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Abstract

Climate attribution assessments are now common for exceptional weather events, but lesser extremes 
and everyday weather remain largely unexamined. Here we use a multi-method approach to calculate the 
influence of human-caused climate change on 54 years of daily temperatures around the world. We use a 
new metric called the change in information due to perspective that contrasts the likelihood of a 
temperature in two climates: one forced by extra greenhouse gases and another with no anthropogenic 
warming.  We show that exposure to climate change surged in the middle of 2023. On August 21, a 
record 4.9 billion people experienced temperatures made at least twice as likely by climate change. On 
August 22, 49.5% of the land surface reached this level.  The distribution of exposure of both ecosystems 
and countries in August was largely consistent with long-term trends, with higher exposure at night, in 
tropical ecosystems, and in less developed countries. Notable exceptions to this pattern occurred in 
Europe and the United States. On August 21, Spain and Italy experienced anomalously warm conditions 
with very strong climate fingerprints. Over the second half of the year, cities in the United States from 
Texas to Florida experienced exceptional streaks of extreme and attributable temperatures. We extend 
the daily attribution approach to quantify how climate change is increasing the exposure of people, 
especially in Africa and small island states, to stressfully warm temperatures. Daily climate change 
attribution of temperature provides a new index of climate exposure and new opportunities to 
communicate about climate change.


Significance Statement

We quantify the climate fingerprint on local temperature, everywhere and for every day from 1970-2023. 
We show how the exposure of people and ecosystems to elevated daily temperatures that have been 
made more likely by climate change surged in 2023. This exposure is not even: it occurs more intensely 
at night and falls more heavily on countries and ecosystems near the equator. Elevated temperatures are 
a health risk, and we show that climate change is increasing the exposure of people to stressful daily 
temperatures. Quantifying climate change on a daily, local scale highlights conditions that will benefit from 
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adaptation, emphasizes the benefits from reducing carbon emissions, and offers new opportunities to 
raise public understanding of climate change.


Main Text

Introduction

Rising temperatures have been apparent at the global scale for nearly 40 years (1), and attributable to 
humans for more than two decades (2). Global temperatures increased rapidly in the middle of 2023. July 
was the warmest month ever measured (3), September had the maximum temperature anomaly (4), and 
November 2022-October 2023 was the warmest 12 month period (5). 


While the global statistics are important for tracking climate change, people and ecosystems experience 
climate change through changes in daily weather. Our ability to detect climate change at finer spatial and 
temporal scales has increased. This is most apparent in the advent of extreme event attribution (6, 7), 
which has been used to diagnose the contribution of climate change to individual heatwaves (8), extreme 
rainfall events (9, 10), and economic damages from coastal flooding (11).


Gilford et al. (12) (hereafter G22), extended extreme event attribution methods (i. e. 6, 7), to daily 
temperatures and demonstrated the ability to quantify how climate change has made a wide range of 
temperatures, not merely extremes, more likely. This daily, local scale perspective provides new 
capabilities to consider how people and ecosystems around the world experience climate change.


We apply the G22 approach, which blends observed trends and climate models, to quantify the likelihood 
of the observed temperatures (daily minimum, maximum, and average) during the record warm conditions 
of 2023. We use a new metric called the change in information due to perspective (ChIP) to contrast the 
likelihoods to those in a counterfactual world with no global warming, and we extend the calculations back 
54 years to place the conditions in 2023 in the context of long-term trends.


Measuring Climate Change through Information

Climate change attribution studies are built around a contrast between our current world and a 
counterfactual world with similar population distribution but no anthropogenic warming (13). Most studies 
quantify the influence of climate change on the event using the ratio of the probability an event of similar 
or greater magnitude in the current climate to the probability in the counterfactual climate (6). This 
approach is suitable for quantifying specific, high-impact events, but a metric built around the probability 
of exceedance is less informative for events that are more common.


For this study, we use the relative log-likelihood, i.e. the log of the ratio of the value of the probability 
density function of the event in the current climate to the value in the counterfactual climate. Focusing on 
the relative likelihood of an event, rather than the probability of exceedance, allows us to apply this metric 
to any temperature, not just extremes. For example, a cool temperature that is less likely in the current 
climate will have a negative value. The logarithmic formation makes sums and averages meaningful, 
allowing us to aggregate over space and time.


We refer to the metric as the change in information due to perspective (ChIP) to highlight the connection 
with information theory (see Supplement for more details). Information theory centers the notion of an 
observer. The observer has expectations about events that are quantified as a probability distribution. 
New events give the observer access to new information, and the amount of information available is 
proportional to how novel or surprising the event is. For an observer from the modern climate, ChIP is the 
information advantage they have due to their understanding of climate change.


Results

We used G22’s multi-method approach to calculate temperature distributions in the counterfactual climate 
(0°C of warming relative to the 1850-1900 average) and the modern climate based on the warming 
observed in the specified year. We then used these distributions to calculate the ChIP for daily high 
(Tmax), low (Tmin), and average (Tavg) temperatures over land from the ERA5 reanalysis for every day 
from January 1970-October 2023 at 0.25° spatial resolution (see Methods). 
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As global temperatures increased in 2023, so did the exposure to daily temperatures fueled by human-
caused climate change. We anchor our analysis on August 22, which is the day when the global average 
ChIP reached its maximum observed level. On that date, very high ChIP levels were observed across 
most of Africa and Europe and extended from Brazil to the United States (Figure 1A). In Asia, the Arabian 
Peninsula, India, southeast Asia, and the Malay Archipelago were also at very high levels. In aggregate, 
49.5% of the land surface experienced conditions where the ChIP was at or above 1, indicating 
temperatures that were made at least twice as likely because of climate change. In contrast, only 3.3% of 
the land surface experienced conditions where the ChIP was at or below -1.


ChIP incorporates a range of information including the variance in temperature (captured by the 
probability distributions) and the expected change in temperature due to climate change. It thus provides 
new information beyond the temperature anomaly. On average, temperature anomalies are stronger at 
mid and high latitudes and weaker in the tropics. However, low temperature variability near the equator 
and consistent warming in both the observations and climate models give a stronger ChIP response at 
low latitudes. For example, on August 22, 2023, western Africa was only slightly warmer than average 
(Figure 1A), yet Accra, Ghana had a ChIP of 4.0 (Figure 1B). In contrast, some of the highest temperature 
anomalies on that date were found in North and South America: despite a temperature anomaly of 10°C, 
Asunción, Paraguay had a ChIP of 1.8.


Global average ChIP values typically peak at the end of boreal summer (Figure 1C, inset), but the 
increase in 2023 was unprecedented. From 1970-2022, global average ChIP never exceeded 1.0 (Figure 
1C), rarely exceeded 0.8 in the previous three years (Figure 1D), but in 2023, values rose to a peak of 
1.26 on August 2023 (Figure 1E).


Area-weighted ChIP time series reveal another notable pattern: local experiences with climate change are 
typically stronger at night. The annual average ChIP values for Tmin (Figure 1, C-E, black lines) were 
consistently higher than those for both Tavg (gray) and Tmax (yellow). Tavg is only slightly lower than 
Tmin, indicating that rising nighttime temperatures are driving the increase in the attribution levels for 
Tavg.


The distribution of life on the planet reflects the variations in climatic conditions (14), leading to 
recognizable biomes. Because ChIP incorporates, it quantifies changes that are likely to be ecologically 
meaningful. On the record exposure day, there was a strong latitudinal gradient in the exposure of 
terrestrial biomes to climate change (Figure 2A). Four tropical biomes: rainforests, mountain systems, 
shrublands, and moist forests had area-average ChIP values above 2. This means that on average, the 
organisms in these systems experienced temperatures that were made at least four times more likely by 
climate change. Boreal and polar ecosystems had much lower exposure on that date with both low 
temperature anomalies and low ChIP values.


The annual average exposure of tropical and subtropical ecosystems systems to climate change as 
measured by ChIP has increased at a rate of 0.18 and 0.07 decade-1, respectively (Figure 2B). In 
contrast, ChIP values across boreal and polar ecosystems have increased at only 0.04 decade-1. The 
exposure of all climatic regions increased in 2023 (Figures 2C). With the exception of polar systems, 
which had higher exposure than boreal systems, the tropical-to-boreal gradient in ChIP on August 22 is 
consistent with the long-term trends (Figure 2D).


To quantify the exposure of humans to climate change, we calculated the population-weighted (based on 
the distribution of people in 2020 (15)) average temperature anomalies and ChIP values for the globe and 
for 175 countries. Based on Tavg, the maximum exposure of humans to climate change occurred on 
August 21, 2023, the day before the maximum exposure of the land surface. On that date, 4.9 billion 
people experienced conditions with ChIP ≥1. The elevated human exposure was driven by high ChIP 
values in India, southeast Asia, western Africa, Europe, and central America.


On the day of maximum human exposure, Rwanda, Burundi, and Guatemala had the highest per-capita 
ChIP values among 91 countries with more than 10 million residents (Figure 2C). Residents in these 
countries experienced temperatures with ChIP values that approached 4.0, the maximum value of our 
current system. According to the human development index (16), these three countries are categorized 
has having “Low” (Rwanda and Burundi) and “Medium” (Guatemala) development levels. 
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Overall, poorer, less-developed countries had higher exposure on August 21 than wealthier, more 
developed countries. There were 18 countries with per-capita average ChIP values above 3. Of these 
countries, 15 are either in the “Low” (9 countries) or “Medium” (6 countries) categories. On the other end 
of the exposure spectrum, there were 11 countries with average ChIP values below 1, and all but three 
countries: Kyrgyzstan (“Medium), China (“High”), and Algeria (“High) are classified as very highly 
developed.  Japan, and many countries in Europe ran counter to this pattern. They had relatively high 
(ChIP>2) exposure to climate change, and several such as Spain and Italy had very high exposure and 
large anomalies..


The relationship between development level and exposure in August 2023 is consistent with the long-term 
patterns. Per-capita exposure in the “Low” development category has risen at a rate of 0.20 ChIP 
decade-1 (Figure 2F), a rate that is faster than tropical ecosystems. Countries in the “Very High” category 
have experienced a more gradual increase of 0.07 ChIP decade-1. The relative ordering of development 
types on August 21 (Figure 2H) was broadly consistent with the long term trends. The exception was that 
hot conditions in Europe and Japan pushed the “Very High” category above the “High” category on that 
day.


Rising temperatures pose a considerable health risk, and our methods allow us to estimate how 
increased exposure to climate-driven heat has intensified these risks. We define the minimum mortality 
temperature as the 83rd percentile of daily Tavg over the period 1986-2005 (16, 17). As temperatures rise 
above this level, mortality increases. Because the minimum mortality temperature is defined relative to a 
percentile rather than an absolute temperature, this temperature is location-specific, with lower values at 
higher latitudes and elevations (Figure S2).


In the absence of a warming trend, we would expect 62 days per year (17% of 365) above the minimum 
mortality temperature. Instead, we find that the population-weighted average number of days above the 
minimum mortality temperature (Figure 3A orange) has been above 62 every year since 2002. The 
population exposure to cold conditions (below the 17th percentile) was nearly the same as the exposure 
to high temperatures at the beginning of the time series (Figure 3A gray). While exposure to stressfully 
cold temperatures decreased at a rate of 0.6 days yr-1, per capita exposure to stressfully warm days 
increased twice as fast (1.3 days). 


Over the period 2018-2023, more than half of the high temperature days also had ChIP ≥1 (Figure 3A 
black). This indicates that climate change is amplifying human exposure to dangerous heat by increasing 
the number of days about the minimum mortality threshold. The number of days with both stressful 
temperatures and elevated ChIP increased most strongly in small island nations and Africa and less 
strongly in Oceania and Europe (Figure 3A thin lines). For days that would have been above the threshold 
even in the counterfactual climate, the elevated ChIP values indicate temperatures that are warmer and 
therefore more dangerous.


In 2023, most locations experienced more than 62 days above the minimum mortality temperature (Figure 
3B, area-weighted average = 87.2 days), and nearly the entire land surface had some days above this 
threshold and with ChIP ≥1 (Figure 4C, area-weighted average = 52.9 days). Many locations, especially 
near the equator, had 70 or more days with ChIP ≥1, indicating that the climate change at least doubled 
the risk of broad, daily exposure during nearly 1 in 5 days of 2023. Whether mortality is actually observed 
to increase depends on a wide range of factors in addition to exposure to high temperatures, including 
access to healthcare, the proportion of the population at higher risk because of underlying susceptibilities, 
the presence of an early warning system, and urban form (18).


Even in an unaltered climate, temperatures above the minimum mortality temperature will be relatively 
common. To consider exposure to even more extreme temperatures, we calculated the location-specific 
99th percentile temperature. For 700 cities with more than 1 million residents, we looked for periods of 
more than five consecutive days (termed streaks) during the last year (see Table S3). The United States 
had 7 cities on the list of cities with the top 20 longest streaks (Table 1), and the 22 day streak in Houston, 
Texas was the longest observed. Other cities from G20 nations with significant streaks included Mexico 
(3), Indonesia (4), Brazil (1), China (1), and India (1). 


The average daily ChIP for each of these streaks underestimates the impact of climate change on these 
events. The ChIP for an n-day average temperature can be calculated by scaling the n-day average ChIP 
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by the ratio of the variance of multiway averages to the variance of daily averages (see Supplement). 
Applying this formula, the 10-day streak in Miami, Florida, United States had the highest climate change 
exposure, with a multi-day ChIP of 7.3. 


Discussion 

Global temperatures are warmer than they have been in 125 thousand years (19), and the 12 month 
period from November 2022-October 2023 was the hottest ever measured. Daily attribution objectively 
quantifies the influence of climate change on local temperatures, connecting the experience of people 
and ecosystems to global warming. 


The exposure of ecosystems on August 22, 2023 was highly consistent with the long-term trend, 
supporting Sippel et al.’s (20) conclusion that the spatial fingerprint of climate change is detectable in 
distribution of daily weather conditions. A major feature of this global pattern is elevated exposure in the 
tropics. In these regions, the relatively low day-to-day variability in conditions makes the signal of climate 
change much clearer, even when average anomalies are lower than at higher latitudes (21). The stronger 
tropical fingerprint of climate change increases the ecosystem exposure to previously atypical and likely 
stressful conditions, with potentially detrimental results. This elevated exposure is particularly acute for 
ecosystems like tropical rainforests that are hot spots of biodiversity and carbon (22, 23), and the spatial 
pattern is consistent with projections of future impacts to these ecosystems (24).


The latitudinal gradient in exposure to climate change also means that people in Africa and Central 
America have higher exposure than people in higher latitude countries like the United States and China. 
Although it is too soon to say whether this is part of a trend, many wealthy countries were hit with very 
unusual conditions in 2023. For example, the population-weighted average ChIP in the United States on 
August 21 was relatively low, yet cities in the southern United States were exposed to many days of 
extreme and attributable heat. The interaction between attributable warming, urban heat island effects, 
and population growth can lead to especially strong exposure in cities (25, 26).


Our results show that human-caused climate change is having a quantifiably stronger impact on Tmin. 
Davy et al. (27) note that nighttime temperatures are expected to warm rapidly in response to rising 
greenhouse gases, and faster warming at night has been observed since the early 1990s (28). The 
consequences of rising nighttime temperatures have received relatively little mention in the ecological 
literature (29) compared with agricultural studies that link elevated nighttime temperatures with reduced 
yields and altered nutritional properties in commercial crops such as wheat and rice (30, 31). Warmer 
conditions at night make it harder for people to recover from the heat of the day, increasing health risks 
(32).   


Rising temperatures pose a growing health risk (18). The notion of a location-specific minimum mortality 
temperature emerges from the ability of people to adapt to prevailing conditions, through a combination of 
physiological acclimatization and behavioral and technological adaptation (33). Future health impacts 
from exposure to high temperatures are sensitive to projected adaptation rates (34). There is some 
evidence that adaptation is occurring, especially in high income countries (18, 35). The fact that low-
income countries are experiencing more days with detectable climate fingerprints they are facing 
increasingly greater risks and adaptation challenges. Daily attribution, especially when connected with 
impacts on health or economies, could support efforts by developing countries to gain compensation for 
losses and damages from climate change (36).


By framing climate change attribution as an information problem, ChIP measures the information 
advantage of an observer knowledgeable about climate trends. This advantage is not shared by natural 
systems and even many human systems that adapt through backward-facing processes. These systems 
embed knowledge of past conditions, and conditions outside of the past experience—surprises— can 
lead to losses in functionality (37). Repeated and widespread high ChIP values thus are likely to reflect 
conditions that are stressful to these systems, and we hypothesize that ChIP should be a good indicator 
of the intensity of local climate impacts and could be used to inform adaptation priorities.


Daily climate change attribution can also play a crucial role expanding public understanding of climate 
change. Frequent communication about climate change in the context of weather broadcasts has been 
shown to lead to a greater interest in addressing climate change (38). Because the ChIP metric can be 
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applied to any temperature, including forecasted temperatures, it could be incorporated into regular 
discussions of the weather. The daily attribution approach also allows us to detect events in places or 
seasons that may not garner as much public attention, and can help address the lack of attribution 
studies in the developing world (39).


Materials and Methods

This study uses three main kinds of data: global mean temperature, localized daily temperatures, and the 
distribution of people across the globe:


Global Mean Temperature: HadCRUT5

Global mean temperature is used to understand how local temperatures change in response to global 
warming. We used the UK Met Office Hadley Centre/Climatic Research Unit Temperature data set, 
version 5 (HadCRUT5)(40). We subtracted the mean of the period 1850 to1899 from the yearly data. This 
allows us to work in temperature change relative to pre-industrial period, consistent with temperature 
changes used by the IPCC. 


Daily Temperatures: ERA5

We used 2m air-temperature from the ERA5 reanalysis (41). We downloaded hourly data in 3-hour 
intervals for the period 1950-2022. For each day (defined relative to UTC), we computed the minimum 
(Tmin) and maximum (Tmax) over that period. We then calculated the daily average (Tavg) as the 
average of Tmin and Tmax.


Population Data: GPWv4

We used the Gridded Population of the World Version 4 (GPWv4, revision 11) data on the distribution of 
people in 2020, adjusted to the UN World Population Program values (15). We used the xESMF (42) 
bilinear interpolator to regrid the GPWv4 data to the 0.25° ERA5 grid.


Daily Attribution Methodology

Our daily attribution system is based on G22’s multi-method approach (12). This approach uses two 
empirical methods to estimate the frequency of temperatures in the modern climate and a counterfactual 
climate with no anthropogenic warming. It also uses paired climate models run with and without 
greenhouse gas forcing. We summarize these methods below. More details are available in the 
Supplement Materials.


Calculating the ChIP for an observed temperature (T) requires estimating the likelihood of T in the climate 
in which it was observed (which we refer to as “modern”) and in the counterfactual climate with no global 
warming. We define the modern climate based on the smoothed global mean temperature in the year 
when T occurred (GMTyr). The two climates are represented by skew normal distributions. This means 
that ChIP is 


	 ChIP(T) = - log2(SN0 (T))+log2(SNyr (T))	 (3)


where SN0 and SNyr are the distributions representing the counterfactual and modern climates.


G22 uses multiple approaches to estimate the modern and counterfactual climates. The most 
straightforward method uses paired climate models provide a direct estimate of the influence of 
anthropogenic greenhouse gas emissions on local conditions. We used 24 models from CMIP6 that had 
historical runs, forced projections (SSP3-7.0 if available, SSP5-8.5 in some cases), and pre-industrial 
control runs (Table S2). The modern climate is created by fitting the skew normal distribution to the data 
within a seasonal period of 31 days across 31 years centered on the year when the model’s GMT first 
exceeded GMTyr. The counterfactual climate is the constructed from the same seasonal period in the pre-
industrial control run.  The model outputs were bias-corrected based to the ERA5 data from 1991-2020 
using (43). All models were regridded using (42) to a common 1.5°-by-1.5° grid. We use 24 seasonal 
periods centered on the 1st and 15th of each month.


G22 also outlined two empirical approaches. Both rely on establishing B, the expected change in local 
temperature in response to a 1° change in GMT. We use linear regression over the period 1950-2022 to 
estimate Bq for 21 evenly-spaced temperature quantiles (q) between 0.01 and 0.99. The first empirical 
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method assumes that warming uniformly affects all parts of the distribution. For this method, we fit a skew 
normal distribution to data from the seasonal period across the 1991-2020 reference period. We then shift 
the location of the distribution by B0.5*(GMTyr-GMT2005) to create the modern distribution. The 
counterfactual distribution is created by applying a shift of B0.5*(0 - GMT2005).


G22’s quantile method allows the shape of the distribution to change. To compute the modern distribution, 
we bin the reference data by the quantiles, shift each bin by Bq*(GMT(yr)-GMTref), and then fit the skew 
normal distribution. The counterfactual distribution is computed analogously using a shift of Bq*(0 - 
GMT2005).


Once the distributions are computed, we compute ChIP(T) by applying equation (3) to the 24 pairs of 
model climates and the two sets of empirical climates. We then create a single estimate of ChIP by 
averaging the two empirical estimates, averaging the 24 model estimates, and then averaging the two 
averages. 


By definition, most temperatures will fall near the center of the distributions, producing ChIP values near 
zero. As temperatures move away from the tails, the magnitude of ChIP generally increases but our 
confidence in the underlying distributions decreases. For this reason, values above 4 or below -4 were 
replaced with 4 or -4, respectively. This means that the ChIP values used in this study are conservative. 
They are more reliable for the temperatures commonly encountered but they will underestimate the 
information advantage for extreme temperatures.


We note that our system is almost entirely self-consistent. Observed temperatures from ERA5 are 
compared against scale factors and probability distributions derived from ERA5. This approach is 
resistant to any constant bias that may occur with ERA5.


Trends in ChIP

For the time series depicted in Figures 2-3, we computed the trend in ChIP using linear regression. All 
trends were significant at p<0.01 and had R2 values above 0.75.


Attributable Temperatures and Human Health

We used the Tavg from ERA5 to define the temperature thresholds for our health analysis. For each 
location, we calculated the 83rd percentile (MMThot) and 17th percentile (MMTcold) of the daily 
temperatures for the period 1986-2005 (Figure S2). This period was used for the the IPCC Fifth 
Assessment Report and was selected by the Lancet Countdown as their standard reference period (16).


For every day, we flagged local temperatures that were above MMThot. We then summed the number of 
these days over each year (i.e. Figure 3A and B). We also multiplied by the GPWv4 population and then 
summed to get the total exposure of people to high temperatures. We also totaled the number of days 
that were above the temperature threshold and that also had ChIP(T)≥1. The procedure was repeated 
using T<MMTcold and ChIP(T)≤-1. These results are displayed in Figure S3.
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Figures and Tables


Figure 1. Climate change exposure for 2023. The distribution of ChIP(A) and temperature anomalies 
(relative to 1991-2020) (B) for Tavg on August 22, 2023. The standard error of ChIP is shown in Figure 
S4. Time series of Tavg (gray), Tmax (yellow), and Tmin (black) for the entire period (C), 2018-2022 (D), 
and November 2022-October 2023 (E). The thick lines in C and D are the annual averages of the area-
weighted average over the land surface, and the gray shading in C and D shows a representative range 
of daily Tavg (rolling 45 day minimum and maximum, smoothed by a 30 day running mean). The vertical 
dashed lines indicate the first time shown in the next panel. The daily data for the last 12 months are 
shown in E. Inset: ChIP climatology based on the 2018-2022 average and smoothed using a 15 day 
running mean. 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Figure 2. Climate change exposure of biomes and countries. A. Area-weighted average exposure of 
biomes on August 22 to temperature anomalies (horizontal axis) and ChIP (vertical axis). The size of each 
circle indicates the relative area of the biome. Color indicates climate zone. B-D. Time series for biomes 
aggregated by climate zone. The panels display time periods as in Figure 1. E. Population-weighted 
average exposure for countries with over 10 million people on August 21. Size indicates relative 
population and color indicates human development index level. F-G. Time series aggregated by human 
development index. The labels on the right of D and H show the ChIP level reached by each grouping on 
the maximum exposure day.
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Figure 3. Exposure to stressful temperatures. A. Population-weighted exposure to days above the 
minimum mortality temperature (MMT) defined by 83rd percentile (orange shading) and days below the 
17th percentile (blue shading). Both time series are referenced against 62 days, the number expected in 
a stable climate. The number of days of exposure to warm temperatures that were made at least twice as 
likely by climate change (ChIP≥1) is plotted as a solid black line. The population-average exposure to 
stressfully warm and attributable temperatures for people living on seven land masses are plotted as thin 
lines. Note that for all time series, the 2023 value is the total over the last 12 months.  B. The spatial 
distribution of days above the 83rd percentile November 2022-October 2023. C. The distribution of days 
above the threshold that also have ChIP>=1. See Figure S3 for cold temperatures.
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Table 1. The cities with the 20 longest streaks of temperatures above their local 99th percentile level. The 
number of days, starting date (day/month), and mean ChIP over the streak are listed for each city. We 
also calculate the ChIP for the multi-day average temperature and express this as the equivalent 
likelihood ratio. The largest value in each column is indicated in bold. Statistics for the full set of 700 cities 
is available in the supplementary material.


City Country Longest 
Streak

Starting 
Date

Mean ChIP Multi-Day 
ChIP

Ratio

Houston United States 22 7/31 3.4 3.2 9.1

Tangerang Indonesia 17 10/7 3.5 4.1 17.0

New Orleans United States 17 7/30 3.2 4.1 17.1

Jakarta Indonesia 17 10/7 3.5 4.1 17.0

Austin United States 16 7/31 3.2 6.3 78.4

Qujing China 16 5/20 3.0 5.9 60.8

Bekasi Indonesia 15 10/7 3.8 5.3 40.0

Guadalajara Mexico 15 6/12 3.6 4.9 29.7

Zapopan Mexico 15 6/12 3.5 4.7 26.7

San Antonio United States 15 8/4 3.5 3.8 13.5

Dallas United States 14 8/1 2.9 5.9 58.3

Manaus Brazil 14 9/30 3.5 4.6 24.4

Havana Cuba 12 8/3 4.0 4.4 20.4

Monterrey Mexico 12 6/13 3.9 5.2 36.8

Santo Domingo Dominican Republic 12 9/25 3.9 5.1 35.2

Phoenix United States 12 7/12 3.6 4.4 21.3

Tunis Tunisia 11 7/15 3.9 5.4 43.4

Palembang Indonesia 11 9/28 3.6 6.0 65.5

Visakhapatnam India 11 6/7 1.3 2.3 4.9

Miami United States 10 8/6 3.8 7.3 157.5
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Supporting Information for

High-resolution attribution of the daily exposure of people and ecosystems 

to climate-driven heat


Supporting Text

ChIP and Information Theory

Here we develop a metric based on information theory that can quantify everyday experiences with 
climate change.


Consider an event T(x,y,t) in our current climate. T could be any event, but for this study, we consider 
daily observations of air temperature. Suppose we have an observer who is familiar with the statistics of 
temperature at their location. We quantify their familiarity using a probability density function, Pmodern(T). 
For temperature, Pmodern will often be close to normally distributed. The observer is not surprised by 
temperatures that fall near the center of the distribution, but they are surprised by temperatures in the 
tails. 


Information theory defines surprise as the negative log of the probability of the event, i.e.:


	 Smodern(T) = -log2 Pmodern(T).	 (1)


Smodern is the amount of information the observer acquires about their modern climate by observing the 
event.


We then introduce a second observer, one who is familiar with the statistics of temperature in the 
counterfactual climate with no human-caused climate change. This observer will have their own 
expectations represented by Pcounter and their own level of surprise, Scounter. We contrast how experiencing 
a particular temperature impacts the two observers' understanding of the world by taking the difference 
between their levels of surprise. This is the definition of the change in information due to perspective 
(ChIP):


	 ChIP(T) =  Scounter(T) - Smodern(T) .	 (2)


This equation tells us how much more surprising the temperature is in the counterfactual climate 
compared with the modern climate. For example, suppose an event has Smodern = 1, indicating a that it is 
surprising to the modern observer. This event would likely be even more surprising to the counterfactual 
observer (for example, Scounter = 3).  The ChIP value for this event would be 2. The ChIP is how much 
more information the counterfactual observer gains by observing an event in our climate-changed world. 
For the modern observer, ChIP is the information advantage they have due to their understanding of 
climate change.


Calculating ChIP

The main text contains a high-level description of our daily attribution methodology. Additional details are 
provided below.


Scale Factors

Our implementation of the G22 empirical approaches begin by creating a time series of the qth quantile of 
the temperature distribution at a given location for a 31 day period centered on day = d. For each period 
d, we used linear regression to compute


	 Td(yr, x, q) = 𝛽(d, x, q) GMT(yr) + c	 (S1)
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where GMT(yr) is the 3-year smoothed HadCRUT5 global mean temperature centered on year=yr, and 
Td(yr, x, q) is the temperature of the qth quantile for the period. We fit (S1) for the period 1950-2021 using 
21 evenly-spaced values of q between 0.01 and 0.99, and we did this for Tmin, Tmax, and Tavg.


The coefficient 𝛽(d, x, q) is called the “scale factor”, and it is the key output of this process. The scale 
factor describes how we expect the temperature at location x to change in response to a change in GMT.


Empirical Skew Normal Distributions

The most significant change between our approach and G22 is that we used skew normal distributions to 
represent the likelihood of daily temperatures. The skew normal distribution is described by the location 
parameter (analogous to a median), the scale parameter (analogous to the variance), and the shape 
parameter that defines the level of skewness. 


To compute SNGMT, the skew-normal distribution representing a climate with a specific global mean 
temperature, we first assemble daily data from the reference period (1991-2020) for the 31 day period 
surrounding the target period. Next, we binned the data into intervals defined by the quantiles. We then 
used the scale factors from (S1) to shift the data in each bin from the reference climate to the climate of 
GMT:


	 TGMT(x, q) = Tref(x, q) + 𝛽(d, x, q) (GMT - GMTref)	 (S2)


where GMTref is the mean GMT over the 1991-2020 reference period. Finally, we use  SciPy’s 
skewnorm.fit function to find the parameters that produce a skew normal continuous distribution function 
that most closely approximates TGMT. We computed SNGMT for GMT = 0.0° (the counterfactual climate) 
and for GMT between 0.2° and 1.3° at steps of 0.1°. 


We also calculated SNref the skew-normal distribution fit to the distribution of daily data for the 1991-2020 
reference period. This distribution gives us a second way of estimating the modern and counterfactual 
likelihood by adjusting the temperature by -𝛽(d, x, 0.5)(GMT - GMTref). These distributions assume that 
climate change only changes the median temperature at a location, not the variance or skewness of the 
distribution.


Empirical Estimates of ChIP(T)

For the temperature T (Tmin, Tmax, and Tavg) at every ERA5 location and day, we computed two 
versions of the change in information due to perspective, ChIP(T). The ChIP requires estimates of how 
surprising T is in the modern and counterfactual climates. We calculated ChIPmedian(T) using SNref, 
adjusting the T using 𝛽 (Table S1). We calculated ChIPquantile(T) using the climate-specific skew normal 
SNG, where G is the desired GMT rounded to the nearest 0.1°. All values of ChIP were restricted to the 
range [-4, 4].


For our attribution assessments, we removed the year-to-year variability from the global mean 
temperature time series to focus on the long-term trend in the climate. We used the linear trend based on 
the prior 30 years to estimate GMT:


	 GMT(yr) = 𝜸30(yr)  yr + c30,(yr)	 (S3)


where 𝜸30 and c30 are the coefficients from the linear regression of GMT against year over the 30 
preceding years (e.g. 1992-2021 for yr=2022). The values estimated using the 30 year regression are 
strongly related to those using a centered 11 year mean (R2=0.97, p<0.01), but can be applied for the 
most recent years..


Model-based method

The empirical methods use the relationship between local and global mean temperatures to construct the 
counterfactual distributions. Climate models provide a more direct estimate of the influence of 
anthropogenic greenhouse gas emissions on local conditions. 
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We used 24 models from CMIP6 that had historical runs, forced projections (SSP3-7.0 if available, 
SSP5-8.5 in some cases), and pre-industrial control runs (Table S2). For each model, we used Tmax = 
tasmax and Tmin = tasmin and constructed Tavg. We concatenated the historical and projections for each 
model to create a single “forced” simulation for each model. 


We used the xESMF (1) regridder to regrid each model to a common 1.5°-by-1.5° grid. For the 16 models 
that had coarser resolution, we used bi-linear interpolation (xesmf’s “bi-linear” method). For the 8 models 
that had finer resolution, we used the xesmf “conservative” method.


As in G22 we bias-adjust the output of each individual climate model using (2). We used the same 
1991-2020 ERA5 climatology (regridded to 1.5°) as in our empirical method as the reference data for the 
debiasing. The debiasing trained by the relationship between the reference climate and the forced 
simulations was likewise applied to debias each paired pre-industrial control simulation.


For each model, we identified the first year when its representation of GMT (smoothed using an 11year 
running mean) was greater than or equal to each of the 12 GMT values used in the empirical methods. 
We selected the 31 year period centered around the year to assess the climate corresponding to that 
GMT. For each of the 24 periods in the year, as with the empirical method, we extract the 31 day period 
centered around the target day. We then fit skew normal distributions to the Tmin, Tmax, and Tavg data. 
We also extract the same range of days from the last 31 years of the pre-industrial control run and fit a 
counterfactual skew normal distribution.


For each model M, we can calculate ChIPM(T) as


	 ChIPM(T) = - log2(SNM,0 (T)) + log2(SNM,G (T))	 (S3)


where SNM,0 is the skew normal distribution for the control run and SNM,G is the distribution from the 
forced run corresponding to GMT=G. Each estimate was restricted to the same [-4, 4] range.


Combining ChIP Estimates

For a given day and temperature variable, we have 26 estimates of the change in information: the two 
empirical estimates (ChIPmedian and ChIPquantile) and the 24 model estimates (ChIPM). We combined these 
into a single estimate:


	 ChIP(T) = 0.5 (ChIPempirical(T) +  ChIPmodel(T))	 (S4)


where ChIPempirical is the average of the two empirical methods and ChIPmodel is the average of the 24 
models.


Properties of ChIP

While it is not strictly necessary to specify the base in the definition of ChIP (i.e. equation 1), we use 
base-2. This technically means that Smodern is in units of bits of information, but these bits are different 
than the discrete 0/1 used in computers.


A key property of the ChIP is that sums and averages are meaningful. For example, suppose the 
temperature on day one has an occurrence ratio of 2 (twice as likely because of climate change), and the 
next day has an occurrence ratio of 1/2 (half as likely). The average of these two ratios is 1.25, which 
would imply elevated probabilities due to climate change. In contrast, the ChIP for these two days are 1 
and -1. The average of these two days gives ChIP = 0 meaning that together, there is no new information 
of climate change from these two days. 


Assuming normal distributions, it is straightforward to show that the ChIP of an n-day average 
temperature is proportional to the average of the n daily ChIP values:


	 	 (S5)
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1
n

n

∑
d=1
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n
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∑
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where σd is the standard deviation of daily observations and σn is the standard deviation of n-day 
averages. While (S5) does not account for autocorrelation, simulation experiments show that it gives a 
reliable estimate for multi-day ChIP values, even if the underlying data are strongly autocorrelated.


Uncertainty of ChIP

To compute a confidence interval around a ChIP estimate, we use the confidence interval of the scale 
factor (𝛽) from the regression of local temperature against GMT. By using the lower and upper bounds in 
S3, we get the confidence interval of ChIP from the empirical method, and translate it into a standard 
error (SEe) assuming the ChIP is close to normally distributed. We then calculate the standard error of the 
ChIP estimates across the climate models (SEm). The two estimates of the standard errors are then 
combined using the formula


	 SEaverage = 0.5 (SEe2+SEm2)1/2 	 (S6)


For the maximum exposure date, the area-weighted mean standard error is 0.29. There is higher 
uncertainty in polar regions (Figure S4). 


Note that S6 does not take into account the range limits we placed on ChIP. This means that our area- 
and population-weighted means are underestimates of the true ChIP, and that for high values values of 
ChIP, S6 will overestimate the error.


National Summaries

Table S2 lists the socio-economic or geographic classification of each country, consistent with (15). For 
each country, we include the population-weighted average temperature anomaly and ChIP for the 
maximum exposure day (August 21, 2023)


Extreme Heat in Global Cities

We identified 700 cities with a population of more than 1 million people. We associated each city with its 
nearest ERA5 grid cell. Based on 1991-2020, we calculated each city’s 99th percentile temperature. 
Then, for the period November 2022-October 2023, we identified days that exceeded this threshold 
(Table S3). We searched for streaks of five or more consecutive days above this threshold. For any city 
with a streak, we calculate the average ChIP over the streak. For the 20 cities with the longest streaks 
(Table 1 in the main manuscript), we used the daily ChIP data from 1991-2020 to estimate the variance 
over the period of the streak and the year-to-year variance of n-day averages. We then applied (S5) to 
calculate the ChIP for the entire streak.
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Figure S1. HadCRUT5 global mean temperature referenced to the mean of the period 1850 to1899. The 
smoothed values represented by the orange line were used to define the climate of a given year for the 
attribution analysis. It is the linear regression of the prior 30 years projected into the specified year. 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Figure S2. Reference temperatures for the health exposure analysis. A. Minimum mortality temperature 
defined as the 83rd percentile of daily Tavg for 1986-2005. B. The 17th percentile temperature used to 
define hazardous cold temperatures. Note that the panels use different color scales. 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Figure S3. Exposure to stressful cold temperatures. Same as Figure 4 B-C in the main text but for cold 
days. A. The spatial distribution of days below the 17th percentile in 2022. B. The distribution of days 
below the threshold that also have ChIP<=-1. Note that this is not strictly analogous to Figure 4C in terms 
of its interpretability as an indicator of attribution to climate change. 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Figure S4. Standard error of Tavg for August 22, 2023. 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Table S1. Components to calculate ChIP(T) for the two empirical methods.


Global Mean 
Temperature

ChIPmedian = Scounter - Smodern ChIPquantile = Scounter - Smodern

Scounter(T) 0° - log2(SNref (T-𝛽 (0-GMTref )) - log2(SN0 (T))

Smodern(T) GMT - log2(SNref (T-𝛽 (GMT-GMTref )) - log2(SNG (T)),  
G = GMT rounded to 0.1°
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Table S2. Population-weighted average ChIP and temperature anomaly values for 186 countries on 
August 21, 2023. Each country was categorized into the same regions and human development index 
categories used by the Lancet Countdown (15). For each variable (Tavg, Tmax, and Tmin), we report the 
per-capita average ChIP


Table S2 has been uploaded as a Supplementary Dataset in CSV format
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Table S3. Extreme temperatures in 700 cities during November 2022-October 2023. For each city, we 
report the number of days above the 99th percentile temperature. If a city had a continuous streak of five 
or more days of extreme temperatures, we reported the length of the longest streak and the mean ChIP 
over the streak.


Table S3 has been uploaded as a Supplementary Dataset in CSV format 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