumonia. Int J
Infect Dis 102: 303-309.
Goulopoulou S, McCarthy CG, & Webb RC (2016). Toll-like Receptors in
the Vascular System: Sensing the Dangers Within. Pharmacol Rev
68: 142-167.
Grassin-Delyle S, Abrial C, Salvator H, Brollo M, Naline E, & Devillier
P (2020). The Role of Toll-Like Receptors in the Production of Cytokines
by Human Lung Macrophages. J Innate Immun 12: 63-73.
Hadjadj J, Castro CN, Tusseau M, Stolzenberg MC, Mazerolles F, Aladjidi
N, et al. (2020). Early-onset autoimmunity associated with SOCS1
haploinsufficiency. Nat Commun 11: 5341.
Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, & van Goor H
(2004). Tissue distribution of ACE2 protein, the functional receptor for
SARS coronavirus. A first step in understanding SARS pathogenesis. J
Pathol 203: 631-637.
Hariyanto TI, Halim DA, Jodhinata C, Yanto TA, & Kurniawan A (2021).
Colchicine treatment can improve outcomes of coronavirus disease 2019
(COVID-19): A systematic review and meta-analysis. Clin Exp Pharmacol
Physiol.
He Y, Hara H, & Nunez G (2016). Mechanism and Regulation of NLRP3
Inflammasome Activation. Trends Biochem Sci 41: 1012-1021.
Helms J, Kremer S, Merdji H, Clere-Jehl R, Schenck M, Kummerlen C,
et al. (2020). Neurologic Features in Severe SARS-CoV-2 Infection. N
Engl J Med 382: 2268-2270.
Herold T, Jurinovic V, Arnreich C, Lipworth BJ, Hellmuth JC, von
Bergwelt-Baildon M, et al. (2020). Elevated levels of IL-6 and
CRP predict the need for mechanical ventilation in COVID-19. J Allergy
Clin Immunol 146: 128-136 e124.
Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen
S, et al. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and
TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell
181: 271-280 e278.
Hu B, Huang S, & Yin L (2021). The cytokine storm and COVID-19. J Med
Virol 93: 250-256.
Huang AT, Garcia-Carreras B, Hitchings MDT, Yang B, Katzelnick LC,
Rattigan SM, et al. (2020a). A systematic review of antibody
mediated immunity to coronaviruses: kinetics, correlates of protection,
and association with severity. Nat Commun 11: 4704.
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. (2020b).
Clinical features of patients infected with 2019 novel coronavirus in
Wuhan, China. Lancet 395: 497-506.
Huet T, Beaussier H, Voisin O, Jouveshomme S, Dauriat G, Lazareth
I, et al. (2020). Anakinra for severe forms of COVID-19: a cohort
study. Lancet Rheumatol 2: e393-e400.
Jamilloux Y, El Jammal T, Vuitton L, Gerfaud-Valentin M, Kerever S, &
Seve P (2019). JAK inhibitors for the treatment of autoimmune and
inflammatory diseases. Autoimmun Rev 18: 102390.
Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, et al. (2020).
Structure of M(pro) from SARS-CoV-2 and discovery of its inhibitors.
Nature 582: 289-293.
Kaman K, Azmy V, Chichra A, Britto-Leon C, & Price C (2021). Cytokine
profiles in severe SARS-CoV-2 infection requiring extracorporeal
membrane oxygenation support. Respir Med Case Rep 33: 101376.
Kang S, Yang M, Hong Z, Zhang L, Huang Z, Chen X, et al. (2020).
Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain
reveals potential unique drug targeting sites. Acta Pharm Sin B
10: 1228-1238.
Kawasaki T, & Kawai T (2014). Toll-like receptor signaling pathways.
Front Immunol 5: 461.
Kirchdoerfer RN, Cottrell CA, Wang N, Pallesen J, Yassine HM, Turner
HL, et al. (2016). Pre-fusion structure of a human coronavirus
spike protein. Nature 531: 118-121.
Klemm T, Ebert G, Calleja DJ, Allison CC, Richardson LW, Bernardini
JP, et al. (2020). Mechanism and inhibition of the papain-like
protease, PLpro, of SARS-CoV-2. EMBO J 39: e106275.
Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine
H, et al. (2016). Nrf2 suppresses macrophage inflammatory
response by blocking proinflammatory cytokine transcription. Nat Commun
7: 11624.
Kuhn AM, Tzieply N, Schmidt MV, von Knethen A, Namgaladze D, Yamamoto
M, et al. (2011). Antioxidant signaling via Nrf2 counteracts
lipopolysaccharide-mediated inflammatory responses in foam cell
macrophages. Free Radic Biol Med 50: 1382-1391.
Kwarteng A, Asiedu E, Sylverken AA, Larbi A, Sakyi SA, & Asiedu SO
(2021). Molecular characterization of interactions between the D614G
variant of SARS-CoV-2 S-protein and neutralizing antibodies: A
computational approach. Infect Genet Evol 91: 104815.
La Rosee F, & La Rosee P (2020). Ruxolitinib in COVID-19
Hyperinflammation and Haematologic Malignancies. Acta Haematol:1-3.
Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. (2020).
Structure of the SARS-CoV-2 spike receptor-binding domain bound to the
ACE2 receptor. Nature 581: 215-220.
Lariccia V, Magi S, Serfilippi T, Toujani M, Gratteri S, & Amoroso S
(2020). Challenges and Opportunities from Targeting Inflammatory
Responses to SARS-CoV-2 Infection: A Narrative Review. J Clin Med 9.
Lawrence T, & Fong C (2010). The resolution of inflammation:
anti-inflammatory roles for NF-kappaB. Int J Biochem Cell Biol
42: 519-523.
Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al.(2003). Angiotensin-converting enzyme 2 is a functional receptor for the
SARS coronavirus. Nature 426: 450-454.
Liang Y, Zhou HF, Tong M, Chen L, Ren K, & Zhao GJ (2019). Colchicine
inhibits endothelial inflammation via NLRP3/CRP pathway. Int J Cardiol
294: 55.
Liu F, Li L, Xu M, Wu J, Luo D, Zhu Y, et al. (2020). Prognostic
value of interleukin-6, C-reactive protein, and procalcitonin in
patients with COVID-19. J Clin Virol 127: 104370.
Liu X, Zhang X, Ding Y, Zhou W, Tao L, Lu P, et al. (2017).
Nuclear Factor E2-Related Factor-2 Negatively Regulates NLRP3
Inflammasome Activity by Inhibiting Reactive Oxygen Species-Induced
NLRP3 Priming. Antioxid Redox Signal 26: 28-43.
Logunov DY, Dolzhikova IV, Zubkova OV, Tukhvatulin AI, Shcheblyakov DV,
Dzharullaeva AS, et al. (2020). Safety and immunogenicity of an
rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in
two formulations: two open, non-randomised phase 1/2 studies from
Russia. Lancet 396: 887-897.
Luo P, Liu Y, Qiu L, Liu X, Liu D, & Li J (2020). Tocilizumab treatment
in COVID-19: A single center experience. J Med Virol 92:814-818.
Mahdi M, Motyan JA, Szojka ZI, Golda M, Miczi M, & Tozser J (2020).
Analysis of the efficacy of HIV protease inhibitors against SARS-CoV-2’s
main protease. Virol J 17: 190.
Maiese K, Chong ZZ, Shang YC, & Wang S (2012). Erythropoietin: new
directions for the nervous system. Int J Mol Sci 13:11102-11129.
Manenti L, Maggiore U, Fiaccadori E, Meschi T, Antoni AD, Nouvenne
A, et al. (2021). Reduced mortality in COVID-19 patients treated
with colchicine: Results from a retrospective, observational study. PLoS
One 16: e0248276.
Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. (2020).
Neurologic Manifestations of Hospitalized Patients With Coronavirus
Disease 2019 in Wuhan, China. JAMA Neurol 77: 683-690.
Mareev VY, Orlova YA, Plisyk AG, Pavlikova EP, Akopyan ZA,
Matskeplishvili ST, et al. (2021). Proactive anti-inflammatory
therapy with colchicine in the treatment of advanced stages of new
coronavirus infection. The first results of the COLORIT study.
Kardiologiia 61: 15-27.
McBride R, van Zyl M, & Fielding BC (2014). The coronavirus
nucleocapsid is a multifunctional protein. Viruses 6:2991-3018.
Mehta RM, Bansal S, Bysani S, & Kalpakam H (2021). A shorter symptom
onset to remdesivir treatment (SORT) interval is associated with a lower
mortality in moderate-to-severe COVID-19: A real-world analysis. Int J
Infect Dis 106: 71-77.
Mody V, Ho J, Wills S, Mawri A, Lawson L, Ebert M, et al. (2021).
Identification of 3-chymotrypsin like protease (3CLPro) inhibitors as
potential anti-SARS-CoV-2 agents. Commun Biol 4: 93.
Monteil V, Dyczynski M, Lauschke VM, Kwon H, Wirnsberger G, Youhanna
S, et al. (2021). Human soluble ACE2 improves the effect of
remdesivir in SARS-CoV-2 infection. EMBO Mol Med 13: e13426.
Moradian N, Gouravani M, Salehi MA, Heidari A, Shafeghat M, Hamblin
MR, et al. (2020). Cytokine release syndrome: inhibition of
pro-inflammatory cytokines as a solution for reducing COVID-19
mortality. Eur Cytokine Netw 31: 81-93.
Mossel EC, Wang J, Jeffers S, Edeen KE, Wang S, Cosgrove GP, et
al. (2008). SARS-CoV replicates in primary human alveolar type II cell
cultures but not in type I-like cells. Virology 372: 127-135.
Nasa P, Singh A, Upadhyay S, Bagadia S, Polumuru S, Shrivastava
PK, et al. (2020). Tocilizumab Use in COVID-19 Cytokine-release
Syndrome: Retrospective Study of Two Centers. Indian J Crit Care Med
24: 771-776.
Nataraj C, Oliverio MI, Mannon RB, Mannon PJ, Audoly LP, Amuchastegui
CS, et al. (1999). Angiotensin II regulates cellular immune
responses through a calcineurin-dependent pathway. J Clin Invest
104: 1693-1701.
Neubauer A, Wiesmann T, Vogelmeier CF, Mack E, Skevaki C, Gaik C,
et al. (2020). Ruxolitinib for the treatment of SARS-CoV-2 induced
acute respiratory distress syndrome (ARDS). Leukemia 34:2276-2278.
Nieto-Torres JL, DeDiego ML, Verdia-Baguena C, Jimenez-Guardeno JM,
Regla-Nava JA, Fernandez-Delgado R, et al. (2014). Severe acute
respiratory syndrome coronavirus envelope protein ion channel activity
promotes virus fitness and pathogenesis. PLoS Pathog 10:e1004077.
Nishimoto N, Terao K, Mima T, Nakahara H, Takagi N, & Kakehi T (2008).
Mechanisms and pathologic significances in increase in serum
interleukin-6 (IL-6) and soluble IL-6 receptor after administration of
an anti-IL-6 receptor antibody, tocilizumab, in patients with rheumatoid
arthritis and Castleman disease. Blood 112: 3959-3964.
Olagnier D, Farahani E, Thyrsted J, Blay-Cadanet J, Herengt A, Idorn
M, et al. (2020). SARS-CoV2-mediated suppression of
NRF2-signaling reveals potent antiviral and anti-inflammatory activity
of 4-octyl-itaconate and dimethyl fumarate. Nat Commun 11:4938.
Otterbein LE, Bach FH, Alam J, Soares M, Tao Lu H, Wysk M, et al.(2000). Carbon monoxide has anti-inflammatory effects involving the
mitogen-activated protein kinase pathway. Nat Med 6: 422-428.
Pelaia C, Calabrese C, Garofalo E, Bruni A, Vatrella A, & Pelaia G
(2021). Therapeutic Role of Tocilizumab in SARS-CoV-2-Induced Cytokine
Storm: Rationale and Current Evidence. Int J Mol Sci 22.
Perlman S, & Netland J (2009). Coronaviruses post-SARS: update on
replication and pathogenesis. Nat Rev Microbiol 7: 439-450.
Pesu M, Laurence A, Kishore N, Zwillich SH, Chan G, & O’Shea JJ (2008).
Therapeutic targeting of Janus kinases. Immunol Rev 223:132-142.
Pontali E, Volpi S, Signori A, Antonucci G, Castellaneta M, Buzzi
D, et al. (2021). Efficacy of early anti-inflammatory treatment
with high doses of intravenous anakinra with or without glucocorticoids
in patients with severe COVID-19 pneumonia. J Allergy Clin Immunol
147: 1217-1225.
Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. (2020).
Dysregulation of Immune Response in Patients With Coronavirus 2019
(COVID-19) in Wuhan, China. Clin Infect Dis 71: 762-768.
Rathnayake AD, Zheng J, Kim Y, Perera KD, Mackin S, Meyerholz DK,
et al. (2020). 3C-like protease inhibitors block coronavirus
replication in vitro and improve survival in MERS-CoV-infected mice. Sci
Transl Med 12.
Reichard JF, Motz GT, & Puga A (2007). Heme oxygenase-1 induction by
NRF2 requires inactivation of the transcriptional repressor BACH1.
Nucleic Acids Res 35: 7074-7086.
Richardson PJ, Ottaviani S, Prelle A, Stebbing J, Casalini G, &
Corbellino M (2020). CNS penetration of potential anti-COVID-19 drugs. J
Neurol 267: 1880-1882.
Roche (2020). An update on the phase III COVACTA trial of
Actemra/RoActemra in hospitalised patients with severe COVID-19
associated
pneumonia.
Rodriguez-Garcia JL, Sanchez-Nievas G, Arevalo-Serrano J, Garcia-Gomez
C, Jimenez-Vizuete JM, & Martinez-Alfaro E (2021). Baricitinib improves
respiratory function in patients treated with corticosteroids for
SARS-CoV-2 pneumonia: an observational cohort study. Rheumatology
(Oxford) 60: 399-407.
Rosas IO, Brau N, Waters M, Go RC, Hunter BD, Bhagani S, et al.(2021). Tocilizumab in Hospitalized Patients with Severe Covid-19
Pneumonia. N Engl J Med.
Ruan Q, Yang K, Wang W, Jiang L, & Song J (2020). Clinical predictors
of mortality due to COVID-19 based on an analysis of data of 150
patients from Wuhan, China. Intensive Care Med 46: 846-848.
Rut W, Lv Z, Zmudzinski M, Patchett S, Nayak D, Snipas SJ, et al.(2020). Activity profiling and crystal structures of inhibitor-bound
SARS-CoV-2 papain-like protease: A framework for anti-COVID-19 drug
design. Sci Adv 6.
Sagar S, Rathinavel AK, Lutz WE, Struble LR, Khurana S, Schnaubelt
AT, et al. (2021). Bromelain inhibits SARS-CoV-2 infection via
targeting ACE-2, TMPRSS2, and spike protein. Clin Transl Med
11: e281.
Santa Cruz A, Mendes-Frias A, Oliveira AI, Dias L, Matos AR, Carvalho
A, et al. (2021). Interleukin-6 Is a Biomarker for the
Development of Fatal Severe Acute Respiratory Syndrome Coronavirus 2
Pneumonia. Front Immunol 12: 613422.
Seif F, Aazami H, Khoshmirsafa M, Kamali M, Mohsenzadegan M, Pornour
M, et al. (2020). JAK Inhibition as a New Treatment Strategy for
Patients with COVID-19. Int Arch Allergy Immunol 181: 467-475.
Shen WJ, Asthana S, Kraemer FB, & Azhar S (2018). Scavenger receptor B
type 1: expression, molecular regulation, and cholesterol transport
function. J Lipid Res 59: 1114-1131.
Shin D, Mukherjee R, Grewe D, Bojkova D, Baek K, Bhattacharya A,
et al. (2020). Papain-like protease regulates SARS-CoV-2 viral spread
and innate immunity. Nature 587: 657-662.
Smith TRF, Patel A, Ramos S, Elwood D, Zhu X, Yan J, et al.(2020). Immunogenicity of a DNA vaccine candidate for COVID-19. Nat
Commun 11: 2601.
Sohn KM, Lee SG, Kim HJ, Cheon S, Jeong H, Lee J, et al. (2020).
COVID-19 Patients Upregulate Toll-like Receptor 4-mediated Inflammatory
Signaling That Mimics Bacterial Sepsis. J Korean Med Sci 35:e343.
Sproston NR, El Mohtadi M, Slevin M, Gilmore W, & Ashworth JJ (2018).
The Effect of C-Reactive Protein Isoforms on Nitric Oxide Production by
U937 Monocytes/Macrophages. Front Immunol 9: 1500.
Stebbing J, Sanchez Nievas G, Falcone M, Youhanna S, Richardson P,
Ottaviani S, et al. (2021). JAK inhibition reduces SARS-CoV-2
liver infectivity and modulates inflammatory responses to reduce
morbidity and mortality. Sci Adv 7: eabe4724.
Takahashi S, Yoshiya T, Yoshizawa-Kumagaye K, & Sugiyama T (2015).
Nicotianamine is a novel angiotensin-converting enzyme 2 inhibitor in
soybean. Biomed Res 36: 219-224.
Thepmankorn P, Bach J, Lasfar A, Zhao X, Souayah S, Chong ZZ, et
al. (2021). Cytokine storm induced by SARS-CoV-2 infection: The
spectrum of its neurological manifestations. Cytokine 138:155404.
Thimmulappa RK, Lee H, Rangasamy T, Reddy SP, Yamamoto M, Kensler
TW, et al. (2006a). Nrf2 is a critical regulator of the innate
immune response and survival during experimental sepsis. J Clin Invest
116: 984-995.
Thimmulappa RK, Scollick C, Traore K, Yates M, Trush MA, Liby KT,
et al. (2006b). Nrf2-dependent protection from LPS induced inflammatory
response and mortality by CDDO-Imidazolide. Biochem Biophys Res Commun
351: 883-889.
To KF, & Lo AW (2004). Exploring the pathogenesis of severe acute
respiratory syndrome (SARS): the tissue distribution of the coronavirus
(SARS-CoV) and its putative receptor, angiotensin-converting enzyme 2
(ACE2). J Pathol 203: 740-743.
Tomani JCD, Kagisha V, Tchinda AT, Jansen O, Ledoux A, Vanhamme L,
et al. (2020). The Inhibition of NLRP3 Inflammasome and IL-6 Production
by Hibiscus noldeae Baker f. Derived Constituents Provides a Link to Its
Anti-Inflammatory Therapeutic Potentials. Molecules 25: in
press.
Toniati P, Piva S, Cattalini M, Garrafa E, Regola F, Castelli F,
et al. (2020). Tocilizumab for the treatment of severe COVID-19
pneumonia with hyperinflammatory syndrome and acute respiratory failure:
A single center study of 100 patients in Brescia, Italy. Autoimmun Rev
19: 102568.
Ucciferri C, Auricchio A, Di Nicola M, Potere N, Abbate A, Cipollone
F, et al. (2020). Canakinumab in a subgroup of patients with
COVID-19. Lancet Rheumatol 2: e457-ee458.
van den Berg DF, & Te Velde AA (2020). Severe COVID-19: NLRP3
Inflammasome Dysregulated. Front Immunol 11: 1580.
Vijayan V, Wagener F, & Immenschuh S (2018). The macrophage heme-heme
oxygenase-1 system and its role in inflammation. Biochem Pharmacol
153: 159-167.
Vogelpoel LT, Hansen IS, Visser MW, Nagelkerke SQ, Kuijpers TW,
Kapsenberg ML, et al. (2015). FcgammaRIIa cross-talk with TLRs,
IL-1R, and IFNgammaR selectively modulates cytokine production in human
myeloid cells. Immunobiology 220: 193-199.
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, & Veesler D
(2020). Structure, Function, and Antigenicity of the SARS-CoV-2 Spike
Glycoprotein. Cell 183: 1735.
Walsh EE, Frenck R, Falsey AR, Kitchin N, Absalon J, Gurtman A, et
al. (2020). RNA-Based COVID-19 Vaccine BNT162b2 Selected for a Pivotal
Efficacy Study. medRxiv.
Wang LY, Cui JJ, Ouyang QY, Zhan Y, Guo CX, & Yin JY (2020). Remdesivir
and COVID-19. Lancet 396: 953-954.
Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, et al. (2020a).
Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2.
Cell 181: 894-904 e899.
Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. (2020b).
Remdesivir in adults with severe COVID-19: a randomised, double-blind,
placebo-controlled, multicentre trial. Lancet 395: 1569-1578.
Wei C, Wan L, Yan Q, Wang X, Zhang J, Yang X, et al. (2020).
HDL-scavenger receptor B type 1 facilitates SARS-CoV-2 entry. Nat Metab
2: 1391-1400.
Wen Y, Liu Y, Tang T, Lv L, Liu H, Ma K, et al. (2016). NLRP3
inflammasome activation is involved in Ang II-induced kidney damage via
mitochondrial dysfunction. Oncotarget 7: 54290-54302.
Wong SK, Li W, Moore MJ, Choe H, & Farzan M (2004). A 193-amino acid
fragment of the SARS coronavirus S protein efficiently binds
angiotensin-converting enzyme 2. J Biol Chem 279: 3197-3201.
Wrapp D, De Vlieger D, Corbett KS, Torres GM, Wang N, Van Breedam
W, et al. (2020). Structural Basis for Potent Neutralization of
Betacoronaviruses by Single-Domain Camelid Antibodies. Cell
181: 1004-1015 e1015.
Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. (2020a). Risk
Factors Associated With Acute Respiratory Distress Syndrome and Death in
Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA
Intern Med 180: 934-943.
Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, et al. (2020b).
Analysis of therapeutic targets for SARS-CoV-2 and discovery of
potential drugs by computational methods. Acta Pharm Sin B 10:766-788.
Wu J, Yang X, Zhang YF, Zhou SF, Zhang R, Dong XQ, et al. (2009).
Angiotensin II upregulates Toll-like receptor 4 and enhances
lipopolysaccharide-induced CD40 expression in rat peritoneal mesothelial
cells. Inflamm Res 58: 473-482.
Xu X, Han M, Li T, Sun W, Wang D, Fu B, et al. (2020). Effective
treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad
Sci U S A 117: 10970-10975.
Yamamoto M, Matsuyama S, Li X, Takeda M, Kawaguchi Y, Inoue JI, et
al. (2016). Identification of Nafamostat as a Potent Inhibitor of
Middle East Respiratory Syndrome Coronavirus S Protein-Mediated Membrane
Fusion Using the Split-Protein-Based Cell-Cell Fusion Assay. Antimicrob
Agents Chemother 60: 6532-6539.
Yan R, Zhang Y, Li Y, Xia L, Guo Y, & Zhou Q (2020). Structural basis
for the recognition of SARS-CoV-2 by full-length human ACE2. Science
367: 1444-1448.
Yang J, Wang W, Chen Z, Lu S, Yang F, Bi Z, et al. (2020). A
vaccine targeting the RBD of the S protein of SARS-CoV-2 induces
protective immunity. Nature 586: 572-577.
Yin W, Mao C, Luan X, Shen DD, Shen Q, Su H, et al. (2020).
Structural basis for inhibition of the RNA-dependent RNA polymerase from
SARS-CoV-2 by remdesivir. Science 368: 1499-1504.
Zegeye MM, Lindkvist M, Falker K, Kumawat AK, Paramel G, Grenegard
M, et al. (2018). Activation of the JAK/STAT3 and PI3K/AKT
pathways are crucial for IL-6 trans-signaling-mediated pro-inflammatory
response in human vascular endothelial cells. Cell Commun Signal
16: 55.
Zhang H, Penninger JM, Li Y, Zhong N, & Slutsky AS (2020).
Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor:
molecular mechanisms and potential therapeutic target. Intensive Care
Med 46: 586-590.
Zhang J, Hao Y, Ou W, Ming F, Liang G, Qian Y, et al. (2020).
Serum interleukin-6 is an indicator for severity in 901 patients with
SARS-CoV-2 infection: a cohort study. J Transl Med 18: 406.
Zhou JH, Wu B, Wang WX, Lei F, Cheng X, Qin JJ, et al. (2020a).
No significant association between dipeptidyl peptidase-4 inhibitors and
adverse outcomes of COVID-19. World J Clin Cases 8: 5576-5588.
Zhou L, Huntington K, Zhang S, Carlsen L, So EY, Parker C, et al.(2020b). MEK inhibitors reduce cellular expression of ACE2, pERK, pRb
while stimulating NK-mediated cytotoxicity and attenuating inflammatory
cytokines relevant to SARS-CoV-2 infection. Oncotarget 11:4201-4223.
Zhu FC, Guan XH, Li YH, Huang JY, Jiang T, Hou LH, et al. (2020).
Immunogenicity and safety of a recombinant adenovirus type-5-vectored
COVID-19 vaccine in healthy adults aged 18 years or older: a randomised,
double-blind, placebo-controlled, phase 2 trial. Lancet 396:479-488.
Zinovkin RA, & Grebenchikov OA (2020). Transcription Factor Nrf2 as a
Potential Therapeutic Target for Prevention of Cytokine Storm in
COVID-19 Patients. Biochemistry (Mosc) 85: 833-837.