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Abstract18

Reliable forecasting models are necessary to mitigate the risks posed by solar flares to hu-19

man technology. This study introduces a novel deep learning forecasting approach while20

emphasizing the need for performance evaluation methods tailored to better highlight cur-21

rent models’ limitations. In particular, we show that models reaching state-of-the-art per-22

formances with traditional metrics have similar explanatory power to no-skill persistence23

models and notably struggle to forecast change in activity significantly better than random24

guesses. We also discuss other shortcomings in traditional evaluation metric like the True25

Skill Statistic (TSS) that we prove for the first time to be mathematically dependent to26

the class balance. We introduce Patch-Distributed-CNNs (P-CNN), which allow to perform27

full-disk forecasts while providing event probabilities in solar sub-regions and position pre-28

dictions. This new framework offers similar information to Active-Region-based forecasting29

models while bypassing the problem of unrecorded and misattributed flares that are detri-30

mental to machine learning training. As a result, the model also operates independently of31

prior feature extraction and AR detection, thus offering promising operational utility with32

minimal external dependencies. Finally, a method is proposed for constructing balanced33

and independent Cross-Validation folds for full-disk models. Models combining SDO/AIA34

EUV images as inputs show improved performances compared to employing SDO/HMI35

photospheric magnetograms, with a TSS of 0.74 for the C+ model and 0.62 for the M+36

model.37

Plain Language Summary38

Flare forecasting models deemed as state-of-the-art with standard performance evaluation39

methods can exhibit poor skills in forecasting changes in activity. They barely compete40

with Persistence models, both from a practical operational point of view (F1-score) and41

in their ability to explain the observed events (MCC). We propose Persistence-Relative42

metrics and performance evaluation on the subset of time windows presenting a change43

of activity to highlight these models’ flaws better and ease comparisons. We also propose44

new deep-learning models that do not rely on previously identified Active Regions while45

still providing position estimations for the forecasted events and predictions at regional46

levels of the solar disk. These new models offers promising operational utility thanks to47

minimal external dependencies, and more reliable training by minimizing mislabels during48

the training process.49
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1 Introduction and Related Work50

1.1 Deep learning To forecast flares51

Solar flares are one of the most energetic manifestations of the solar activity. They52

are bursts of electromagnetic radiations and particles, believed to be caused by magnetic53

reconnections converting huge amounts of magnetic energy into heat and kinetic energy.54

To characterize the potential danger they represent, flares are commonly classified into55

5 classes according to their Soft X-Rays (SXR) (wavelength from 0.1 to 0.8 nanometers)56

Maximum Peak Flux (MPF): A-Flares with a MPF < 10−7 W ·m−2, B-Flares for a MPF57

∈ [10−7, 10−6[ W ·m−2, C-Flares for a MPF ∈ [10−6, 10−5[ W ·m−2, M-Flares for a MPF58

∈ [10−5, 10−4[ W · m−2 and finally X-Flares with a MPF > 10−4 W · m−2. Flares above59

the M-class start representing a threat to human health and technologies. This motivates60

a significant work effort to predict them successfully. Recently, many approaches have61

been proposed to forecast solar flares using deep learning. Huang et al. (2018), Park et al.62

(2018), Li et al. (2020), Z. Deng et al. (2021) and Pandey et al. (2023) used Convolutional63

Neural Network (CNN) on magnetograms images. Nishizuka et al. (2018) used an Multi-64

Layer Perceptron (MLP) on a combination of physical features. Guastavino et al. (2022a)65

combined CNN with Long Short-Term Memory (LSTM) to process temporal-stacks (videos)66

of magnetograms, while Deshmukh et al. (2022) combined CNN on magnetograms images67

with a Random Forest algorithm on some physical features to decrease the False Alarm68

Ratio (FAR) of their model. A study by Sun et al. (2022) used both CNN on magnetograms69

and LSTM on a time series of physical features and ensembled the two approaches for70

optimal results. The typical goal of these methods is to forecast the likelihood of the whole71

Sun or of a particular Active Region (AR) to produce a flare in a specific time window -72

often 24h - which starts from the data used for the prediction, or eventually a few minutes73

after. The prediction is usually binary, indicating whether there will be at least one flare74

above a given threshold during the forecasted window. This threshold is often the one of75

C or M-class flares, while the X-class is addressed less frequently due to the challenges met76

by machine learning methods on extremely imbalanced and scarce data. An advantage of77

most deep learning approaches compared to other Machine Learning (ML) works is that78

they do not rely on previously identified features. This is often also seen as a drawback79

referred to as the black-box problem (Camporeale (2019)) as we have less understanding80

about the way those models make a given prediction. This can nevertheless be mitigated81

through explainability methods. Yi et al. (2021) used such methods to show that their82

deep learning model was learning to extract features highly correlated to known predictive83

features. However, such models are not limited to known flare predictive features and could84

help identify new ones. As these models do not depend on pre-identified features, they also85

enable the development of more autonomous systems, potentially simplifying deployment86

and maintenance in operational settings. However, most current works focus on forecasting87

flare directly on pre-identified AR. Such models still suffer from external dependency and88

could not forecast a flare in the case of a mis-detected or un-emerged AR. van der Sande et89

al. (2022) also showed that many flares are unrecorded or misattributed at the AR level in90

standard flare catalogs. They found up to 8% of misattributed labels at the AR level and91

about 20% of missing events among those located between ±65 heliographic longitude from92

disk center and above the M-class thresholds between 2010 and 2017, from the standard Goes93

Flare catalog. While van der Sande et al. (2022) acknowledge that the Heliophysics Event94

Knowledgebase (HEK) correct many of the missing events from the Goes Flare catalogue,95

several are still attributed to a wrong AR or simply lack an attribution. This leads to a96

significant number of ARs inaccurately labelled as events and no-events, which can impair97

model training and evaluation in an already challenging context of imbalanced and scarce98

data. Park et al. (2018), Yi et al. (2021), and Pandey et al. (2023) train their model to99

forecast flares directly at the whole solar disk level. Such models do not suffer from mislabels100

due to missing or misattributed AR. They are also more autonomous than AR-based models.101

However, they do not provide information about the position of the predicted flares. In this102

work, we propose the first deep learning model performing flare forecast at the whole disk103

–3–



level from which it is possible to retrieve the position of the foreseen flares along with sub-104

regional predictions without relying on prior identifications of AR. We focus on forecasts105

within 24-hour time windows and use the whole-disk exhaustive flare catalogue from Plutino106

et al. (2023). Throughout this work, models performing binary forecasts above the C-class107

and M-class models will be designated as C+ models and M+ models, respectively.108

1.2 Models evaluation109

Although most of the previous literature focuses on the same problem, it is hard to110

objectively compare the performances of these different works without a proper benchmark111

dataset. Barnes et al. (2016) and Leka et al. (2019) showed that the performances of fore-112

casting methods evaluated during the traditional training and test phases of existing flare113

forecasting studies are often over-optimistic and reflect poorly the performance a model114

would have in an operational setting. These gaps between expected and actual perfor-115

mances happen because the data on which a model is evaluated is typically biased and116

does not accurately represent the data that can be met in operational context (Cinto et117

al. (2020)). For instance, Guastavino et al. (2022a) identified subcases of negatives (quiet118

time-windows) on which models perform differently, highlighting that the performances’119

evaluations are strongly sensitive to their relative representation in the dataset. Guastavino120

et al. (2022) also introduced the distinction between good and bad errors in flare fore-121

casting to better account for the problem’s dynamical nature. Guastavino et al. (2022b)122

showed that using metrics weighted to distinguish such errors helps in selecting models that123

reach better operational performance. This work proposes two new methods to assess flare124

forecasting models’ performances. These new evaluation methods enable highlighting that125

models may struggle to outperform a simple Persistence model, with remarkably low skills126

in forecasting activity changes, while they might still appear as efficient and useful models127

with conventional evaluation metrics. They also appear to partially mitigate the impact of128

the evaluation set compositions on the measured performance, thus helping when comparing129

different models on different datasets.130

2 Metrics131

2.1 Standard Evaluation Methods132

2.1.1 Common metrics133

This section introduces the most common evaluation metrics used in flare forecasting134

and discusses some of their shortcomings and advantages. Formulas can be found in Ap-135

pendix A1, and additional insights on their discussed properties are detailed in Appendix136

A2137

The selection and evaluation of models heavily rely on the metrics employed to gauge138

their performance. However, the scientific community lacks consensus regarding a singular,139

comprehensive metric for binary classification. Different metrics serve distinct objectives and140

address diverse problems. While multiple metrics are often necessary to provide compre-141

hensive insights into a model’s qualities, a single metric remain essential for model selection142

during training and for facilitating models comparison. In Space Weather, such as in the143

case of flare forecasts, evaluating models is particularly challenging due to the prevalent144

class imbalance between positive and negative events in operational settings.145

Binary metrics are typically defined as a function of the confusion matrix (CM) (Equa-146

tion A1), also referred to as the prediction-observation contingency table. From this matrix147

can be derived four basic rates which together summarize the information contained by the148

confusion matrix and a model’s qualities:149
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• Class-Accuracy rates:150

– True Positive Rate (TPR), also known as Recall (Equation A2)151

– True Negative Rate (TNR), also known as Sensitivity (Equation A3)152

• Class-Precision rates:153

– Positive Predictive Value (PPV), also known as Precision (Equation A5)154

– Negative Predictive Value (NPV)(Equation A4)155

In Weather and Space Weather forecasting, models predicting extreme events typically156

serves to trigger weather alerts warning users in advance of potentially dangerous events.157

Such systems designed to trigger alerts, could be refereed as alarm systems. For such158

systems, the positive class corresponds to an event and the negative one to a no-event.159

When designing and evaluating an alarm system, a particular emphasis can typically lie on160

achieving high recall (TPR) to detect a maximum of events, along with high precision (PPV)161

to ensure confidence in positive predictions. Equivalently to the precision, practitioners162

alternatively look at the False Alarm Ratio (FAR) which is the complementary of the former163

and gives the rate at which positive predictions give a false alarm.164

The F1-score (Equation A6), is the harmonic mean of the recall and the precision. It165

offers a consolidated assessment of an alarm system skill. It can be extended to the Fβ-score166

to give β-times more importance to the recall relatively to the precision, to consider defined167

preferences between positive events detection rate and False Alarm Ratio.168

The True Skill Statistic (TSS) (Equation A7) is among the most used metrics to evaluate169

flare forecasting models but suffers from important limitations. In ideal cases, the TSS is170

independent of the class balance. However, for flare forecasting, the TSS is among the most171

sensitive metrics to this bias as well as other ones, both theoretically (Appendix A21) and172

empirically (Appendix B). The TSS synthesizes the class-accuracy rates (TPR and TNR)173

and, therefore, contains no information about a model’s precision. This makes it arguably174

unsuitable to evaluate an alarm system in the case of imbalanced datasets. A very high175

TSS may indeed hide impractical models in imbalanced cases, as described in appendix176

A22. Finally, it can be noted that the Area Under the Curve (AUC) of the Receiver177

Operating Characteristic (ROC), another common metric, can be expressed in terms of the178

expected value of the TSS for different probability decision thresholds. The AUC ROC179

thereby suffers from the same limitations as the TSS, mainly an absence of information180

about class-precisions, which can be detrimental in imbalanced problems.181

The Heidke Skill Score (HSS) (Equation A10) is another common metric in flare fore-182

casting and is typically used to compare a model to random guessing. It synthesizes (c.f183

Appendix A17) both the class-accuracy rates (TPR and TNR) and the class-precision rates184

(PPV and NPV) making it more complete than the TSS. However, the weight given to the185

class accuracies and the class precisions in the HSS is model-dependant as it relies on the186

model’s Negative-Frequency-Bias (NFB) (Appendix A17 & Appendix A23). This makes the187

HSS difficult to interpret and potentially unreliable when comparing different models.188

The Matthews Correlation Coefficient (MCC) (Equation A11), is currently less com-189

mon in Space Weather studies but presents several advantages over the TSS and HSS (c.f.190

Appendix A24). It is the binary Pearson correlation coefficient between the predictions and191

the observations. As such the MCC directly measures how much of the observed variance192

of the target can be explained by the model. The MCC is, therefore, an agnostic measure193

of a model’s explanatory power. It also synthesizes the class accuracy and precision rates194

by giving even weights to each of the four basic confusion matrix rates (TPR, TNR, PPV,195

NPV). It allows us to compare a model to random guessing in a simpler way than the HSS196

and has been several times shown to be one of the most complete and reliable metrics to197

assess a model’s overall quality in classification. From our empirical observations, the MCC198

also appeared more resilient to dataset composition changes than the TSS or the HSS (c.f.199

Appendix B).200
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Ultimately, no single metric is enough to give a complete insight into a model’s flaws201

and qualities. Still, the F1-Score, or alternatively an Fβ-score, remains of strong interest202

for selecting models intended as alarm systems. Meanwhile, the MCC appears as the most203

informative and reliable metric to assess the general ability of a model to explain a given204

problem.205

2.1.2 Thresholding206

In binary classification, a prevalent approach involves determining the probability207

threshold that maximizes a desired metric. Yet, studies have shown that optimal thresholds208

are usually dependent on the class-balance of the datasets (Leka et al. (2019)). This intro-209

duces an additional bias in the metric evaluation. As a result, in our evaluations, we assess210

all metrics using a consistent probability threshold of 0.5.211

2.2 Identifying flare forecasting models weakness212

The previous metrics do not allow to identify key weaknesses of current flare forecasting213

models. Therefore, we introduce complementary evaluation methods to better highlight214

important models’ limitations.215

2.2.1 Activity-Change (AC) and No-Change (NC) performances216

We define changing time windows as the ones exhibiting an Activity-Change (AC),217

i.e. when the window label differs from the previous consecutive non-overlapping window.218

Conversely, a constant time window is a window presenting No-Change (NC) of activity219

with respect to the previous one. Figure 1 display examples of the of AC and NC windows220

in the case of M+ forecasts.221

This distinction is crucial as forecasting flares on constant versus changing time windows222

represents two distinct challenges. While the former is more of a classification/recognition223

problem, the real challenge of flare forecasting lies in the latter where current models struggle224

to perform significantly beyond random classifiers.225

This lack of performance on changing time-window is not reflected by usual metrics226

like the TSS and HSS that can still reach good values on the whole evaluation set. To227

understand this limitation better and what type of model or information could allow to push228

that boundary, we propose to complement traditional performance evaluation by evaluating229

models’ performances separately on changing and constant time-windows.230

The restriction of a metric evaluated on changing time windows will be referred to231

here as Activity-Change-metric (AC-metric), and the restriction of a metric evaluated on232

constant time windows will be referred to as No-Change-metric (NC-metric).233

2.2.2 Persistence Relative Skill Scores234

Usual skill scores compare model performances against constant or random guess clas-235

sifiers. In the context of flare forecasting, a Persistence model — predicting labels based236

on the previous time window — can also be seen as a no-skill model. We find in this work237

that such a model typically outperforms the other no-skill models and perform similarly238

to our best models (Section 4.1 & Appendix B2). Skill scores relative to the Persistence239

model could thus better highlight such limitations and the practical utility of flare forecast-240

ing models. We also find that skill scores defined relatively to the Persistence model can be241

less sensitive to the dataset composition (c.f. Appendix B2), which could make them more242

suited to compare flare forecasting models.243
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Example of AC and NC windows for 24H M+ binary forecasts

Figure 1: First column displays examples of AC-windows, with a positive AC-window on
the first row (colored in red), and a negative AC-window on the second row (colored in blue).
Second column displays examples of NC-windows: positive NC-window on the first row and
negative NC-window for the second one. The white time-windows are the one that precede
the windows of interest. The gray bars correspond to flares plotted from their starting to
end dates. The green bars correspond to the biggest flare inside the corresponding window.
Label on top of the flares correspond to their SXR-MPF.
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For a metric S defined on [Inf, Sup] ⊂ R, we define the Persistent Relative Skill Score244

(PRSS) as the difference of a model’s score (Smodel) with a Persistence model (S∗), rescaled245

in [−1, 1], according to the following equation :246

PRSS =

{
Smodel−S∗

Sup−S∗ if Smodel ≥ S∗

Smodel−S∗

S∗−Inf if Smodel < S∗
(1)

It can be noted that in both cases, respectively, over- and underperforming, the denom-247

inator represents the maximum possible overperformance or underperformance with respect248

to the Persistence score. Consequently, when positive, the PRSS reads as the percentage249

of the maximum possible overperformance - respectively underperformance when negative250

- achieved by the evaluated model relatively to the Persistence. Finally, the PRSS is null if251

and only if Smodel = S∗, it equals 1 when Smodel = Sup, and equals -1 when Smodel = Inf .252

It is noted that these metrics diverge from common binary classification metrics, as253

they factor in parameters external to the model confusion matrix by including terms of the254

Persistence model’s confusion matrix.255

3 Method256

3.1 Data257

A dataset was prepared for model training and evaluation, encompassing 56,664 samples258

from May 14, 2010, to April 18, 2023, with a temporal cadence of 2 hours. The period from259

May 2010 to December 2019 is used for training with Cross-Validation and from January260

2020 to April 2023 for test evaluation. The test dataset is temporally separated from the261

training and validation datasets, comprising samples from a distinct solar cycle. It meets262

the criteria given by Cinto et al. (2020) to satisfy the definition of an operational test set263

and allows us to assess operational performance generalisations at the beginning of a new264

Solar Cycle.265

Each sample is associated with a photospheric line of sight magnetogram from Solar266

Dynamic Observatory (SDO)/HMI (Pesnell et al. (2012)) and 193Å, 211Å, 94Å, Extreme267

Ultraviolet (EUV) images of the solar Corona from the SDO/Atmospheric Imaging Assem-268

bly (AIA) (Lemen et al. (2012)). We selected these 3 EUV wavelengths for their strong269

correlation that are well suited to assemble them in an RGB-like image and leverage the full270

potential of pre-trained CNNs that are trained and optimised on such images. One of our271

objectives is also to compare the performances of photospheric magnetogram-based features272

and coronal thermal and morphological features to forecast Solar Flares.273

3.1.1 Flare windows labels274

For each sample, we compute the time-windows’ labels from an extension of the Plutino275

et al. (2023) catalogue based on GOES’s SXR flux data. To assess the regional predictive276

performances of the models on an operational test set, we also retrieve the positions of the277

flare catalogue’s events for flares above the C-class threshold for samples after the 2020-01-278

01. To estimate the position of flares on the Sun’s corona, we cross-match the flare events279

with images of the solar corona taken from SDO/AIA in the 171Å wavelength. The flare280

position tracking process starts by subtracting a coronal image at the flare’s onset from the281

one at the flare’s peak. This allows to isolate the dynamic intensity enhancement compatible282

with the given flare. Through the feature tracking algorithm ”Trackpy” (Crocker and Grier283

(1996)), we can pinpoint the position of the brightest clusters of pixels and, therefore, the284

estimated position of the flare event in the solar corona.285
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3.1.2 Magnetograms286

Line-of-sight magnetograms are retrieved from JSOC from the 45-second series. Origi-287

nal images are downsampled to 1024 by 1024 pixels with linear interpolation. The bit-depth288

of the pixel values is reduced from 16bit to 8bit. To maintain a good dynamic range without289

saturating too much, a log transform (x 7→ log(1 + x)) is first applied symmetrically to the290

positive and negative pixel values. Images are then saturated by the 99.9 percentile of the291

maximum pixel values over the Cross-Validation period, which corresponds to an original292

value of 4644G. We then apply a linear scaling so that original 0G values are centred at293

a pixel value of 127, with 0 and 255, respectively, representing the negative and positive294

saturation values.295

3.1.3 EUV images296

EUV AIA images are downloaded from the JSOC AIA synoptic dataset, which consists297

of level 1.5 AIA images available at a 2-minute cadence. The images are already registered,298

meaning they have a normalised arc-sec to pixel scale, one pixel being 2.4 arc-sec, and are299

rotated so that solar North is aligned with the y-axis. They are downscaled versions of orig-300

inal AIA images to a 1024 by 1024 pixel resolution. As for the magnetograms, we reduced301

the bit depth of the pixel values from 16 bits to 8 bits. To do so, the pixel values are first302

normalised by exposure-time.We then take into account AIA CCDs’ degradation over time303

and correct for it, using the degradation correction table available from aiapy (Barnes et al.304

(2020)). EUV pixel distributions tend to be concentrated in a small range of values with305

some extreme values far from the core of the distributions, typically the results of flares or306

intense coronal activity. For instance, for the 193Å images, after exposure-time normalisa-307

tion and instrument degradation correction, we found an average mean pixel value of 149DN308

with an average pixel standard deviation of 210DN, whereas the average maximum pixel309

value is 6247DN. While the core of the distribution is essential for retrieving morphological310

information on coronal structures, the extreme values might also contain important poten-311

tial features associated with upcoming flares. To preserve both while maintaining a good312

dynamic range, we apply the same log transform and saturate each wavelength by the 99.9313

percentile of their maximum pixel values over the Cross-Validation period. We then linearly314

scale the values between 0 and 255.315

In this work, we assemble the 193Å, 211Å and 94Å 8-bit images and compress them as316

RGB JPEGs.317

The EUV images are also processed for 1600Å, 304Å and 171Å. The resulting dataset318

of 1024x1024 JPEG images of magnetograms and individual wavelength EUV images is319

available from Francisco et al. (2024).320

3.1.4 Corrupted samples321

Once corrected for instrument degradation, we searched for abnormal or corrupted322

observations by looking for images with pixel’s distribution average outside of 8 standard323

deviations confidence intervals computed over 48 hours running time-window. This allowed324

us to identify between 20 and 65 potentially corrupted observations for each channel includ-325

ing the magnetograms. Among them, a few corresponded to normal observations of extreme326

space weather events. The 94Å channel, for instance, has a very low signal-to-noise ratio327

outside active regions, and strong flares can punctually shift the pixel distribution average328

by a large amount. Besides extreme weather events, most suspicious observations appeared329

to correspond to problems that came from the shutter, potential repositioning of the satel-330

lite and eclipses, leaving partial to no solar disk observable in those cases. We excluded331

these later examples from our models’ training and evaluation but left them available in332

the dataset along with the detailed results of this outliers study. Partially observable disks333
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could still be relevant in an operational context where models might still be able to forecast334

events coming from the visible part.335

3.2 Model336

3.2.1 Patch-Distributed CNN (P-CNN)337

To forecast flares from full-disk images while still having an estimation of the flaring338

probability by regions of the solar disk, we propose to segmeent the full-disk images into339

patches on which we apply the same CNN. This inner-patch-CNN last layer activation340

is a sigmoid so that the output of each patch is bounded between 0 and 1 to represent341

the probability of flaring for the corresponding region. The resulting Patch-Distributed-342

CNN (P-CNN) aggregate the patches by taking the maximum of their outputs as the final343

probability and forecast at the whole disk level. We impose the inner-patch-CNN to share344

the same weights across the different patches to ease the convergence during training as this345

limits the model size and complexity. Finally, we leverage the flexibility of this architecture346

to remove the poles from the images as flares only emerge near the solar equator. We,347

therefore, crop the images at ±614 arc-sec of latitude to obtain images that are half smaller348

in memory and allow for faster training. The resulting images have a resolution of 512 by349

1024 pixels. In this work, we use models that received inputs downsampled at a 224 by 448350

pixels resolution and patches of 112 by 112 pixels for a total of 8 patches. This additional351

downsampling, along with the JPEG compression, were found to no impact the resulting352

models performances. A summary of the resulting P-CNN architecture can be found in353

Figure 2.354

In this study, we use the EfficientNetV2-S architecture (Tan and Le (2021)) to process355

the patches, with unfrozen weights pre-trained on the ImageNet dataset (J. Deng et al.356

(2009)) as initial weights.357

The resulting models receiving magnetogram as inputs will be respectively referred as358

the C+ Magnetogram and M+ Magnetogram models, for the PCNN performing C+ and359

M+ binary forecasts. Similarly the PCNN using the 3 channel EUV combination in input360

will be refereed as the C+ Coronal and M+ Coronal models.361

3.3 Training and Evaluation362

3.3.1 Full-disk Cross-Validation Method363

We train and cross-validate our models on the samples within 2010-05 and 2019-12364

with a 5-fold Cross-Validation (CV). For performance evaluation to accurately reflect what365

would have been the performances of a model in operation, Cinto et al. (2020) highlight366

that a test set should include all the samples of a given period without alteration to its367

natural composition. We therefore keep such an operational test set, buffered by 27 days368

from the training and cross-validation data, ranging from 2020-01 to 2023-04, roughly the369

rising phase of Solar Cycle 25.370

Temporal Chunking371

On AR-based flare forecasts, CV-folds can be built by splitting available samples by372

AR numbers. This approach guarantees that samples in the training and validation sets are373

independent. Such independence is otherwise hard to ensure due to the important temporal374

autocorrelation between samples close in time. To achieve independent CV-folds in the case375

of full-disk forecasts, we propose a methodology based on the one proposed by Brown (2022)376

for solar wind forecasts. Brown (2022) constructs folds from temporal chunks of 20 days377

buffered by periods of 4 days, which are discarded to account for the strong autocorrelation378

of the solar wind speed within such periods. In the case of flares, the characteristics of a379

given AR can be significantly similar over a longer period of time. We, therefore, choose380
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Patch-Distributed CNN (P-CNN)

Figure 2: Architecture of the Patch-Distributed-CNN. The input is segmented into patches,
each processed by a CNN that applies identical weights and outputs sigmoids representing
the flaring probabilities for the corresponding regions. The patch probabilities are max-
aggregated to produce the model’s final output representing the flaring probability at the
whole disk level, which is the target directly learned during training. In this figure, the input
combines 193Å, 211Å and 94Å EUV SDO/AIA images cropped at ±614 arcsec downsampled
at 224x448 pixels. The patches’ size is set to 112x112 pixels, resulting in 8 patches. In this
work an EfficientNet-V2-S is used as the inner-patch-CNN.
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to use a buffer of 27 days, i.e. a full Carrington rotation, to ensure a strong independence381

between each chunk. Consequently, we choose chunks of periods of 81 days to maintain an382

acceptable ratio of used against discarded data. Concretely one quarter of the available data383

is thrown out to ensure high independence of the training and the validations sets. Unlike384

Brown (2022) and Pandey et al. (2023) who fill up the folds with the chunks sequentially,385

we allocate the chunks to obtain folds with a similar distribution of quiet, B, C, M and386

X class flares. It is noted that we here define a quiet time window as a window where387

the MPF is below the B threshold This balancing approach aims to mitigate the dataset388

composition’s significant impact on the evaluation metrics. Guastavino et al. (2022a), for389

instance, demonstrated that the number of C-class flares among the non-events strongly390

affects the performance evaluation in the cases of M+ forecasts.391

Figure 3 illustrates the CV-folds building process, with the resulting training folds392

depicted in blue, the validation folds in green, and the operational test set in orange.393

Full-Disk Cross-Validation Method

Figure 3: Temporal chunks of 81 days buffered by periods of 27 days of discarded data allow
to build independent training and validation CV-folds for full-disk flare forecasting. The
balancing algorithm described in section 3.3.1 allows us to allocate the chunks optimally to
build folds of similar compositions. The CV-folds are built on the period ranging from 2010-
05 to 2019-12. A test set, including all the samples from 2020-01 to 2023-04, chronologically
split and 27 days buffered from the CV, enable to estimate what would have been the
operational performances of the resulting models on the given period.

Balancing Algorithm394

Due to the large chunks’ size and the scarcity of certain classes, it is impossible to find395

a chunk allocation resulting in folds with exactly identical composition without using un-396
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dersampling. Consequently, we introduce an algorithm designed to achieve optimal balance,397

close to even compositions, before resorting to an eventual complementary undersampling.398

To achieve this pre-undersampling balancing, we first define the balance score bk, defined in399

equation 2 :400

bk =
∑

cls∈{quiet,B,C,M,X}

δcls

∣∣∣∣nk
cls

n∗
cls

− 1

∣∣∣∣, (2)

where δcls is the importance-weight given to the balance of the class cls. Such quantity401

is introduced to account for the impossibility of achieving a perfect balance. In particular,402

it enables to prioritize achieving equal representation of the rarest classes before considering403

undersampling, as we aim to prevent further scarcity. nk
cls is the number of time-windows404

labeled as cls in the fold k. n∗
cls is the targeted number of sample of class cls for every fold.405

It is equal to the ratio of Ncls, the whole number of time-windows labeled as cls within the406

dataset, with K, the number of folds to be built :407

n∗
cls =

Ncls

K
(3)

In this work we set δcls to 4 for X and quiet labelled time-windows, we set it to 2 for M408

labelled time-windows, and we set it to 1 for B and C labelled time-widows. The default pa-409

rameters presented here provided generically satisfactory outcomes to build balanced folds410

with time windows ranging from 2 to 72 hours. It is noted, however, that only time windows411

of 24h are used in this work. To minimise the balance scores (bk)
K
k=1, we iterate through all412

the available chunks to identify the chunk i and the fold k for which the decrease in bk is413

maximum. This process is then repeated iteratively until all chunks are allocated. The folds’414

composition resulting from the balancing is shown in Figure 4 for 24h time-windows. From415

these folds of similar compositions, undersampling can then be used to build training and416

validation folds optimally aligned with specific training and validation objectives. In this417

study, we undersample the balanced folds to achieve a target of approximately 13,000 train-418

ing samples and 2,000 validation samples for each training-validation combination. Training419

folds are undersampled in a way that achieves equal numbers of quiet, B, C and M time win-420

dows while retaining all available X-class samples. This training balance strategy is designed421

to introduce a maximum variety of subclasses, thereby encouraging our models to reach op-422

timal performances on different sub-cases of positive and negative events. Similarly to Sun423

et al. (2022), we believe that balancing training sets’ composition is also well-suited to train424

models with resulting performances less sensitive to climatological variations in operation.425

This might be particularly relevant in space weather applications when future climatolog-426

ical rates are potentially unknown and subject to changes. As for the validation folds, we427

undersample them in such a way as to replicate the natural climatology of the CV period.428

Such validation balance ensures that the performance evaluation from the validation closely429

mirrors how the models would have performed during the specified period. Subsequently,430

this allows us to assess how these performances generalize when the model is evaluated on431

the operational test set, eventually illustrating the impact of different climatology on the432

evaluation. The resulting training and validation folds are shown in Figure 5.433
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Figure 4: Folds composition resulting from the folds balancing algorithm (Section 3.3.1)
for 24h time-windows

3.3.2 Models hyperparameters434

The training process is performed with TensorFlow on an Nvidia V100 GPU. The435

EfficientNet-V2-S used as inner-patch-CNN is initialised with pre-trained weights. Every436

layer but batch-normalisation ones are retrained. We use batches of 16 images and train437

for 15 epochs. For each fold, we save the model at the epoch with the best TSS on the438

validation set. We then average-ensemble the resulting folds’ models as our final models439

when evaluating on the operational test set.440

We employ the Adam optimizer (Kingma and Ba (2014)) with a decoupled weight decay441

regularisation (Loshchilov and Hutter (2017)). Weight decay regularisation methods consist442

in decaying a model’s weights after every batch to provide an L2-regularisation. This helps443

to mitigate overfitting and foster generalisation between the training and the validation. We444

use a learning rate of 1e− 5 and a weight decay of 1e− 4 for every model.445

We use weighted binary-cross entropy as loss functions. Despite being already close446

to an even balance, we weighted positive and negative events evenly in the case of the447

C+ models. However, for the M+ models, we over-penalize positive misclassifications with448

stronger weights to the the positive events with respect to the negative. This is done to help449

converge to solutions with higher TSS and higher recall at the expense of a worsening in450

the False Alarm Ratio (FAR). We do so to subsequently better highlight some limitations451

of the TSS in imbalanced problems. However, for more balanced models achieving optimal452

MCC, F1 or HSS, it is noted that such a penalisation strategy might not be recommended.453

Among the M+ negative sub-classes, the C-class weight is further reduced, as such events454

are known to be harder. This strategy encourages the model to prioritize learning what is455

most learnable, potentially making the gradient descent easier. The final weights that we456

use in the case of the M+ models are 2 for quiet time windows, 2 for B time windows, 1 for457

C time windows, 8 for M time windows, and 8 for X time windows.458
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Figure 5: Final training and validation folds obtained from undersampling of the balanced
folds from Figure 4. Validation folds replicate the climatological rates of the CV-period for
better assessment of the model operational performances on such period. Training folds
provide as much diversity of negative and positive subcases as possible to foster optimal
performances on such subcases and optimal reliance to climatological variations. The values
next to the bars indicate the exact count of the classes within each fold.

4 Results459

In Section 4.1, we describe the performance metrics for full-disk observations. Notably,460

we highlight the stark contrast between the ostensibly state-of-the-art performance derived461

from conventional evaluation methodologies and the crucial limitations of the models. Sec-462

tion 4.2 exhibits the regional, or patch-based, performances. Subsequently, a succinct visual463

explanation of a prediction by the C+ Coronal model is presented in Section 4.3. Finally,464

Section 4.4 shows how regional predictions can be retrieved along with precise position465

estimations.466
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4.1 Full-disk-performances467

4.1.1 State of the traditional performances against low Persistence-relative468

performances469

Figure 6 and Figure 7 show the distribution of the TSS and HSS respectively for the470

C+ and M+ models, across validation and test sets, while the MCC, F1-score and more471

metrics are shown in the table 1 for the test set. The strong consistency between validation472

and test results indicates the effectiveness of the CV method in ensuring independence473

between training and validation sets. We observe that the metrics dispersion and standard474

deviations of the different CV-fold models are lower on the test set than the validation set.475

This observation suggests that the models from each fold converge to similar solutions, and476

that a significant share of the performance variability observed during validation may be due477

to dataset biases not addressed by our current fold balancing. Validation results indicate478

a TSS of 0.62 for the C+ magnetogram model and 0.69 for the EUV model. The M+479

magnetogram yields a TSS of 0.53 for magnetograms and 0.57 for the EUV model. For the480

test set, we construct ensemble models where the output is the average of the probabilities481

produced by the individual models from each CV fold. The resulting ensembles consistently482

outperforms the operational performance average of the individual folds models. Their483

performances correspond to the stars in Figure 6 and Figure 7.484

Figure 6: C+ models performances. The C+ Magnetogram model is the PCNN receiving
magnetograms in input. The C+ coronal model is the PCNN receiving the 3 EUV combina-
tion images in input. The box-plots summarize the performances of the 5 models resulting
from each fold. The red points and the values displayed above represent their averages. The
values displayed below the red points represent one standard deviation. The stars and the
values above them represent the performances of the ensemble model obtained by averaging
the predictions of the 5 folds-models on the test set.

The folds-ensemble C+ models achieve an operational TSS value of 0.67 and 0.74 for485

Magnetogram and Coronal models, respectively. For the folds-ensemble M+ models, the486

operational TSS values are 0.58 and 0.61 for the Magnetogram and Coronal models, respec-487

tively. More detailed operational performances of the final ensemble models are listed in488

Table 1.489
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(a) TSS

(b) HSS

Figure 7: M+ models performances. The M+ Magnetogram model is the PCNN receiving
magnetogram in input. The M+ coronal model is the PCNN receiving 3 EUV images in
input. The box-plots summarize the performances of the 5 models resulting from each fold.
The red points and the values displayed above represent their averages. The values displayed
below the red points represent one standard deviation. The stars and the values above them
represent the performances of the ensemble model obtained by averaging the predictions of
the 5 folds-models on the test set.
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Table 1: Full disk Performances summary on operational test set

Models TSS HSS MCC F1 Recall FAR ϕ χ PR-F1 AC-MCC NC-MCC NC-ϕ

C+ Persistence 0.73 0.73 0.73 0.86 0.86 0.14 0.48 0.14 0 -1 1 0.48

C+ Coronal 0.74 0.74 0.74 0.86 0.82 0.10 0.48 0.14 -0.00 0.13 0.84 0.48

C+ Magnetogram 0.67 0.67 0.68 0.82 0.77 0.11 0.51 0.14 -0.04 0.03 0.78 0.50

M+ Persistence 0.45 0.45 0.45 0.53 0.53 0.47 0.14 0.13 0 -1 1 0.08

M+ Coronal 0.61 0.42 0.46 0.53 0.82 0.61 0.14 0.13 -0.00 0.08 0.47 0.09

M+ Magnetogram 0.58 0.37 0.43 0.50 0.84 0.65 0.14 0.14 -0.06 0.06 0.43 0.09

Full disk performances of the final ensemble models on the test set. ϕ = P
P+N is the positive event ratio,

χ = C
P+N is the activity change rate, with C the number of time-windows with an activity different from the

previous one, and P and N, respectively, the number of positive and negative events. The PR-F1 (cf. Equation
1) is the F1-score Persistence-relative performance of the model. The AC-MCC (Section 2.2) assesses the
models’ explanatory power on time windows with an activity different from the previous one. Analogously, the
NC-MCC is the MCC evaluated on time windows with the same activity as the previous one.

We put in perspective these state-of-the-art performances by considering the following490

points:491

1. Low Persistence Relative Performances: The models are not significantly more492

explanatory than a Persistence model. Indeed, persistence models reaches in general493

similar state of the art performances. Despite a significant overperformance of the M+494

models in terms of TSS, the lower HSS, and similar MCC and F1-scores, generally495

point out low persistent-relative-skills. Specifically, compared to random guesses,496

the models exhibit skills similar to the ones of the Persistence (similar MCC and497

HSS). They also show similar explanatory power (MCC) and a similar capacity to498

differentiate positive events from negative ones with precision (same F1-score). In499

particular, the null Persistent-Relative-F1 (PR-F1) (c.f. Table 1), which is the PRSS500

applied to the F1-score, indicates alarm systems in practice not more efficient that501

the Persistence models. This highlights that the increased balanced accuracy of the502

M+ model is mainly achieved at the expense of a worsening in precision, through an503

overcasting tendency favorable to the TSS on imbalanced cases. In our experiments504

detailed in Appendix B2, these low Persistence relative performances are found to be505

consistent across strong variations of the dataset composition that include different506

positive-event ratios and varying rates of activity change.507

2. Non-objective comparison with other works: As discussed in Section 2.1.1 and508

Appendix A21, the TSS and most metrics are highly sensitive to the composition of509

the dataset. Consequently, it is challenging to compare the performances of this study510

with those from other works. However, it is noteworthy that the HSS exhibits lower511

sensitivity to dataset composition than the TSS, and that the HSS performances of512

the presented models are comparable to, or better than, those of other known models513

reported in the literature.514
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4.1.2 Performances Deficiency on Activity Change515

We introduced Activity-Change performances (AC-metrics, cf. 2.2) evaluated solely516

on samples whose label differs from the previous consecutive non-overlapping time-window.517

This evaluation includes active-time-windows that follow an inactive previous window, as518

well as inactive-time-windows succeeding an active one (c.f. first column of Figure 1). The519

results reveal low AC-TSS and AC-HSS for the models (Figure 8), along with poor AC-MCC520

(Table 1). These findings indicate a significant lack of skill to forecast samples exhibiting521

changes in activity, effectively performing barely better than random guesses in such cases.522

Figure 8: Models operational performances on time windows presenting an activity change
compared to the previous time window. The box-plots summarize the performances of the 5
models resulting from each fold. The red points represent their averages. The stars and the
values above them represent the performances of the ensemble model obtained by averaging
the predictions of the 5 individual models on the test set.

4.2 Regional-performances523

Table 2 summarizes the models’ performances on the operational test set at a regional524

- or patch-level, which generally appear lower than those at the full-disk level.525

These performance differences primarily stem from the significant differences in dataset526

composition biases. For instance, in the case of the Persistence model, it can be noted527

that the TSS, HSS and MCC can be expressed as a function of the the positive event ratio528

(ϕ) and the activity change rate (χ) ( c.f. Equation A12 and Figure A1), and that these529

ratios are significantly less favorable at the patches level compared to the full-disk one. In530

particular, the positive event ratio is divided by 2.5 and 7 for the C+ and M+ models,531

respectively, to reach an extremely imbalanced positive event ratio of less than 2% in the532

M+ case. The extremely low activity change rate of 2% in the M+ case also explains the533

stronger degradation of the persistent-relative-performances for the M+ PCNNs, since the534
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deep learning models only performs better than the Persistence on AC-windows (i.e. when535

a change of activity occurs).536

Another potential contributing factor to the performance disparity between patches537

and full-disk levels involves flares originating from AR spanning 2 patches. Although flares538

occurring near patch interstices appear well detected at the whole disk level, they can erro-539

neously be attributed to the wrong patch based on how the explainable features are shared540

between the patches and the specific region of the AR from which the flare originates. The541

evaluation of the regional performances is thus influenced by artefacts and biases inher-542

ent to their construction. A deeper evaluation could be proposed by considering position543

prediction - presented in section 4.4 - matched against the actual originating AR.544

Table 2: Regional Performances summary on operational test set

Models TSS HSS MCC F1 Recall FAR ϕ χ PR-F1 AC-MCC NC-MCC NC-ϕ

C+ Persistence 0.57 0.57 0.57 0.65 0.65 0.35 0.18 0.13 0 -1 1 0.14

C+ Coronal 0.50 0.57 0.58 0.63 0.54 0.22 0.18 0.13 -0.02 0.04 0.73 0.14

C+ Magnetogram 0.39 0.48 0.51 0.55 0.41 0.19 0.19 0.14 -0.16 0.04 0.66 0.14

M+ Persistence 0.32 0.33 0.33 0.34 0.34 0.67 0.02 0.03 0 -1 1 0.01

M+ Coronal 0.52 0.28 0.32 0.30 0.56 0.80 0.02 0.03 -0.12 0.06 0.29 0.01

M+ Magnetogram 0.43 0.22 0.26 0.25 0.48 0.83 0.02 0.03 -0.27 0.09 0.20 0.01

Regional performances of the final ensemble models on the test set. A description of the columns can be found
in Table 1’s caption.

4.3 Explainability545

To gain insights into the coronal features learned by our models and to add posi-546

tional predictions of the forecasted events, visual explainability methods are applied to547

the individual folds model and then averaged to represent the explainability output of the548

folds-ensemble model.549

In particular, an analysis is conducted of the C+ Coronal P-CNN’s results on 17-02-550

2023 at 10:00am, approximately 9 hours after the largest flare within our operational test551

dataset, an X2.3 flare, which started the 17-02-2023 at 18:46:52, and originated from the552

southern left limb of the sun. During the subsequent 24 hours, three additional regions553

produced C+ flares: the northern right center generated a C7.5 flare; the southern right554

center produced a C4.8 flare, and the northern right limb produced a C3.6 flare.555

To localize the sub-region that contributed most to the patches’ predictions, we use556

Grad-Class Activation Maps (CAM) (Selvaraju et al. (2016)), a generalisation of CAM557

(Zhou et al. (2015)) to any CNN architecture. Grad-CAM results are shown in Figure 9 and558

demonstrate the successful classification of each region. These results reveal that the most559

discriminating regions of the patches consistently encompass the positions of the forthcoming560

flares. The model, therefore, efficiently extracted and used features of the AR that were561

about to flare to make its prediction. This outcome also highlights that Grad-CAM results562

can help estimate predicted events’ positions.563

Subsequently, we employed Guided Grad-CAM, a technique that combines Guided564

Back-propagation (Springenberg et al. (2014)) with Grad-CAM, to visualise the fine-grained565

–20–



Figure 9: Grad-CAM explanation of the C+ Coronal P-CNN predictions the 17-02-2023
at 10:00am. The ground truth corresponds to the first line of the patches’ titles. It is the
biggest upcoming flare in the next 24 hours. The model prediction corresponds to the second
line of the patches’ titles. The Grad-CAM results are plotted only on positive predictions
with a ’jet’ color-map where the most intense values are red and the least intense are blue.
The red cross represents the point where the upcoming flare will emanate accounting for
rotation correction.

Figure 10: Guided-Grad-CAM explanation of the C+ Coronal P-CNN predictions the 17-
02-2023 at 10:00am. >(µ + σ)-masks of the guided Grad-CAM results are plotted only on
positive predictions. The masks are plotted with a ’hot’ color-map where the more intense
the values, the more yellow and brighter.
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contribution of the discriminative pixels to the model’s predictions. As depicted in Figure566

10, these results emphasize the model’s focus on the brightest coronal structures to make its567

predictions. This observation aligns with the limitations of the models in predicting changes568

in activity. Bright coronal features are the observational signature of intense activity that569

correlates with highly energetic regions. This tendency supports the indication that the570

model primarily detects whether a region already exhibits intense energy and activity or571

not, rather than predicting possible changes in activity.572

Figure 11: Example of the C+ Coronal P-CNN probabilities and positions predictions
the 17-02-2023 at 10:00am. The red cross locates the point where the upcoming flare will
emanate from after rotation correction. The blue point is the estimation of the upcoming
flare position, calculated as the center of mass of the patch Grad-CAM results. All regions
are successfully classified (classification threshold of 0.5), and the estimated positions closely
align with the emergence points.

4.4 Positions predictions573

We use the mass-center of the Grad-CAM results to estimate the positions of the574

upcoming predicted events. This information serves practical operational purposes as it575

can then be matched with known AR numbers, thus allowing to identify ARs likely to flare576

within a specific time window. The resulting model can thus potentially forecast events and577

identify regions prone to flaring but not yet identified or recorded in AR databases.578

Figure 11 presents an illustrative example of the C+ Coronal P-CNN predictions and579

position estimations as of February 17, 2023, at 10:00 am. The positions’ estimation ac-580

curately corresponds to the respective Active Regions for the 4 detected flares and closely581

align with the actual flare emergence points.582
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5 Discussion583

5.1 Patch-distributed CNN: An Efficient Solution for Operational Models584

Greater Information Retrieval with P-CNNs585

The Patch Distributed CNN (P-CNN) assessed in this study offers simplicity with586

comprehensive insights. These models are directly trained on full-disk images and labeled587

accordingly, yet they retain the capability to infer event position information and estimate588

flare risks for sub-regions across the disk.589

A potential limitation of P-CNNs arises when dealing with Active Regions spanning590

multiple patches. While these cases are often detected comparably well to a single full-disk591

model, misattribution to the wrong patch may occur. Nonetheless, this limitation can be592

mitigated by leveraging the precise position estimation derived from the center of mass in593

Grad-CAMs’ results, enabling matching to known Active Regions.594

Potential Regularization from P-CNNs595

During the training of our most effective models, particularly those utilizing EUV im-596

ages as inputs, the P-CNN demonstrated greater ease in tuning and yielded superior results597

compared to the use of the corresponding CNN directly on the full disk. The observed per-598

formance boost of the P-CNN over the CNN might stem from regularization effects intrinsic599

to the P-CNN architecture. Notably, the structural constraint of the P-CNN, confines it600

to a local feature space. This confinement limits the feature search to features of scales601

relative to the Active Regions, potentially the most pertinent scale for flare forecasts, thus602

easing convergence. For problems where a mix of local and large-scale features might be of603

interest, a global CNN layer could also be combined with the patches to achieve a sort of604

pyramidal features structure. Another potential regularization aspect lies in the share of the605

inner-CNN weight across all patches. For each sample, the inner-CNN weights must indeed606

converge on each patch. This cross-patches convergence artificially multiplies the number607

of seen instances by the number of patches. Nonetheless, confirming the regularization ad-608

vantages provided by the P-CNN would necessitate a more systematic hyper-parameter grid609

search to confirm the generalisation of these observations and allow a deeper exploration of610

this hypothesis.611

5.2 The current models weaknesses612

Forecasting flares within 24-hour time-windows, characterized by low activity change613

rates, suggests a focus on metrics relative to Persistence models, which exhibit better profi-614

ciency than other no-skill models. The PR-F1 score, specifically the F1 score of the model615

relative to the Persistence one, is therefore of particular interest and demonstrates remark-616

able stability against dataset composition changes, and assesses the models’ alarm system617

quality relatively to the Persistence. Moreover, assessments of flare forecasting metrics618

should distinguish between time-windows with constant and changing activity, recognizing619

that these scenarios represent two distinct problems. The AC-MCC and NC-MCC, which as-620

sess the models’ explanatory power over activity change and constant activity time-windows,621

thus serve as suitable complementary performance evaluation. The PR-F1 underscores that622

models reaching state-of-the-art performances may still lack useful forecasting abilities com-623

pared to Persistence models, whereas the AC-MCC highlight their difficulty to forecast624

changes in activity better than random guesses. This might suggest that currently available625

features are primarily effective in identifying whether a region is already active or inactive,626

with no significant ability to distinguish between a region flaring yesterday and one flaring627

tomorrow. The question remains to identify whether some additional features could help628

forecast such changes efficiently. Sun et al. (2022) found an interesting performances im-629

provement of 5 to 11% using a time-serie-based model over a point-in-time CNN. It would630

therefore be interesting to study the AC-performances of such models to identify a poten-631

–23–



tial ability to forecast activity-changes better than random guesses. In some tests we tried632

including the flare history as an additional feature to a CNN, as well as using LSTM on633

time-series of features derived from the SXR-flux, without significant improvement with634

respect to a standard CNN or the Persistence models. This may suggest that the discrim-635

inative features found in magnetograms and coronal EUV images are redundant with the636

flare history of the previous time-window, and that the flare activity from time-window to637

time-window could be modeled by a Markov Process, which retains no memory beyond one638

single timestep. We also trained models using 8-bit uncompressed (encoded as PNG files)639

images at a resolution of 512x1024 pixels with the same hyperparameters and found no sig-640

nificant differences with the presented models. This suggests that the small-scale details lost641

by spatial downsampling and JPEG compression may not contain significant discriminative642

power. Finally, it can also be noted that there are still few studies about potential temporal643

coronal or chromospheric features to forecast flares. Therefore, the possibility of discovering644

discriminative power in such features to predict activity changes might be an interesting645

prospect.646

Exploring novel approaches that are more aligned with the current features at our dis-647

posal could also be of interest. Magnetograms predominantly provide information about the648

potentially releasable energy within a specific duration. For example, the R-index (Schrijver649

(2009)) is related to the magnetic energy concentration around the Polarity Inversion Line650

(PIL)s, where instability is most likely to occur. Therefore, it might be more feasible to651

forecast quantities more closely related to the energy emitted by flares during specific time652

windows. For instance, labeling time-windows based on the sum of the SXR-fluence - i.e.,653

the integrated flux - produced by flares might better characterise the activity occurring654

during these periods. This new characterization would also be a more reliable proxy of the655

released energy and could be more explainable. Assessing the emitted SXR-fluence within656

a time-window could also offer valuable insights for astronauts.657

5.2.1 Activity change definition limit658

Our current definition of AC and NC windows has some limitations. An AR about to659

flare and emerging from the far side of the Sun, where it would have already flared in the660

previous time-window, would physically represent a NC-windows that is constantly active.661

However, it could lead to a labeling of the current time-window as an AC-window, changing662

from inactive to active, if the visible disk was previously inactive. A similar case may arise at663

the patch level when an AR crosses the boundaries between two patches. Furthermore, the664

definition of changing and constant relies on the arbitrary length of our time-windows. For665

a 24-hour time window, an AR flaring at 25h of intervals will represent (AC) time-windows666

while an AR flaring at 23h of intervals can represent (NC) time-windows (here constantly667

active), whereas the difference between the two cases might not be meaningful physically.668

Such artefacts could be mitigated by using temporally weighted metrics as introduced by669

Guastavino et al. (2022). However, it is worth noting that the previous limitations mostly670

contributes positively to the AC-performances. Indeed, these limitations cause some time-671

window physically closer to a constant activity to be labeled as a change of activity. These672

constant activities, which are more explainable than true activity changes, might therefore673

slightly boost the AC performances. Hence, the explanatory power of the proposed model on674

AC-windows could in fact be even lower than assessed with the presented AC performances.675
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6 Conclusion676

Our study introduces a novel method to facilitate the construction of balanced and677

independent CV-folds for full-disk flare forecasting with minimal undersampling. Introduc-678

ing P-CNNs trained with this method, our models achieve state-of-the-art performances at679

full-disk levels on the rising phase of Solar Cycle 25, with a TSS of 0.74 for C+ forecasts680

and 0.62 for M+ forecasts using EUV coronal images as inputs, revealing an interesting per-681

formance edge over the magnetograms. The Patch-CNN architecture offer the advantage of682

training models on full-disk images using full-disk labels alone while providing forecasts for683

sub-regions of the disk and estimations of events’ position. This results in minimal oper-684

ational external dependencies and the reduction of mislabelling issues during training and685

evaluation.686

Our discussion underscores the challenge of using conventional metrics in flare fore-687

casting, as they are significantly sensitive to various elements of datasets’ composition and688

do not enable identifying important model limitations. Notably, classical metrics may hin-689

der objective model comparisons across different works and optimal model selection during690

training for operational purposes.691

To address these issues, we introduced Persistence-Relative-Skill-Scores along with eval-692

uation restrictions to time-windows exhibiting changes of activities (AC-performances) and693

those without changes of activity (NC-performances). These metrics are well-suited to the694

specific challenges of flare forecasting and can help improve model comparisons.695

The PR-F1 and AC-MCC reveal low forecasting skills when comparing our models to696

Persistence ones or random models for time-windows with changes in activity. Both the697

PR-F1 and MCC exhibit greater stability and reliability than the commonly used HSS, the698

latter being already more reliable and informative than the TSS in imbalanced cases.699
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Appendix A Metrics complements700

A1 Formulas701

A11 Confusion Matrix702

Evaluation metrics for binary classification are defined as a function of the confusion703

matrix CM:704

CM =

(
TP FN
FP TN

)
(A1)

where True Positive (TP) and True Negative (TN) denote the number of positive and705

negative events correctly classified, while False Positive (FP) and False Negative (FN) are706

the number of misclassified ones.707

A12 Basic Confusion Matrix708

The following rates summarize the information contained in the confusion matrix :709

• Class-Accuracy rates710

Recall = True Positive Rate (TPR) =
TP

TP + FN
(A2)

Sensitivity = True Negative Rate (TNR) =
TN

TN + FP
(A3)

• Class-Precision rates:711

Negative Predictive Value (NPV) =
TN

TN + FN
(A4)

Precision = Positive Predicitve Value (PPV) =
TP

TP + FP
(A5)

Equivalently to the precision, practitioners alternatively look at the FAR which is the712

complementary of the former and gives the rate at which positive predictions give a713

false alarm.714

A13 F1-Score715

The F1-score, defined in equation A6, is the harmonic mean of the precision and the716

recall.717

F1 = 2 ∗ precision ∗ recall
precision+ recall

=
2TP

2TP + FP + FN
(A6)

It offers a consolidated assessment of an alarm system skill when the emphasis lies on718

achieving high recall (TPR) to detect maximum events, along with high precision (PPV) to719

ensure confidence in positive predictions.720

A14 True Skill Statistic (TSS) / Informdness721

The True Skill Statistic (TSS) was introduced to evaluate weather forecasts by Hanssen722

and Kuipers (1965). In other fields, it is also known as the (bookmaker) informedness,723

Peirce’s index or Younden’s J index. It can be dated back to 1884 (Peirce (1884)). It is724

equal to the difference between the true positive rate and the false positive rate but also725
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to the balanced accuracy re-scaled between -1 and 1, i.e. the average of the class-accuracy726

rates (TPR and TNR) normalized in [-1,1]:727

TSS =
TP

TP + FN
− FP

FP + TN
= TPR+ TNR− 1 (A7)

Random and constant models produce a TSS of 0.728

A15 Markdness (MK)729

The markedness is the precision equivalent of the TSS; it is the average of the class-730

precision rates (PPV and NPV) normalized in [-1,1].731

MK = PPV +NPV − 1 (A8)

A16 Negative Frequency Bias (NFB)732

NFB =
TN + FN

TN + FP
=

Predicted Neagtives

Observed Negatives
(A9)

A17 Heidke Skill Score (HSS) / Cohen’s Kappa index733

The HSS, defined in equation A10, was introduced to evaluate weather forecasts by734

Heidke (1926). In other fields, it can be known as Cohen’s Kappa index. It is commonly used735

in flare forecasting to compare a model skill relatively to a random guess model (Camporeale736

(2019)).737

HSS = 2 ∗ TP ∗ TN − FN ∗ FP

P (TN + FN) +N(TP + FP )
(A10)

The HSS varies between -1 and 1, with 1 denoting the performance of a perfect classi-738

fier and 0 indicating the one of random guesses. It can then be noted that the HSS is the739

harmonic mean between TSS
NFB and MK ∗NFB (see Delgado and Tibau (2019) for mathe-740

matical proof). The HSS is, therefore, a weighted harmonic average between the TSS and741

the MK, with a model-dependent importance given to each.742

A18 Matthews Correlation Coefficient (MCC)743

The MCC was introduced by Matthews (1975) to address class imbalances in perfor-744

mance evaluation. It is the Pearson correlation coefficient between binary predictions and745

labels :746

MCC =
TP ∗ TN − FN ∗ FP√

P (TN + FN) ∗N ∗ (TP + FP )
(A11)

The MCC ranges between -1 and 1. Similar to the TSS and HSS, both random and747

constant models produce an MCC score of 0. The MCC is the geometric average between the748

TSS and the Markdness (c.f. Delgado and Tibau (2019) and Chicco, Tötsch, and Jurman749

(2021)). It thus summarizes the four basic confusion matrix rates with equal weights given750

to each.751
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A2 Metrics’ Notable Properties752

A21 The TSS sensitivity to the dataset composition753

Bloomfield et al. (2012) proposed the TSS for flare forecasting as, in simplified cases, it is754

found to be insensitive to the class-balance. This has been argued to make it a suitable metric755

for comparing models among different datasets with varying class balances (Bloomfield et756

al. (2012), Chicco, Tötsch, and Jurman (2021)). However, in the case of flare forecasting, we757

prove that usual models will have a TSS that is strongly sensitive to the positive events ratio.758

Indeed, the mathematical independence between the TSS and the class balance only holds759

for models that perform equally in every possible case of negative and positive events. For760

flare forecasting models, the weak performances on samples exhibiting changes in activity761

result in a direct non-linear dependency of the TSS to the positive event ratio and, thereby,762

the class balance.763

Let us consider the limit case of a model that perfectly identifies time-windows without764

activity change but consistently fails when activity change occur. Such a model can be765

known as a Persistence model. On a given time period, if evaluated on every time-window,766

the Persistence model’s number of FP will be equal to the number of FN which will be equal767

to half the number of activity change C
2 . The number of TP will be P − C

2 , and the number768

of TN will be N − C
2 , where P and N are respectively the number of positive and negative769

events. If we denote ϕ = P
P+N the positive event ratio, and χ = C

P+N the activity change770

rate, the TSS, HSS and the MCC from equation A7, A10 and A11 simplify in :771

TSSPersistence = HSSPersistence = MCCPersistence = 1− 1

2

χ

ϕ(1− ϕ)
(A12)

We may additionally note that as C is at maximum equal to twice the minimum between772

P and N. Therefore, the equation A12 is defined only when :773

χ ≤

{
2ϕ if ϕ ≤ 0.5

2(1− ϕ) if ϕ ≥ 0.5
with ϕ ∈ [0, 1] (A13)

Figure A1 shows the plot of a Persistence model’s TSS, HSS and MCC according to774

equations A12 and A13. The metric linearly increase with the decrease of the activity change775

rate χ which is typically low in flare forecasting. The performance is non-linearly dependent776

on the positive event ratio ϕ with a stronger sensitivity in most imbalanced cases. For a777

variation of ϕ from 6 to 12%, the TSS increases from -0.06 to 0.44 with a standard activity778

change rate of 0.12. The model is therefore deemed unskilled in the first case, whereas it779

can be estimated as mildly proficient in the second case, only because of a doubling of the780

positive event ratio.781

In practice flare forecasting models can be expected to have a similar TSS, HSS and782

MCC sensitivity to ϕ and χ as they have good performances on time windows with the same783

activity as the previous one, whereas they struggle on time windows with changing activity784

with respect to the previous one.785

The activity change rate χ and the positive event ratio ϕ thus emerge as fundamental786

dataset biases in flare forecasting. Our experiment in Appendix B, show that empirically787

the sensitivity of the models’ metrics to these biases is actually stronger than the one of the788

Persistence models. In particular, the TSS seems to exhibit heightened sensitivity to dataset789

biases compared to the HSS, and the MCC appears as the most stable of the three. This790

is likely due to the positive influence of overcasting on TSS, as well as additional models’791

flaws, such as the low accuracy on C-class negative events in M+ forecasts. These factors792

further complexify the sensitivity of the models’ performance to various dataset biases.793
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Figure A1: Figure (a) displays the plot of a Persistence model’s TSS, HSS and MCC as a
function of ϕ and χ. Figure (b) displays the variations of the TSS, HSS and MCC with ϕ
for two different constant χ. ϕ = P

P+N is the positive event ratio. χ = C
P+N is the activity

change rate

–29–



A22 TSS’s incomplete information for operational model purposes794

The TSS is inadequately informative in highly imbalanced scenarios, where a good TSS795

might obscure strong over- or undercasting tendencies, as highlighted by Leka et al. (2019).796

While a high TSS ensures accurate classification for most positive and negative events, it797

does not always translate into a practical model intended for an alarm system if the eval-798

uation is made on an imbalanced set. In cases of substantial imbalance, a high TSS can799

be reached with a precision close to 0, resulting in a false alarm ratio close to 1, rendering800

the model unfit for an alert system. To illustrate, let us compare the two following models801

using the same synthetic dataset with a positive event ratio of 0.001:802

803

Model 1804

TP = 99, FN = 1, FP = 5 000 and TN = 94 900, then,805

TSS = 0.94, recall = 0.99, precision = 0.02, f1 = 0.04.806

A case similar to this one might arise with X+ flare binary classifiers. A comparative ex-807

ample can be found with the X+ flares binary classifier of Huang et al. (2018) achieving a808

TSS of 0.714 for a False Alarm Ratio of 0.98.809

810

Model 2811

TP = 90, FN = 10, FP = 50 and TN = 94 851, then,812

TSS = 0.90, recall = 0.90 precision = 0.64, f1 = 0.75.813

This model, while having a lower TSS, maintains a reasonably good recall with significantly814

higher precision, making it arguably preferable over model 1 for operational purposes.815

816

The TSS contains no information about a model’s precision and is, therefore, not a well-817

suited indicator to select a model for an alarm system in imbalanced cases. Without pref-818

erences defined between recall and precision, the F1 score proves more informative in dis-819

criminating between a useful or impractical model in operation. Specific recall and precision820

preferences can also be considered using the Fβ score, which extends the F1 score by giving821

β times more importance to the recall than the precision.822

A23 HSS interpretations823

The HSS is a weighted harmonic average between the TSS and the MK, with model-824

dependent importance given to each. The HSS thus synthesizes information both about825

a model’s accuracy and its precision in the different classes, making it arguably a more826

suitable metric for assessing a model’s suitability as an alarm system than the TSS. However,827

the model-dependent weight importance between the Markedness and the TSS makes it828

complex to interpret and compare models. The harmonic mean mathematically gives more829

importance to smaller values. Consequently, for a model tending to undercast the negative830

class, i.e. NFB smaller than 1, the contribution of the Markedness to the HSS is increased.831

For a model tending to overcast the negative class, i.e. NFB larger than 1, the importance832

of the TSS contribution to the HSS is conversely increased.833

A24 MCC advantages over other metrics834

While the MCC is still uncommon in Space Weather, it is argued, for general cases, to be835

a more informative and reliable metric compared to the accuracy and the F1 score (Chicco836

and Jurman (2020)), the TSS (Chicco, Tötsch, and Jurman (2021)), the HSS (Delgado837

and Tibau (2019),Chicco, Warrens, and Jurman (2021)). The MCC is also to be favored838

over other metrics such as the ROC AUC (Chicco and Jurman (2023)) and the Brier Score839

(Chicco, Warrens, and Jurman (2021)), two other metrics of interest in flare forecasts. Em-840

pirically, we showed (c.f. Appendix B) the MCC scores to be more resilient to dataset841

composition changes compared to the HSS, which, in turn, is more stable than the TSS.842

Consequently, the MCC might be preferable for both model selection and comparison across843

different datasets. It is often a better choice compared to the HSS, as it shares similar infor-844
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mation but demonstrates higher stability in extreme cases and is a consistent synthesis of845

models’ class accuracies and precisions. The MCC also allows to measure models explana-846

tory power agnostically of users preferences. Despite the MCC’s comprehensive assessment847

of a model’s overall quality, the F1-score remains relevant due to its straightforward inter-848

pretability for operational alarm system applications. The choice of one metric among the849

others should ultimately be decided by the importance given to each class and their accu-850

racy and precision. (Chicco, Tötsch, & Jurman, 2021) summarizes that F1 might still be851

preferred over the MCC when the accurate and confident classification of positive elements852

holds greater importance than for negative ones. The TSS, on the other end, is still relevant853

on balanced problem, or on imbalanced problem if no importance is given to the models854

precision.855

Appendix B Empirical Variability Of Standard Metrics to the Evalua-856

tion Set Composition857

B1 Standard Metrics858

Metrics can be linked with the positive event ratio and the activity change rate in a non-859

linear way. For instance, the recall and the F1-score of a Persistence model is proportional860

to their ratio : F1persistant = 1− χ
2ϕ . In appendix A21 and Figure A1 we exposed the more861

complex relationship of the TSS and HSS of a Persistence model with these ratios. Similar862

bias sensitivity should be expected for every model with significant skills deficiency on ac-863

tivity changes. To observe empirically the impact of the two ratios on the metrics evaluated864

on our models, we display the model’s performance variation for different combinations of865

those ratios in Figure B1. The sub-test samples with varying compositions are obtained by866

varying the start of the test set from 2020-01-01 to 2023-01-01 while maintaining 2023-04-18867

as the end date.868

All the metrics appear strongly sensitive to the dataset composition. The TSS appears869

to be the most affected, especially in the imbalanced case of the M+ models, while the870

F1-score and the MCC are the most stable ones. It is worth noting that the F1-score is871

defined on the range [0, 1], while the Matthews correlation coefficient (MCC) is defined on872

the range [-1, 1]. This implies that a unit change in the F1-score corresponds to a double873

change in magnitude compared to the MCC relative to their respective definition intervals.874

B2 Persistence relative skill scores875

Using the same dataset composition variations as presented in the previous section876

(Appendix Appendix B) the variability of the Persistence-relative-skill-scores are displayed877

in Figure B2.878

The Persistence relative skill scores appear to vary less than their standard metric879

equivalent. The most resilient ones appear to be the PR-F1 followed by the PR-MCC.880

The PR-F1 in particular appears remarkably stable except with the C+ model in the most881

extreme class-imbalances, where it becomes slightly positive.882

With the exception of the PR-TSS, the Persistence relative skill scores indicate a consis-883

tent lack of performance in the M+ case, and null to slightly positive for the C+ model. This884

suggests that despite the strong impact of the dataset biases on the performance evaluation,885

models reaching state-of-the-art performances could be expected to consistently struggle to886

outperform Persistence models over varying subsets of the Solar Cycle.887
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(a) TSS

(b) HSS

Figure B1: EUV models operational performances against variations of the positive event
ratio and the activity change rate. The sub-test-sets with varying compositions are obtained
by sliding the start of the test set from 2020-01-01 to 2023-01-01. The left Y-axis represent
the metrics score. The X-axis are the varying positive event ratios. The right Y-axis
represents the activity change rates which are plotted as a black dashed line.
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(a) TSS

(b) HSS

Figure B2: EUV models operational Persistence-relative-performances against variations
of the positive event ratio and the activity change rate. The axis and sub-test-sets are the
same as in Figure B1
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Appendix C List of Acronyms888

AR Active Region889

CAM Class Activation Maps890

CNN Convolutional Neural Network891

EUV Extreme Ultraviolet892

FAR False Alarm Ratio893

LSTM Long Short-Term Memory894

ML Machine Learning895

MLP Multi-Layer Perceptron896

PIL Polarity Inversion Line897

SDO Solar Dynamic Observatory898

TSS True Skill Statistic899

PRSS Persistent Relative Skill Score900

PR-F1 Persistent-Relative-F1901

HSS Heidke Skill Score902

MCC Matthews Correlation Coefficient903

P-CNN Patch-Distributed-CNN904

TPR True Positive Rate905

TNR True Negative Rate906

PPV Positive Predictive Value907

NPV Negative Predictive Value908

TP True Positive909

TN True Negative910

FP False Positive911

FN False Negative912

AIA Atmospheric Imaging Assembly913

SXR Soft X-Rays914

MPF Maximum Peak Flux915

CV Cross-Validation916

NFB Negative-Frequency-Bias917
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Appendix D Open Research918

The data prepared for this study offers a compact and Machine-learning-ready dataset919

that can be used for other applications and is available from: Francisco et al. (2024). It is920

derived from the AIA-Synoptic dataset http://jsoc.stanford.edu/data/aia/synoptic/921

and JSOC’s level 1.5 45 seconds series HMI LOS magnetograms. The time-window labels922

are derived from an extension (Plutino et al. (2024)) of the Plutino’s flare event catalogue923

(Plutino et al. (2023)).924

The code - based on TensorFlow (Abadi et al. (2015)) - developed to analyse and train925

the models of this work are also publicly available and notebooks are provided to replicate the926

results presented in this study: https://github.com/gfrancisco20/flare limits pcnn927
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