References
[1]Remark R, Becker C, Gomez JE, Damotte D, Dieu-Nosjean MC,
Sautès-Fridman C, Fridman WH, Powell CA, Altorki NK, Merad M, Gnjatic S.
The non-small cell lung cancer immune contexture. A major determinant of
tumor characteristics and patient outcome. Am J Respir Crit Care Med.
2015 Feb 15;191(4):377-90. doi: 10.1164/rccm.201409-1671PP. PMID:
25369536; PMCID: PMC5447326.
[2]Liang G, Meng W, Huang X, et al. miR-196b-5p-mediated
downregulation of TSPAN12 and GATA6 promotes tumor progression in
non-small cell lung cancer. Proc Natl Acad Sci U S A.
2020;117(8):4347-4357. doi:10.1073/pnas.1917531117
[3]Liu JC, Narva S, Zhou K, Zhang W. A Review on the Antitumor
Activity of Various Nitrogenous-based Heterocyclic Compounds as NSCLC
Inhibitors. Mini Rev Med Chem. 2019;19(18):1517-1530.
doi:10.2174/1389557519666190312152358
[4]Grootjans W, de Geus-Oei LF, Troost EG, Visser EP, Oyen WJ,
Bussink J. PET in the management of locally advanced and metastatic
NSCLC. Nat Rev Clin Oncol. 2015;12(7):395-407.
doi:10.1038/nrclinonc.2015.75
[5]Socinski MA, Obasaju C, Gandara D, et al. Clinicopathologic
Features of Advanced Squamous NSCLC. J Thorac Oncol.
2016;11(9):1411-1422. doi:10.1016/j.jtho.2016.05.024
[6]Chae YK, Chang S, Ko T, et al. Epithelial-mesenchymal transition
(EMT) signature is inversely associated with T-cell infiltration in
non-small cell lung cancer (NSCLC). Sci Rep. 2018;8(1):2918. Published
2018 Feb 13. doi:10.1038/s41598-018-21061-1
[7]Ettinger DS, Wood DE, Aisner DL, et al. Non-Small Cell Lung
Cancer, Version 5.2017, NCCN Clinical Practice Guidelines in Oncology. J
Natl Compr Canc Netw. 2017;15(4):504-535. doi:10.6004/jnccn.2017.0050
[8]Stewart DJ. Wnt signaling pathway in non-small cell lung
cancer. J Natl Cancer Inst. 2014;106(1):djt356. doi:10.1093/jnci/djt356
[9]Chen Z, Fillmore CM, Hammerman PS, Kim CF, Wong KK.
Non-small-cell lung cancers: a heterogeneous set of diseases
[published correction appears in Nat Rev Cancer. 2015
Apr;15(4):247]. Nat Rev Cancer. 2014;14(8):535-546.
doi:10.1038/nrc3775
[10]Naylor EC, Desani JK, Chung PK. Targeted Therapy and
Immunotherapy for Lung Cancer. Surg Oncol Clin N Am. 2016;25(3):601-609.
doi:10.1016/j.soc.2016.02.011
[11]Zhao Y, Qiao G, Wang X, Song Y, Zhou X, Jiang N, Zhou L, Huang
H, Zhao J, Morse MA, Hobeika A, Ren J, Lyerly HK. Combination of DC/CIK
adoptive T cell immunotherapy with chemotherapy in advanced
non-small-cell lung cancer (NSCLC) patients: a prospective patients’
preference-based study (PPPS). Clin Transl Oncol. 2019
Jun;21(6):721-728. doi: 10.1007/s12094-018-1968-3. Epub 2018 Oct 29.
PMID: 30374838.
[12]Lurje I, Hammerich L, Tacke F. Dendritic Cell and T Cell
Crosstalk in Liver Fibrogenesis and Hepatocarcinogenesis: Implications
for Prevention and Therapy of Liver Cancer. Int J Mol Sci. 2020 Oct
6;21(19):7378. doi: 10.3390/ijms21197378. PMID: 33036244; PMCID:
PMC7583774.
[13]Singh SK, Larsson M, Schön T, Stendahl O, Blomgran R. HIV
Interferes with the Dendritic Cell-T Cell Axis of Macrophage Activation
by Shifting Mycobacterium tuberculosis-Specific CD4 T Cells into a
Dysfunctional Phenotype. J Immunol. 2019;202(3):816-826.
doi:10.4049/jimmunol.1800523
[14]Beyersdorf N, Kerkau T, Hünig T. CD28 co-stimulation in T-cell
homeostasis: a recent perspective. Immunotargets Ther. 2015 May
28;4:111-22. doi: 10.2147/ITT.S61647. PMID: 27471717; PMCID: PMC4918251.
[15]Kumar BV, Connors TJ, Farber DL. Human T Cell Development,
Localization, and Function throughout Life. Immunity.
2018;48(2):202-213. doi:10.1016/j.immuni.2018.01.007
[16]Kondo K, Ohigashi I, Takahama Y. Thymus machinery for T-cell
selection. Int Immunol. 2019;31(3):119-125. doi:10.1093/intimm/dxy081
[17]Germain RN. T-cell development and the CD4-CD8 lineage
decision. Nat Rev Immunol. 2002;2(5):309-322. doi:10.1038/nri798
[18]Bellón T. Mechanisms of Severe Cutaneous Adverse Reactions:
Recent Advances. Drug Saf. 2019;42(8):973-992.
doi:10.1007/s40264-019-00825-2
[19]Fang D, Zhu J. Dynamic balance between master transcription
factors determines the fates and functions of CD4 T cell and innate
lymphoid cell subsets. J Exp Med. 2017 Jul 3;214(7):1861-1876. doi:
10.1084/jem.20170494. Epub 2017 Jun 19. PMID: 28630089; PMCID:
PMC5502437.
[20]Zhu X, Zhu J. CD4 T Helper Cell Subsets and Related Human
Immunological Disorders. Int J Mol Sci. 2020;21(21):8011. Published 2020
Oct 28. doi:10.3390/ijms21218011
[21]Ikeogu NM, Edechi CA, Akaluka GN, et al. Semaphorin 3E Promotes
Susceptibility to Leishmania major Infection in Mice by Suppressing
CD4+ Th1 Cell Response. J Immunol. 2021;206(3):588-598.
doi:10.4049/jimmunol.2000516
[22]Rana AK, Li Y, Dang Q, Yang F. Monocytes in rheumatoid
arthritis: Circulating precursors of macrophages and osteoclasts and,
their heterogeneity and plasticity role in RA pathogenesis. Int
Immunopharmacol. 2018;65:348-359. doi:10.1016/j.intimp.2018.10.016
[23]Shen L, Zhang H, Caimol M, et al. Invariant natural killer T
cells in lupus patients promote IgG and IgG autoantibody production. Eur
J Immunol. 2015;45(2):612-623. doi:10.1002/eji.201444760
[24]Jorgovanovic D, Song M, Wang L, Zhang Y. Roles of IFN-γ in tumor
progression and regression: a review. Biomark Res. 2020;8:49. Published
2020 Sep 29. doi:10.1186/s40364-020-00228-x
[25]Leong JW, Chase JM, Romee R, et al. Preactivation with IL-12,
IL-15, and IL-18 induces CD25 and a functional high-affinity IL-2
receptor on human cytokine-induced memory-like natural killer
cells. Biol Blood Marrow Transplant. 2014;20(4):463-473.
doi:10.1016/j.bbmt.2014.01.006
[26]Tiegs G, Horst AK. TNF in the liver: targeting a central player
in inflammation. Semin Immunopathol. 2022;44(4):445-459.
doi:10.1007/s00281-022-00910-2
[27]Guo Z, Gao WS, Wang YF, Gao F, Wang W, Ding WY. MiR-502
Suppresses TNF-α-Induced Nucleus Pulposus Cell Apoptosis by Targeting
TARF2. Biomed Res Int. 2021;2021:5558369. Published 2021 Apr 1.
doi:10.1155/2021/5558369
[28]Kumar S, Jeong Y, Ashraf MU, Bae YS. Dendritic Cell-Mediated Th2
Immunity and Immune Disorders. Int J Mol Sci. 2019;20(9):2159. Published
2019 May 1. doi:10.3390/ijms20092159
[29]Stark JM, Tibbitt CA, Coquet JM. The Metabolic Requirements of
Th2 Cell Differentiation. Front Immunol. 2019;10:2318. Published 2019
Sep 27. doi:10.3389/fimmu.2019.02318
[30]Nakayama T, Hirahara K, Onodera A, et al. Th2 Cells in Health
and Disease. Annu Rev Immunol. 2017;35:53-84.
doi:10.1146/annurev-immunol-051116-052350
[31]Nicola S, Ridolfi I, Rolla G, et al. IL-17 Promotes Nitric Oxide
Production in Non-Small-Cell Lung Cancer. J Clin Med. 2021;10(19):4572.
Published 2021 Oct 1. doi:10.3390/jcm10194572
[32]Li B, Huang L, Lv P, et al. The role of Th17 cells in
psoriasis. Immunol Res. 2020;68(5):296-309.
doi:10.1007/s12026-020-09149-1
[33]Karczewski J, Mazur M, Rychlewska-Hańczewska A, Adamski Z. Rola
limfocytów Th17 w patogenezie raka jelita grubego [Role of Th17
lymphocytes in pathogenesis of colorectal cancer]. Postepy Hig Med
Dosw (Online). 2014;68:42-47. Published 2014 Jan 22.
doi:10.5604/17322693.1086074
[34]Dario A A Vignali, Lauren W Collison, Creg J Workman. How
regulatory T cells work. Nat Rev Immunol. 2008 Jul;8(7):523-32. doi:
10.1038/nri2343.
[35]Durgeau A, Virk Y, Corgnac S, Mami-Chouaib F. Recent Advances in
Targeting CD8 T-Cell Immunity for More Effective Cancer
Immunotherapy. Front Immunol. 2018;9:14. Published 2018 Jan 22.
doi:10.3389/fimmu.2018.00014
[36]Zhang N, Bevan MJ. CD8(+) T cells: foot soldiers of the immune
system. Immunity. 2011;35(2):161-168. doi:10.1016/j.immuni.2011.07.010
[37]Sabat R, Wolk K, Loyal L, Döcke WD, Ghoreschi K. T cell
pathology in skin inflammation. Semin Immunopathol. 2019;41(3):359-377.
doi:10.1007/s00281-019-00742-7
[38]Coe GL, Redd PS, Paschall AV, et al. Ceramide mediates
FasL-induced caspase 8 activation in colon carcinoma cells to enhance
FasL-induced cytotoxicity by tumor-specific cytotoxic T lymphocytes. Sci
Rep. 2016;6:30816. Published 2016 Aug 4. doi:10.1038/srep30816
[39]Jimbo H, Nagai H, Fujiwara S, Shimoura N, Nishigori C. Fas-FasL
interaction in cytotoxic T cell-mediated vitiligo: The role of lesional
expression of tumor necrosis factor-α and interferon-γ in Fas-mediated
melanocyte apoptosis. Exp Dermatol. 2020;29(1):61-70.
doi:10.1111/exd.14053
[40]Lurje I, Hammerich L, Tacke F. Dendritic Cell and T Cell
Crosstalk in Liver Fibrogenesis and Hepatocarcinogenesis: Implications
for Prevention and Therapy of Liver Cancer. Int J Mol Sci.
2020;21(19):7378. Published 2020 Oct 6. doi:10.3390/ijms21197378
[41]Liu J, Zhang X, Cheng Y, Cao X. Dendritic cell migration in
inflammation and immunity. Cell Mol Immunol. 2021;18(11):2461-2471.
doi:10.1038/s41423-021-00726-4
[42]Murphy TL, Murphy KM. Dendritic cells in cancer immunology. Cell
Mol Immunol. 2022;19(1):3-13. doi:10.1038/s41423-021-00741-5
[43]Garris CS, Luke JJ. Dendritic Cells, the T-cell-inflamed Tumor
Microenvironment, and Immunotherapy Treatment Response. Clin Cancer Res.
2020;26(15):3901-3907. doi:10.1158/1078-0432.CCR-19-1321
[44]Gajewski TF, Cron KR. cDC1 dysregulation in cancer: An
opportunity for intervention. J Exp Med. 2020;217(8):e20200816.
doi:10.1084/jem.20200816
[45]Noubade R, Majri-Morrison S, Tarbell KV. Beyond cDC1: Emerging
Roles of DC Crosstalk in Cancer Immunity. Front Immunol. 2019;10:1014.
Published 2019 May 9. doi:10.3389/fimmu.2019.01014
[46] Shen Chunyi, Zhang Zhen, Tian Yonggui, Zhang Yi. Tws119
combined with cytokines promotes the differentiation and function of CD8
~ + memory T cells [J]. Chinese Journal of
immunology, 2019,35 (04): 435-439 + 445
[47]Borzovа NY, Ivanenkova NI, Sotnikova NY, Malyshkina AI. Klin Lab
Diagn. 2020;65(5):294-298. doi:10.18821/0869-2084-2020-65-5-294-298
[48]Zhang M, Yang W, Wang P, et al. CCL7 recruits cDC1 to promote
antitumor immunity and facilitate checkpoint immunotherapy to non-small
cell lung cancer. Nat Commun. 2020;11(1):6119. Published 2020 Nov 30.
doi:10.1038/s41467-020-19973-6
[49]Balan S, Saxena M, Bhardwaj N. Dendritic cell subsets and
locations. Int Rev Cell Mol Biol. 2019;348:1-68.
doi:10.1016/bs.ircmb.2019.07.004
[50]Zhu S, Yang N, Wu J, et al. Tumor microenvironment-related
dendritic cell deficiency: a target to enhance tumor
immunotherapy. Pharmacol Res. 2020;159:104980.
doi:10.1016/j.phrs.2020.104980
[51]Rönnblom L. The importance of the type I interferon system in
autoimmunity. Clin Exp Rheumatol. 2016;34(4 Suppl 98):21-24.
[52]Chen K, Liu J, Cao X. Regulation of type I interferon signaling
in immunity and inflammation: A comprehensive review. J Autoimmun.
2017;83:1-11. doi:10.1016/j.jaut.2017.03.008
[53]Finetti F, Baldari CT. The immunological synapse as a
pharmacological target. Pharmacol Res. 2018;134:118-133.
doi:10.1016/j.phrs.2018.06.009
[54]Dustin ML. The immunological synapse. Cancer Immunol Res.
2014;2(11):1023-1033. doi:10.1158/2326-6066.CIR-14-0161
[55]van Panhuys N. TCR Signal Strength Alters T-DC Activation and
Interaction Times and Directs the Outcome of Differentiation. Front
Immunol. 2016;7:6. Published 2016 Jan 25. doi:10.3389/fimmu.2016.00006
[56]Pang YG, Chang CC. Artificial Antigen Presentosomes for T Cell
Activation. Methods Mol Biol. 2020;2111:141-151.
doi:10.1007/978-1-0716-0266-9_12
[57]Kishton RJ, Sukumar M, Restifo NP. Metabolic Regulation of T
Cell Longevity and Function in Tumor Immunotherapy. Cell Metab.
2017;26(1):94-109. doi:10.1016/j.cmet.2017.06.016
[58]Chapman NM, Boothby MR, Chi H. Metabolic coordination of T cell
quiescence and activation. Nat Rev Immunol. 2020;20(1):55-70.
doi:10.1038/s41577-019-0203-y
[59]Shimauchi T, Piguet V. DC-T cell virological synapses and the
skin: novel perspectives in dermatology. Exp Dermatol. 2015;24(1):1-4.
doi:10.1111/exd.12511
[60]Letourneur F, Klausner RD. Activation of T cells by a tyrosine
kinase activation domain in the cytoplasmic tail of CD3
epsilon. Science. 1992;255(5040):79-82. doi:10.1126/science.1532456
[61]Okoye IS, Houghton M, Tyrrell L, Barakat K, Elahi S.
Coinhibitory Receptor Expression and Immune Checkpoint Blockade:
Maintaining a Balance in CD8+ T Cell Responses to Chronic Viral
Infections and Cancer. Front Immunol. 2017;8:1215. Published 2017 Sep
29. doi:10.3389/fimmu.2017.01215
[62]Thangavelu G, Smolarchuk C, Anderson CC. Co-inhibitory
molecules: Controlling the effectors or controlling the
controllers? Self Nonself. 2010;1(2):77-88. doi:10.4161/self.1.2.11548
[63]Sanchez-Lockhart M, Rojas AV, Fettis MM, Bauserman R, Higa TR,
Miao H, Waugh RE, Miller J. T cell receptor signaling can directly
enhance the avidity of CD28 ligand binding. PLoS One. 2014 Feb
24;9(2):e89263. doi: 10.1371/journal.pone.0089263. PMID: 24586641;
PMCID: PMC3933428.
[64]Crespo J, Sun H, Welling TH, Tian Z, Zou W. T cell anergy,
exhaustion, senescence, and stemness in the tumor microenvironment. Curr
Opin Immunol. 2013;25(2):214-221. doi:10.1016/j.coi.2012.12.003
[65] Qin Qiuhong, Zhang Yaoyao, pan Jian, Huang Tianming, Chen
Chengxiao, Luo Guorong. Effect of anti-CD3 / CD28 monoclonal antibody
combined with PHA on T lymphocyte activation and proliferation [J].
Progress in Microbiology and immunology, 2020,48 (02): 16-21. Doi:
10.13309/j.cnki.pmi.2020.02.003
[66] Xu Xuemei, Tang Zongsheng, Li Zhihong. The role of T cell CD28
family receptors in the pathogenesis of asthma [J]. Journal of
Southeast University (Medical Edition), 2016,35 (06): 1009-1013
[67]Porciello N, Tuosto L. CD28 costimulatory signals in T
lymphocyte activation: Emerging functions beyond a qualitative and
quantitative support to TCR signalling. Cytokine Growth Factor Rev.
2016;28:11-19. doi:10.1016/j.cytogfr.2016.02.004
[68]Beyersdorf N, Kerkau T, Hünig T. CD28 co-stimulation in T-cell
homeostasis: a recent perspective. Immunotargets Ther. 2015;4:111-122.
Published 2015 May 28. doi:10.2147/ITT.S61647
[69]Minato N, Hattori M, Hamazaki Y. Physiology and pathology of
T-cell aging. Int Immunol. 2020;32(4):223-231.
doi:10.1093/intimm/dxaa006
[70]Beckermann KE, Dudzinski SO, Rathmell JC. Dysfunctional T cell
metabolism in the tumor microenvironment. Cytokine Growth Factor Rev.
2017;35:7-14. doi:10.1016/j.cytogfr.2017.04.003
[71]Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation
and co-inhibition [published correction appears in Nat Rev Immunol.
2013 Jul;13(7):542]. Nat Rev Immunol. 2013;13(4):227-242.
doi:10.1038/nri3405
[72]Osii RS, Otto TD, Garside P, Ndungu FM, Brewer JM. The Impact of
Malaria Parasites on Dendritic Cell-T Cell Interaction. Front Immunol.
2020;11:1597. Published 2020 Jul 24. doi:10.3389/fimmu.2020.01597
[73]Chalupova AM, Vosahlikova S, Rozkova D, et al. Methods to assess
DC-dependent priming of T cell responses by dying cells. Methods
Enzymol. 2020;632:55-65. doi:10.1016/bs.mie.2019.05.045
[74]Wonderlich ER, Wu WC, Normolle DP, Barratt-Boyes SM. Macrophages
and Myeloid Dendritic Cells Lose T Cell-Stimulating Function in Simian
Immunodeficiency Virus Infection Associated with Diminished IL-12 and
IFN-α Production. J Immunol. 2015;195(7):3284-3292.
doi:10.4049/jimmunol.1500683
[75]Jung HJ, Park SH, Cho KM, Jung KI, Cho D, Kim TS. Threonyl-tRNA
Synthetase Promotes T Helper Type 1 Cell Responses by Inducing Dendritic
Cell Maturation and IL-12 Production via an NF-κB Pathway. Front
Immunol. 2020;11:571959. Published 2020 Oct 14.
doi:10.3389/fimmu.2020.571959
[76]Garris CS, Arlauckas SP, Kohler RH, et al. Successful Anti-PD-1
Cancer Immunotherapy Requires T Cell-Dendritic Cell Crosstalk Involving
the Cytokines IFN-γ and IL-12. Immunity. 2018;49(6):1148-1161.e7.
doi:10.1016/j.immuni.2018.09.024
[77] Chen Gang, Wang Jingke. Correlation between relative lymphocyte
count and acute myocardial infarction [J]. Xinjiang Medical Journal,
2007 (02): 95
[78]Petersen RP, Campa MJ, Sperlazza J, et al. Tumor infiltrating
Foxp3+ regulatory T-cells are associated with recurrence in pathologic
stage I NSCLC patients. Cancer. 2006;107(12):2866-2872.
doi:10.1002/cncr.22282
[79]Liu H, Zhang T, Ye J, et al. Tumor-infiltrating lymphocytes
predict response to chemotherapy in patients with advance non-small cell
lung cancer. Cancer Immunol Immunother. 2012;61(10):1849-1856.
doi:10.1007/s00262-012-1231-7
[80]Kalafati L, Kourtzelis I, Schulte-Schrepping J, et al. Innate
Immune Training of Granulopoiesis Promotes Anti-tumor Activity. Cell.
2020;183(3):771-785.e12. doi:10.1016/j.cell.2020.09.058
[81]Bonanni V, Sciumè G, Santoni A, Bernardini G. Bone Marrow NK
Cells: Origin, Distinctive Features, and Requirements for Tissue
Localization. Front Immunol. 2019;10:1569. Published 2019 Jul 10.
doi:10.3389/fimmu.2019.01569
[82]Han X, Yang Q, Zhang J, Cao J. Correlation between changes in
the number of peripheral blood lymphocytes and survival rate in patients
with cervical cancer after radio-chemotherapy. Cancer Radiother.
2021;25(1):72-76. doi:10.1016/j.canrad.2020.08.045
[83]Jia W, Fu ZL, Wang X, et al. Decreased Absolute Number of
Circulating Regulatory T Cells in Patients With Takayasu’s
Arteritis. Front Immunol. 2021;12:768244. Published 2021 Dec 23.
doi:10.3389/fimmu.2021.768244
[84]Saito H, Shimizu S, Kono Y, et al. Score of the preoperative
absolute number of lymphocytes, monocytes, and neutrophils as a
prognostic indicator for patients with gastric cancer. Surg Today.
2019;49(10):850-858. doi:10.1007/s00595-019-01817-6
[85]Pike LRG, Bang A, Mahal BA, et al. The Impact of Radiation
Therapy on Lymphocyte Count and Survival in Metastatic Cancer Patients
Receiving PD-1 Immune Checkpoint Inhibitors. Int J Radiat Oncol Biol
Phys. 2019;103(1):142-151. doi:10.1016/j.ijrobp.2018.09.010
[86]Oh SY, Heo J, Noh OK, Chun M, Cho O, Oh YT. Absolute Lymphocyte
Count in Preoperative Chemoradiotherapy for Rectal Cancer: Changes Over
Time and Prognostic Significance. Technol Cancer Res Treat.
2018;17:1533033818780065. doi:10.1177/1533033818780065
[87]Xia Y, Li W, Li Y, Liu Y, Ye S, Liu A, Yu J, Jia Y, Liu X, Chen
H, Guo Y. The clinical value of the changes of peripheral lymphocyte
subsets absolute counts in patients with non-small cell lung cancer.
Transl Oncol. 2020 Dec;13(12):100849. doi: 10.1016/j.tranon.2020.100849.
Epub 2020 Aug 28.
[88]Kiritsy MC, McCann K, Mott D, et al. Mitochondrial respiration
contributes to the interferon gamma response in antigen-presenting
cells. Elife. 2021;10:e65109. Published 2021 Nov 2.
doi:10.7554/eLife.65109
[89]Wu Shanshan, Wang Baishan, Yan Feng, Zhang Ning, Zhang Cheng, Li
Zhijing Analysis on the correlation between the expression of NKG2D on
CD8 ~ + T cells and their cytotoxic activity in patients
with non-small cell lung cancer before and after taking Fuzheng
anticancer formula [C] / / Proceedings of the 16th Shenyang Science
and Technology Annual Conference (Science, engineering, agriculture and
medicine). [publisher unknown], 2019:180-188
[90]Rotte A. Combination of CTLA-4 and PD-1 blockers for treatment
of cancer. J Exp Clin Cancer Res. 2019;38(1):255. Published 2019 Jun 13.
doi:10.1186/s13046-019-1259-z
[91]Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT:
Co-inhibitory Receptors with Specialized Functions in Immune
Regulation. Immunity. 2016;44(5):989-1004.
doi:10.1016/j.immuni.2016.05.001
[92]Hosseini A, Gharibi T, Marofi F, Babaloo Z, Baradaran B. CTLA-4:
From mechanism to autoimmune therapy. Int Immunopharmacol.
2020;80:106221. doi:10.1016/j.intimp.2020.106221
[93]Dyck L, Mills KHG. Immune checkpoints and their inhibition in
cancer and infectious diseases. Eur J Immunol. 2017;47(5):765-779.
doi:10.1002/eji.201646875
[94]Chen R, Tao Y, Xu X, et al. The efficacy and safety of
nivolumab, pembrolizumab, and atezolizumab in treatment of advanced
non-small cell lung cancer. Discov Med. 2018;26(143):155-166.
[95]Halmos B, Burke T, Kalyvas C, et al. A Matching-Adjusted
Indirect Comparison of Pembrolizumab + Chemotherapy vs. Nivolumab +
Ipilimumab as First-Line Therapies in Patients with PD-L1 TPS ≥1%
Metastatic NSCLC. Cancers (Basel). 2020;12(12):3648. Published 2020 Dec
4. doi:10.3390/cancers12123648
[96]Zahran AM, Hetta HF, Mansour S, Saad ES, Rayan A. Reviving up
dendritic cells can run cancer immune wheel in non-small cell lung
cancer: a prospective two-arm study. Cancer Immunol Immunother.
2021;70(3):733-742. doi:10.1007/s00262-020-02704-7
[97]Ahluwalia P, Ahluwalia M, Mondal AK, Sahajpal NS, Kota V,
Rojiani MV, Kolhe R. Natural Killer Cells and Dendritic Cells: Expanding
Clinical Relevance in the Non-Small Cell Lung Cancer (NSCLC) Tumor
Microenvironment. Cancers (Basel). 2021 Aug 11;13(16):4037. doi:
10.3390/cancers13164037. PMID: 34439191; PMCID: PMC8394984.
[98]Wang Y, Xiang Y, Xin VW, Wang XW, Peng XC, Liu XQ, Wang D, Li N,
Cheng JT, Lyv YN, Cui SZ, Ma Z, Zhang Q, Xin HW. Dendritic cell biology
and its role in tumor immunotherapy. J Hematol Oncol. 2020 Aug
3;13(1):107. doi: 10.1186/s13045-020-00939-6. PMID: 32746880; PMCID:
PMC7397618.
[99]Zahran AM, Hetta HF, Mansour S, Saad ES, Rayan A. Reviving up
dendritic cells can run cancer immune wheel in non-small cell lung
cancer: a prospective two-arm study. Cancer Immunol Immunother. 2021
Mar;70(3):733-742. doi: 10.1007/s00262-020-02704-7. Epub 2020 Sep 12.
PMID: 32918587.
[100]Wang Y, Zhao N, Wu Z, Pan N, Shen X, Liu T, Wei F, You J, Xu W,
Ren X. New insight on the correlation of metabolic status on 18F-FDG
PET/CT with immune marker expression in patients with non-small cell
lung cancer. Eur J Nucl Med Mol Imaging. 2020 May;47(5):1127-1136. doi:
10.1007/s00259-019-04500-7. Epub 2019 Sep 9. PMID: 31502013.
[101]Bianchi F, Alexiadis S, Camisaschi C, Truini M, Centonze G,
Milione M, Balsari A, Tagliabue E, Sfondrini L. TLR3 Expression Induces
Apoptosis in Human Non-Small-Cell Lung Cancer. Int J Mol Sci. 2020 Feb
20;21(4):1440. doi: 10.3390/ijms21041440. PMID: 32093313; PMCID:
PMC7073031.
[102] Wang Jingbo, Huang Xue, Li Furong. Research progress and
Prospect of impaired dendritic cell function in lung cancer [J].
Cancer, 2020,39 (06): 248-260
[103]Martinez M, Moon EK. CAR T Cells for Solid Tumors: New
Strategies for Finding, Infiltrating, and Surviving in the Tumor
Microenvironment. Front Immunol. 2019;10:128. Published 2019 Feb 5.
doi:10.3389/fimmu.2019.00128
[104]Sterner RC, Sterner RM. CAR-T cell therapy: current limitations
and potential strategies. Blood Cancer J. 2021;11(4):69. Published 2021
Apr 6. doi:10.1038/s41408-021-00459-7
[105]Turtle, C.J., Riddell, S.R., 2010. Artifificial
antigen-presenting cells for use in adoptive immunotherapy. Cancer J.
16, 374–381.
[106]Kim, J.V., Latouche, J.B., Rivière, I., Sadelain, M., 2004. The
ABCs of artifificial antigen
presentation. Nat. Biotechnol. 22, 403–410.
[107]Zeng W, Su M, Anderson KS, Sasada T. Artificial
antigen-presenting cells expressing CD80, CD70, and 4-1BB ligand
efficiently expand functional T cells specific to tumor-associated
antigens. Immunobiology. 2014;219(8):583-592.
doi:10.1016/j.imbio.2014.03.003
[108]Sun, S., Cai, Z., Langlade-Demoyen, P., Kosaka, H., Brunmark,
A., Jackson, M.R., Peterson, P.A., Sprent, J., 1996. Dual function of
Drosophila cells as APCs for naive CD8+ T cells: implications for tumor
immunotherapy. Immunity 4, 555–564.
[109]Latouche, J.B., Sadelain, M., 2000. Induction of human
cytotoxic T lymphocytes by
artifificial antigen-presenting cells. Nat. Biotechnol. 18, 405–409.
[110]Butler, M.O., Lee, J.S., Ansén, S., Neuberg, D., Hodi, F.S.,
Murray, A.P., Drury, L., Bere
zovskaya, A., Mulligan, R.C., Nadler, L.M., Hirano, N., 2007. Long-lived
antitumor
CD8+ lymphocytes for adoptive therapy generated using an artificial
antigen
presenting cell. Clin. Cancer Res. 13, 1857–1867.
[111]Sun, W., et al., Connecting the dots: artificial antigen
presenting cell-mediated modulation of natural killer T cells. J
Interferon Cytokine Res, 2012. 32(11): p. 505-16.
[112]Eggermont LJ, Paulis LE, Tel J, Figdor CG. Towards efficient
cancer immunotherapy: advances in developing artificial
antigen-presenting cells. Trends Biotechnol. 2014;32(9):456-465.
doi:10.1016/j.tibtech.2014.06.007
[113]Shao J, Xu Q, Su S, et al. Artificial antigen-presenting cells
are superior to dendritic cells at inducing antigen-specific cytotoxic T
lymphocytes. Cell Immunol. 2018;334:78-86.
doi:10.1016/j.cellimm.2018.10.002
[114]East JE, Sun W, Webb TJ. Artificial antigen presenting cell
(aAPC) mediated activation and expansion of natural killer T cells. J
Vis Exp. 2012;(70):4333. Published 2012 Dec 29. doi:10.3791/4333
[115]Schappert A, Schneck JP, Suarez L, Oelke M, Schütz C. Soluble
MHC class I complexes for targeted immunotherapy. Life Sci.
2018;209:255-258. doi:10.1016/j.lfs.2018.08.023
[116]Böttcher JP, Bonavita E, Chakravarty P, et al. NK Cells
Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting
Cancer Immune Control. Cell. 2018;172(5):1022-1037.e14.
doi:10.1016/j.cell.2018.01.004
[117]Sun Z, Deng G, Peng X, et al. Intelligent photothermal
dendritic cells restart the cancer immunity cycle through enhanced
immunogenic cell death. Biomaterials. 2021;279:121228.
doi:10.1016/j.biomaterials.2021.121228
[118]Suarez L, Wang R, Carmer S, et al. AIM Platform: A Novel Nano
Artificial Antigen-Presenting Cell-Based Clinical System Designed to
Consistently Produce Multi-Antigen-Specific T-Cell Products with Potent
and Durable Anti-Tumor Properties. Transfus Med Hemother.
2020;47(6):464-471. doi:10.1159/000512788
[119]Cintolo JA, Datta J, Mathew SJ, Czerniecki BJ. Dendritic
cell-based vaccines: barriers and opportunities. Future Oncol.
2012;8(10):1273-1299. doi:10.2217/fon.12.125
[120]Park J, Andrade B, Seo Y, Kim MJ, Zimmerman SC, Kong H.
Engineering the Surface of Therapeutic ”Living” Cells. Chem Rev.
2018;118(4):1664-1690. doi:10.1021/acs.chemrev.7b00157
[121]Abbina S, Siren EMJ, Moon H, Kizhakkedathu JN. Surface
Engineering for Cell-Based Therapies: Techniques for Manipulating
Mammalian Cell Surfaces. ACS Biomater Sci Eng. 2018;4(11):3658-3677.
doi:10.1021/acsbiomaterials.7b00514
[122]Manning JC, Romero A, Habermann FA, García Caballero G, Kaltner
H, Gabius HJ. Lectins: a primer for histochemists and cell
biologists. Histochem Cell Biol. 2017;147(2):199-222.
doi:10.1007/s00418-016-1524-6
[123]Glaffig M., Stergiou N., Hartmann S., Schmitt E., Kunz H., A
synthetic MUC1 anticancer vaccine containing mannose ligands for
targeting macrophages and dendritic cells. ChemMedChem 13, 25–29
(2018).
[124]Yu L, Feng R, Zhu L, et al. Promoting the activation of T cells
with glycopolymer-modified dendritic cells by enhancing cell
interactions. Sci Adv. 2020;6(47):eabb6595. Published 2020 Nov 20.
doi:10.1126/sciadv.abb6595
[125]Qu J, Mei Q, Chen L, Zhou J. Chimeric antigen receptor
(CAR)-T-cell therapy in non-small-cell lung cancer (NSCLC): current
status and future perspectives. Cancer Immunol Immunother.
2021;70(3):619-631. doi:10.1007/s00262-020-02735-0
[126] Zheng nairong, Xu Jianqing. Research progress of CAR-T cell
immunotherapy [J]. Journal of Fudan University: Medical Edition,
2022,49 (2): 295-299
[127] Cheng Hao, ihobali Chi, Zhou Quan, Ying Jianming, Shi Susheng.
Research progress of CAR-T in immunotherapy of gastric cancer [J].
Chinese cancer clinic, 2022,49 (9): 480-486
[128] Xu Guangxian. Research progress of CAR-T cell immunotherapy in
tumor treatment [J]. Journal of Guangdong Medical University,
2022,40 (2): 121-131
[129]NARAYAN V, BARBER-ROTENBERG J, JUNG I, et al. PSMA-targeting
TGFβ-insensitive armored CAR T cells in metastatic castration-resistant
prostate cancer: a phase 1 trial [J/OL].
[2022-03-25].https://doi.org/10.1038/s41591-022- 01726-1.
[130]HEITZENEDER S, BOSSE K, ZHU Z,et al. GPC2-CAR T cells tuned for
low antigen density mediate potent activity against neuroblastoma
without toxicity[J]. Cancer Cell, 2022, 40(1):53-69.
[131]Mao X, Xu J, Wang W, et al. Crosstalk between cancer-associated
fibroblasts and immune cells in the tumor microenvironment: new findings
and future perspectives. Mol Cancer. 2021;20(1):131. Published 2021 Oct
11. doi:10.1186/s12943-021-01428-1
[132]HOU A, CHEN L, CHEN Y. Navigating CAR-T cells through the
solid-tumour microenvironment[J]. Nat Rev Drug Discov, 2021,
20(7):531-550.
[133]HONG M, CLUBB J, CHEN Y.Engineering CAR-T cells for
next-generation cancer therapy[J]. Cancer Cell, 2020, 38
(4):473-488.
[134]THE LANCET ONCOLOGY. CAR T-cell therapy for solid
tumours[J]. Lancet Oncol, 2021, 22:893.
[135]Min J, Long C, Zhang L, et al. c-Met specific CAR-T cells as a
targeted therapy for non-small cell lung cancer cell
A549. Bioengineered. 2022;13(4):9216-9232.
doi:10.1080/21655979.2022.2058149
[136]Li H, Harrison EB, Li H, et al. Targeting brain lesions of
non-small cell lung cancer by enhancing CCL2-mediated CAR-T cell
migration. Nat Commun. 2022;13(1):2154. Published 2022 Apr 20.
doi:10.1038/s41467-022-29647-0
[137]Hung LVM, Ngo HT, Van Pham P. Clinical Trials with
Cytokine-Induced Killer Cells and CAR-T Cell Transplantation for
Non-small Cell Lung Cancer Treatment. Adv Exp Med Biol.
2020;1292:113-130. doi:10.1007/5584_2020_522
[138]Liu H, Ma Y, Yang C, et al. Severe delayed pulmonary toxicity
following PD-L1-specific CAR-T cell therapy for non-small cell lung
cancer. Clin Transl Immunology. 2020;9(10):e1154. Published 2020 Oct 9.
doi:10.1002/cti2.1154
[139]Jiang ZB, Huang JM, Xie YJ, et al. Evodiamine suppresses
non-small cell lung cancer by elevating CD8+ T cells and downregulating
the MUC1-C/PD-L1 axis. J Exp Clin Cancer Res. 2020;39(1):249. Published
2020 Nov 19. doi:10.1186/s13046-020-01741-5
[140]Wang H, Meng AM, Li SH, Zhou XL. A nanobody targeting
carcinoembryonic antigen as a promising molecular probe for non-small
cell lung cancer. Mol Med Rep. 2017;16(1):625-630.
doi:10.3892/mmr.2017.6677
[141]Li BT, Smit EF, Goto Y, et al. Trastuzumab Deruxtecan
in HER2-Mutant Non-Small-Cell Lung Cancer. N Engl J Med.
2022;386(3):241-251. doi:10.1056/NEJMoa2112431
[142]Li N, Liu S, Sun M, et al. Chimeric Antigen Receptor-Modified T
Cells Redirected to EphA2 for the Immunotherapy of Non-Small Cell Lung
Cancer. Transl Oncol. 2018;11(1):11-17. doi:10.1016/j.tranon.2017.10.009