References

Aalto, J. et al. 2018. Biogeophysical controls on soil-atmosphere thermal differences: Implications on warming Arctic ecosystems. - Environ. Res. Lett. 13: 074003.
Aerts, R. 2006. The freezer defrosting: Global warming and litter decomposition rates in cold biomes. - J. Ecol. 94: 713–724.
AMAP 2021. Arctic Climate Change Update 2021: Key Trends and Impacts. Summary for Policy-makers. - Arct. Monit. Assess. Programme AMAP: 1–16.
Beven, K. J. and Kirkby, M. J. 1979. A physically based, variable contributing area model of basin hydrology. - Hydrol. Sci. Bull. 24: 43–69.
Björnsdóttir, K. et al. 2022. Long-term warming manipulations reveal complex decomposition responses across different tundra vegetation types. - Arct. Sci. 8: 979–991.
Blok, D. et al. 2010. Shrub expansion may reduce summer permafrost thaw in Siberian tundra. - Glob. Change Biol. 16: 1296–1305.
Blok, D. et al. 2011. The Cooling Capacity of Mosses: Controls on Water and Energy Fluxes in a Siberian Tundra Site. - Ecosystems 14: 1055–1065.
Blok, D. et al. 2016. Initial Stages of Tundra Shrub Litter Decomposition May Be Accelerated by Deeper Winter Snow But Slowed Down by Spring Warming. - Ecosystems 19: 155–169.
Bonan, G. B. et al. 2013. Evaluating litter decomposition in earth system models with long-term litterbag experiments: An example using the Community Land Model version 4 (CLM4). - Glob. Change Biol. 19: 957–974.
Bradford, M. A. et al. 2016. Understanding the dominant controls on litter decomposition. - J. Ecol. 104: 229–238.
Bryant, D. M. et al. 1998. Analysis of litter decomposition in an alpine tundra. - Can. J. Bot. 76: 1295–1304.
Bryant, J. A. et al. 2008. Microbes on mountainsides: Contrasting elevational patterns of bacterial and plant diversity. - Proc. Natl. Acad. Sci. U. S. A. 105: 11505–11511.
Canessa, R. et al. 2021. Relative effects of climate and litter traits on decomposition change with time, climate and trait variability (F Piper, Ed.). - J. Ecol. 109: 447–458.
Christiansen, C. T. et al. 2017. Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra. - Glob. Change Biol. 23: 406–420.
Conrad, O. et al. 2015. System for Automated Geoscientific Analyses (SAGA). - Geosci. Model Dev. 8: 1991–2007.
Cornelissen, J. H. C. et al. 2007. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. - Ecol. Lett. 10: 619–627.
Cornwell, W. K. et al. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. - Ecol. Lett. 11: 1065–1071.
Coûteaux, M. M. et al. 1995. Litter decomposition, climate and litter quality. - Trends Ecol. Evol. 10: 63–66.
DeMarco, J. et al. 2014. Effects of arctic shrub expansion on biophysical vs. biogeochemical drivers of litter decomposition. - Ecology 95: 1861–1875.
Díaz, S. et al. 2016. The global spectrum of plant form and function. - Nature 529: 167–171.
Didion, M. et al. 2016. Towards Harmonizing Leaf Litter Decomposition Studies Using Standard Tea Bags—A Field Study and Model Application. - Forests 7: 167.
Duddigan, S. et al. 2020. Chemical Underpinning of the Tea Bag Index: An Examination of the Decomposition of Tea Leaves. - Appl. Environ. Soil Sci.: 1–8.
Eskelinen, A. et al. 2009. Links between plant community composition, soil organic matter quality and microbial communities in contrasting tundra habitats. - Oecologia 161: 113–123.
Feng, J. et al. 2020. Warming-induced permafrost thaw exacerbates tundra soil carbon decomposition mediated by microbial community. - Microbiome 8: 1–12.
Fierer, N. and Jackson, R. B. 2006. The diversity and biogeography of soil bacterial communities. - Proc. Natl. Acad. Sci. U. S. A. 103: 626–631.
Fierer, N. et al. 2011. Microbes do not follow the elevational diversity patterns of plants and animals. - Ecology 92: 797–804.
Freschet, G. T. et al. 2012. A plant economics spectrum of litter decomposability. - Funct. Ecol. 26: 56–65.
Gallois, E. et al. 2022. Litter decomposition is moderated by scale-dependent microenvironmental variation in tundra ecosystems. - Prepr. Available EcoEvoRxiv: 1–36.
García-Palacios, P. et al. 2016. Temporal dynamics of biotic and abiotic drivers of litter decomposition. - Ecol. Lett. 19: 554–563.
Grace, J. B. et al. 2015. Structural equation modeling: building and evaluating causal models. - In: Fox, G. A. et al. (eds), Ecological Statistics: Contemporary theory and application. Oxford University Press, pp. 168–199.
Heijmans, M. M. P. D. et al. 2022. Tundra vegetation change and impacts on permafrost. - Nat. Rev. Earth Environ. 3: 68–84.
Hicks Pries, C. E. et al. 2013. Moisture drives surface decomposition in thawing tundra. - J. Geophys. Res. Biogeosciences 118: 1133–1143.
Joly, F.-X. et al. 2023. Resolving the intricate role of climate in litter decomposition. - Nat. Ecol. Evol. 7: 214–223.
Keating, K. A. et al. 2007. A Simple Solar Radiation Index for Wildlife Habitat Studies. - J. Wildl. Manag. 71: 1344–1348.
Keiser, A. D. et al. 2011. The effect of resource history on the functioning of soil microbial communities is maintained across time. - Biogeosciences 8: 1477–1486.
Kemppinen, J. et al. 2018. Modelling soil moisture in a high‐latitude landscape using LiDAR and soil data. - Earth Surf. Process. Landf. 43: 1019–1031.
Kemppinen, J. et al. 2021. Dwarf Shrubs Impact Tundra Soils: Drier, Colder, and Less Organic Carbon. - Ecosystems 24: 1378–1392.
Keuskamp, J. A. et al. 2013. Tea Bag Index: A novel approach to collect uniform decomposition data across ecosystems. - Methods Ecol. Evol. 4: 1070–1075.
Kopecký, M. et al. 2021. Topographic Wetness Index calculation guidelines based on measured soil moisture and plant species composition. - Sci. Total Environ. 757: 143785.
Kropp, H. et al. 2021. Shallow soils are warmer under trees and tall shrubs across Arctic and Boreal ecosystems. - Environ. Res. Lett. 16: 015001.
Lefcheck, J. S. 2016. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. - Methods Ecol. Evol. 7: 573–579.
Maitner, B. S. et al. 2021. On estimating the shape and dynamics of phenotypic distributions in ecology and evolution. - Authorea Prepr.: 1–45.
Myers-Smith, I. H. and Hik, D. S. 2013. Shrub canopies influence soil temperatures but not nutrient dynamics: An experimental test of tundra snow-shrub interactions. - Ecol. Evol. 3: 3683–3700.
Myers-Smith, I. H. et al. 2011. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. - Environ. Res. Lett. 6: 045509.
Opedal, Ø. H. et al. 2015. Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape. - Plant Ecol. Divers. 8: 305–315.
Porter, C. et al. 2018. ArcticDEM. Polar Geospatial Center, Harvard Dataverse. https://doi.org/10.7910/DVN/OHHUKH
R Core Team 2021. R: A language and environment for statistical computing.
Rantanen, M. et al. 2022. The Arctic has warmed nearly four times faster than the globe since 1979. - Commun. Earth Environ. 3: 1–10.
Rijkers, R. et al. 2023. Maximum summer temperatures predict the temperature adaptation of Arctic soil bacterial communities. - Biogeosciences 20: 767–780.
Robinson, C. H. 2002. Controls on decomposition and soil nitrogen availability at high latitudes. - Plant Soil 242: 65–81.
Robinson, S. I. et al. 2022. Soil organic matter, rather than temperature, determines the structure and functioning of subarctic decomposer communities. - Glob. Change Biol. 28: 3929–3943.
Sarneel, J. M. et al. 2020. Decomposition rate and stabilization across six tundra vegetation types exposed to >20 years of warming. - Sci. Total Environ. 724: 138304.
Schindelin, J. et al. 2012. Fiji: An open-source platform for biological-image analysis. - Nat. Methods 9: 676–682.
Schuur, E. A. G. et al. 2015. Climate change and the permafrost carbon feedback. - Nature 520: 171–179.
Schuur, E. A. G. et al. 2022. Permafrost and Climate Change: Carbon Cycle Feedbacks From the Warming Arctic. - Annu. Rev. Environ. Resour. 47: 343–371.
Strickland, M. S. et al. 2009. Litter quality is in the eye of the beholder: initial decomposition rates as a function of inoculum characteristics. - Funct. Ecol. 23: 627–636.
Sturm, M. et al. 2001. Snow-shrub interactions in Arctic Tundra: A hypothesis with climatic implications. - J. Clim. 14: 336–344.
Sundqvist, M. K. et al. 2011. Within- and Across-Species Responses of Plant Traits and Litter Decomposition to Elevation across Contrasting Vegetation Types in Subarctic Tundra (JA Añel, Ed.). - PLoS ONE 6: e27056.
Tarnocai, C. et al. 2009. Soil organic carbon pools in the northern circumpolar permafrost region. - Glob. Biogeochem. Cycles 23: GB2023.
Thomas, H. J. D. et al. 2020. Global plant trait relationships extend to the climatic extremes of the tundra biome. - Nat. Commun. 11: 1351.
Thomas, H. J. D. et al. 2023. Litter quality outweighs climate as a driver of decomposition across the tundra biome. - Prepr. Available EcoEvoRxiv: 1–26.
Tresch, S. et al. 2019. Litter decomposition driven by soil fauna, plant diversity and soil management in urban gardens. - Sci. Total Environ. 658: 1614–1629.
van Gestel, N. et al. 2018. Predicting soil carbon loss with warming. - Nature 554: E4–E5.
Veen, G. F. et al. 2015. Environmental factors and traits that drive plant litter decomposition do not determine home-field advantage effects. - Funct. Ecol. 29: 981–991.
Venn, S. E. and Thomas, H. J. D. 2021. Snowmelt timing affects short‐term decomposition rates in an alpine snowbed. - Ecosphere 12: e03393.
von Oppen, J. 2017. Tea Time On The Summits: Leaf litter decomposition in the alpine environment. Master’s thesis, University of Tuebingen.
von Oppen, J. et al. 2022. Cross-scale regulation of seasonal microclimate by vegetation and snow in the Arctic tundra. - Glob. Change Biol. 28: 7296–7312.
Wallenstein, M. D. et al. 2009. Seasonal variation in enzyme activities and temperature sensitivities in Arctic tundra soils. - Glob. Change Biol. 15: 1631–1639.
Weiss, A. D. 2001. Topographic position and landforms analysis. - Poster Present. ESRI User Conf. San Diego CA
Wild, J. et al. 2019. Climate at ecologically relevant scales: A new temperature and soil moisture logger for long-term microclimate measurement. - Agric. For. Meteorol. 268: 40–47.
Xiao, W. et al. 2019. Multiple interactions between tree composition and diversity and microbial diversity underly litter decomposition. - Geoderma 341: 161–171.
Xue, K. et al. 2016. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. - Nat. Clim. Change 6: 595–600.
Yang, X. et al. 2021. Dominant plants affect litter decomposition mainly through modifications of the soil microbial community. - Soil Biol. Biochem. 161: 108399.
Zak, D. R. and Kling, G. W. 2006. Microbial community composition and function across an Arctic tundra landscape. - Ecology 87: 1659–1670.