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Abstract  10 

Since 2007, the National Academy for Sciences Engineering and Medicine (NASEM) has 11 
recommended priorities for Earth Science research and investment every ten years. The 12 
Decadal Survey balances the continuation of essential climate variable time series against 13 
unmet measurement needs and new Earth Observations made possible by technological 14 
breakthroughs. The next survey (2027-2028, DS28) must anticipate the observational needs 15 
of the 2030s-2040s, a world increasingly dominated by climate extremes and a rapidly 16 
changing Earth system. Here, we identify the critical Earth Observation needs for a hotter, 17 
more extreme world where expect challenges in maintaining a safe operating space.  18 

 19 
 20 
 21 

I. Introduction: The current state of climate scenarios  22 
 23 
Since 2007, the National Academy for Sciences Engineering and Medicine (NASEM) has 24 

recommended prioritized directions for Earth Science research and major investments in space 25 

every ten years. The next survey (2027-2028, DS28) will begin gathering community inputs 26 

circa 2025, but must anticipate the observational needs of the 2030s-2040s, a world increasingly 27 

dominated by climate extremes and a rapidly changing Earth system. This world will differ 28 

dramatically from any other time in human history.1 The Decadal Survey guides federally funded 29 

research and applications through agencies such as NASA, NOAA, and USGS, and is vital for 30 

planning future investments. We argue that this survey must explicitly consider, for the first 31 

time, that observations will be made in a world very different from the world in which they are 32 

planned. 33 

 34 

Historically, the design of Earth observing systems has used the past as an index, fueled by 35 

reanalysis or historical data. The missions recommended by the next Decadal Survey (DS28) will 36 

encounter an Earth system that is in many ways without direct historical analogs. Global 37 



warming is already on the verge of crossing the 1.5°C threshold, and may cross the 2°C 38 

threshold even with substantial greenhouse gas mitigation.1  39 

Simultaneously, we have witnessed the explosive growth of extreme events. These are 40 

statistically rare occurrences found in the long tails of IPCC climate scenarios2, whose impacts 41 

are not fully anticipated by Earth system models focused on average global temperatures and 42 

climate patterns. As global temperatures have risen, damages from extremes have increased 43 

rapidly (Figure 1). We must anticipate the DS28 world as one where climate change amplifies 44 

cascading extremes of heat and drought3,4 and, counterintuitively, the hydrologic cycle.5  45 

 46 

 47 

 48 
Figure 1. Yearly warming (black) and warming trends (red) superimposed with select natural 49 

disasters, graphically illustrating the increasing number of compounding impacts (as reported by 50 

MunichRE).  51 

 52 

 53 

The scientific community must integrate climate scenarios across scales to forecast and plan for a 54 

warmer, more volatile world. For example, what will the world be in the 2035-2050 timeframe if 55 



we achieve stabilization at the agreed upon “safe operating space” of ~1.5°C? Extrapolating 56 

today's observed changes, we expect a world with considerable and still emerging climate 57 

challenges (Figure 1), compound and cascading impacts (Box 1), and a rapidly adjusting carbon 58 

cycle.6,7  59 

Future science needs could be derived from Earth system model projections, extrapolated from 60 

observed trends, or incorporating worst-case scenarios.8–11  These scenarios may include crossing 61 

multiple tipping points,12–14 human managed emissions,15–17 changing carbon cycle feedbacks on 62 

land and in the oceans18 numerous emergencies and subsequent migration,19–22 and risks to water 63 

and food security.23–25 However, in any emissions scenario, land and ocean ecosystems are 64 

dynamic, and will equilibrate to the magnitude of forcing from anthropogenic emissions.  65 

 66 

The driving questions for Earth observations in the DS28 era are: Is the Earth system behaving as 67 

our models project for the observed anthropogenic emissions pathway?26 Are there signals that 68 

the Earth System is approaching a critical climate tipping point?27  In a warming world, what 69 

observation duration, resolution, and foci are necessary to detect change?  70 

 71 

 72 
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 77 

 78 

 79 

Box 1. Definition box 80 

 81 

 82 

II. Assessment of the science: Change is the new constant  83 

Identifying the needs for future Earth observing systems requires understanding how mission 84 

continuity, observational gaps, and science requirements map onto the likelihood and severity of 85 

future risks to the Earth system (Figure 2). Regions key to ongoing Earth system functions, such 86 

Compound impacts: The consequences of multiple extremes (e.g., 
temperature and hydrological extremes) overlapping in one time and space 
 
Cascading Impacts: A chain of consequences triggered by an extreme 
situation, such as extreme montane rain causing glacier lake outburst 
flooding  
 
Compound or cascading impacts can lower the thresholds for critical Earth 
system tipping points. 
 



as the Arctic and Amazon, are remote, vast, poorly observed and will remain a high priority.28–31 87 

Both the cryosphere and tropical forests drive tipping points where the consequences of warming 88 

are generally understood, but their spatiotemporal constraints on carbon, water, and energy 89 

fluxes are not. One of the critical uncertainties is how and when these global tipping points could 90 

trigger each other.13 The dynamics for each system operate on different spatiotemporal scales, 91 

requiring various observing system strategies. For example, a weekly or bi-weekly revisit is 92 

required to understand seasonal changes in vegetation,32,33 while global land surface temperature 93 

variability requires a 1-3 day revisit.34 Similarly, glacier and sea level change dynamics occur 94 

over large spatial scales but require input data with 10-60m resolutions to drive state-of-the-art 95 

models.35,36 96 

 97 

Identifying and observing critical regions will become increasingly important as change across 98 

scales becomes the new constant. If ecosystem destabilization occurs sooner than models 99 

forecast, tipping points could be crossed within the next decade (Figure 2).1 While some 100 

dynamics are not well constrained spatiotemporally, likely changes include: 101 

• More frequent and more intense extremes, including compound extremes with cascading 102 

consequences 103 

• Amplification of the hydrologic cycle, with consequences for weather and climate 104 

extremes, drought, and floods 105 

• Changing carbon-climate feedbacks and increasing extremes leading to reduced  ocean 106 

and biosphere uptake  107 

• Human mitigation efforts modify land and ocean carbon exchange 108 

 109 

Clearly, a mitigated world with warming stabilized near 1.5°C would be the best of all scenarios, 110 

but it won't be a soft landing. 111 



 112 
Figure 2. Example of a risk matrix characterizing likelihood and severity for select Earth system 113 

dynamics facing destabilization.   114 

 115 

I. Actionable Recommendations: Observation Needs for the DS28 Era  116 

Remote sensing is unparalleled for determining large-scale trends and is a critical tool in 117 

understanding the trajectory of the climate crisis.37,38 Space-based Earth observations provide a 118 

global perspective to monitor system change, including tipping points and emergent processes 119 

across scales. This is essential for characterizing and resolving deep uncertainties in physical 120 

processes, especially in areas of the world that are sparsely populated. For example, the rate of 121 

ice sheet loss is a large uncertainties in projections of sea-level rise, but is driven by complex 122 

interactions between the cryosphere, atmosphere, land, oceans, temperature, and 123 

precipitation.39,40  124 

 125 

Earth system models must also have the most up-to-date and high-resolution information to 126 

understand changing biospheres (e.g., 10-60m and bi-weekly). Input data must include clouds, 127 

aerosols, precipitation, ocean circulation, sea ice, vegetation dynamics, soil hydrological and 128 

thermal features, carbon and biogeochemical cycles, and feedback mechanisms. In addition to 129 
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high-resolution needs, pointing capabilities and a high signal-to-noise would be required. A 130 

better representation of these changing processes will lead to more realistic climate simulations 131 

and increase confidence in model outputs. To achieve these results, satellite coverage throughout 132 

the mid and upper latitudes, in collaboration with airborne and in-situ research, is necessitated.  133 

 134 

The resolution of airborne retrievals and in-situ networks lies below satellite monitoring, with the 135 

ability to sample at 0.1 – 10 m scales.43 However, airborne campaigns are of limited duration and 136 

spatial extent. Even airborne campaigns which sample from pole to pole, represent seasonal 137 

transects and not continuous global sampling - leaving large areas unmonitored over time. A 138 

growth of in-situ observing networks in the past decade facilitates data sharing but requires 139 

calibration and validation support from satellite networks. Prioritizing synergistic data across 140 

scales is required to observe climate change risks and mitigate it’s impacts. 141 

As needs increase for climate change research and monitoring, work across Federal Agencies 142 

focuses on ethically coproducing regional research.44,45 NASA airborne36 and satellite missions38 143 

have prioritized engagement with regional collaborators. This includes integrating local 144 

information into models, sharing downscaled models with community planners and decision-145 

makers, and providing actionable, coproduced data across scales.45 Regional governments and 146 

NGOs are increasingly tasked with monitoring and mitigating wildfires, sea level rise, 147 

biodiversity, and air quality.40,42,46,47 These governments require tools that span scales and are 148 

easy to integrate into management plans. Combining the abilities and products of satellite remote 149 

sensing, airborne retrievals across instruments, and in-situ collaboration will be critical for 150 

charting the course through challenging climate changes. 151 

 152 

II. Conclusions 153 

The climate is changing in ways both predicted and unexpected. Each day brings a new record-154 

shattering extreme or biosphere emergency. Whether it is the global temperature extremes 155 

experienced during the summer of 2023 or the loss of 10 billion snow crabs in the Bering Sea,48 156 

challenges to forecasting and planning for climate futures will continue. Precision tools for 157 

ecosystem management will continue to be of critical importance, and charting a course for 158 



future science and observations is the first step. The DS28 requires a novel, forward-thinking 159 

perspective to create an Earth observing system for priorities in the 2030s and 2040s. To 160 

understand a world increasingly dominated by extremes, the next Decadal Survey must strive to 161 

predict an unpredictable future. 162 
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