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Abstract 13 

Hydrological models and quantitative precipitation estimation (QPE) are critical elements of 14 

flood forecasting systems. Both are subject to considerable uncertainties. Quantifying their 15 

relative contribution to the forecasted streamflow and flood uncertainty has remained 16 

challenging. Past work documented in the literature focused on one of these elements separately 17 

from the other. With this in mind, we present a systematic approach to assess the impact of QPE 18 

uncertainty in streamflow forecasting. Our approach explores the operational Iowa Flood Center 19 

(IFC) hydrological model performance after altering two radar-based QPE products. We ran the 20 

Hillslope Link Model (HLM) for Iowa between 2015 and 2020, altering the Multi-Radar/Multi-21 

Sensor System (MRMS) and the specific attenuation-based (IFCA) IFC radar-derived product 22 

with a multiplicative error term. We assessed the forecasting system performance at 112 USGS 23 

streamflow gauges using the altered QPE products. Our results suggest that addressing rainfall 24 

uncertainty has the potential for much-improved flood forecasting spatially and seasonally. We 25 

identified spatial patterns linking prediction improvements to the radar's location and the 26 

magnitude of rainfall. Also, we observed seasonal trends suggesting underestimations during the 27 

cold season (October to April). The patterns for different radar products are generally similar but 28 

also show some differences, implying that the QPE algorithm plays a role. This study's results 29 

are a step towards separating modeling and QPE uncertainties. Future work involving larger 30 

areas and different hydrological and error models is essential to improve our understanding of 31 

the impact of QPE uncertainty.     32 

Plain Language Summary 33 

This study investigates the impact of radar-rainfall on flood forecasting uncertainty. Previous 34 

research focused on rainfall-runoff models, ignoring the errors in rainfall estimation. We used a 35 

systematic approach to adjust two radar-rainfall products, forcing a simple hydrological model. 36 

Results show the potential improvement in streamflow prediction by correcting basin-wide bias 37 

in rainfall. The optimal correction varies with basin size, location, season, and rainfall amount.   38 

  39 
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 40 

1 Introduction 41 

Streamflow prediction errors depend on multiple factors, the rainfall-runoff model and 42 

quantitative precipitation estimation (QPE) uncertainty being arguably among the most 43 

significant.  Literature has attributed most streamflow predictive uncertainties to the formulation 44 

of the models (e.g. Addor & Melsen, 2019; Fenicia et al., 2008; Gharari et al., 2021), their 45 

parameters (Beven & Binley, 2014; Schoups & Vrugt, 2010; Stedinger et al., 2008), and the 46 

calibration procedures (Beven, 2012; Duan et al., 1994; Fenicia et al., 2007; Shen et al., 2022). 47 

Uncertainty in the QPE has received considerably less attention with few notable exceptions 48 

(Ehlers et al., 2019; Kavetski et al., 2006a, 2006b; Bardossy et al., 2022; Liao and Barros, 2022). 49 

In this study, we focus our considerations on radar-based QPE and use comparisons of simulated 50 

and observed discharge values of streamflow to quantify uncertainty (Arsenault et al., 2018; 51 

Klemeš, 1986; Legates & McCabe, 1999).  While our study is motivated by the needs of 52 

operational streamflow forecasting (e.g. Krajewski et al., 2017), strictly speaking, we only 53 

evaluate model simulation skills.  This is because to talk about forecasting, the rainfall forcing 54 

would also have to be forecasted.  The effect of quantitative precipitation forecasts (QPF) on 55 

streamflow forecasting is outside of the scope of this work.  For relevant insights, see Ghimire et 56 

al. (2022) and Seo et al., (2018).   57 

Another important note is that our operational goal is to forecast streamflow “everywhere,” i.e. at 58 

small streams and large rivers, and “all the time,” i.e., with frequent (e.g. hourly or shorter) 59 

forecast updates in nearly real-time.  This goal implies that we need to use fully distributed 60 

hydrologic models with predictive capabilities across scales ranging from 0.1- to 100,000 km2.  61 

The same goal makes performance evaluation more difficult as the stream gauge network is 62 

rather sparse and favors monitoring larger basins.   63 

From a scientific point of view, as opposed to operational, our study is a step towards 64 

disentangling the predictive uncertainty into that due to the input versus that due to the model.  65 

This is an unsolved problem in hydrology.  As rainfall is the key but not the only agent of basin 66 

response, errors in the input estimates will affect model calibration and streamflow prediction.  67 

Hydrologists have studied this problem mostly in idealized simulation-based experiments or by 68 

comparing QPE errors only with gauge observations (He et al., 2013).  One simple reason why 69 

this problem has remained unsolved is that a comprehensive error structure of radar-based QPE 70 

is still unknown despite considerable effort over the past 30 years.  See Berne & Krajewski 71 

(2013); Krajewski & Smith (2002); Villarini & Krajewski, 2010; and Krajewski & Smith, (2023) 72 

for summaries. 73 

However, several recent studies revealed some crucial insights into the aspects of the QPE 74 

uncertainty that are particularly important for streamflow prediction.  Mantilla et al., (2023) 75 

show that small-scale variability and uncertainty in various aspects of runoff production, 76 

including rainfall, are effectively filtered out by the river network structure, which aggregates 77 

flow.  Also, Ghimire et al., (2022) demonstrated that arguably the most important aspect of 78 

skillful prediction is using accurate rainfall volume over a given basin.  These authors show that 79 

while the small-scale (hillslope) errors are not important, the overall space-time distribution is. 80 
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If the total rainfall (QPE) volume over an event is the most important, a natural question arises: 81 

how much off are the current most used products?  Since this question cannot be easily answered 82 

over a regional scale with the existing (sparse) rain gauge network density, we have designed a 83 

data-based simulation experiment to address it.  We modified two existing radar-based QPE 84 

products in a simple way, just by scaling them up or down with a multiplicative factor.  This 85 

does not affect the space-time distribution of storms' key features, such as intensive cells, their 86 

velocity, and direction.  87 

To justify our focus on the total rainfall volume, consider the results of an experiment similar to 88 

those described in Ghimire et al., (2022) and Krajewski & Smith, (2023).  In Figure 1, we show 89 

the Kling-Gupta Efficiency index (KGE) calculated to describe the performance of the Hillslope-90 

Link Model (e.g. Krajewski et al., 2017; Mantilla et al., 2022) using two different radar-based 91 

QPE products, called here MRMS and IFCA.  Each dot in panel (a) denotes model performance 92 

at a river basin monitored by a USGS stream gauge.  The index is calculated over 112 93 

watersheds over a period of seven years.  Significant scatter is evident, with the input being the 94 

only difference.  In fact, both input products use data from the same radars. Thus, the difference 95 

is due to the algorithms converting radar observables to rainfall quantities.  When evaluated 96 

against rain gauge data, the two products show similar performance  (Seo & Krajewski, 2020). In 97 

panel (b), we show the change in the index after one of the products (e.g. IFCA) was equalized in 98 

the mean over the basin to the other product, i.e. MRMS.  Remarkably, the scatter is much 99 

reduced.  We obtain similar results (not shown) with the equalization in the other direction, i.e. 100 

MRMS to IFCA.  Note that the overall range of performance has not changed much.  We still do 101 

not know whether the basin-wide rainfall volume is correct or not or which product is clearly 102 

better (according to the KGE measure). 103 

 104 

Figure 1. HLM KGE performance forced two QPE products before and after equalization. a) 105 

MRMS vs. IFCA KGE before equalization, b) MRMS vs. IFCA equalized to MRMS (EtM), and 106 

c) MRMS vs. MRMS - EtM. 107 

Additionally, evident is a spatial component, as shown in Figure 2, where we colored the gauged 108 

watersheds with the equalization factors for both products.  Looking at the factors, we found 109 

spatial patterns and divergences between both products (Figures 2a and b).  For example, MRMS 110 

estimates more rainfall in Iowa than IFCA. This trend becomes stronger over the western part of 111 

the state (draining to the Missouri River). In some regions, the spatial trends seem linked to the 112 

locations of the NWS weather radars and their domain coverage.  Note how the factors change in 113 
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some nested watersheds, suggesting discrepancies between their QPE errors even at relatively 114 

local scales. Several features in the QPE products may explain the described differences. For 115 

example, MRMS estimates are corrected using rain gauge data (Zhang et al., 2016, 2020), while 116 

IFCA are not. Each watershed has a varying distance to the respective radars, which, mixed with 117 

the storm tracks, creates variability in the QPE quality. Regardless of the factors affecting the 118 

rainfall products, radar bias affects streamflow prediction (¡Error! No se encuentra el origen de 119 

la referencia.).  The observed variability increases the challenge of assessing QPE errors in 120 

streamflow predictions and the need to incorporate the spatial component into its analysis.  121 

  122 

Figure 2. The median value of the multiplicative factors (𝑓𝑐) used to equalize the QPE products 123 

at each USGS gauge (colored dots). Panel (a) presents the 𝑓𝑐 values to equalize MRMS to IFCA 124 

and panel (b) the 𝑓𝑐 valules for the IFCA to MRMS case. The blue lines represent the river 125 

network, the black triangles represent the meteorological radars, and the circles have a coverage 126 

radius of 150km. 127 

If the rainfall volume dominates the streamflow simulation, the question arises of whether we 128 

can improve it further.  Note that the MRMS product has already been rain gauge data corrected, 129 

but not necessarily in the mean-basin sense.  Since the “potential” of using rain gauge data to 130 

adjust the rainfall input has been exhausted, we resort to a simulation experiment.  In the 131 

remainder of this paper, we describe our methodology in Section 2, the key results in Section 3, 132 

and we close with a discussion in Section 4. 133 

2 Materials and Methods 134 

To examine the implications of QPE errors on flood forecasting uncertainty, we conducted a 135 

simple simulation experiment over multiple watersheds and over several years of data. We used 136 

two radar-based QPE products, forcing the Hillslope Link Model (HLM).  The two QPE 137 

products are the Multi-Radar/Multi-Sensor (MRMS) (Zhang et al., 2016, 2020), which has 138 

national distribution, and an in-house product developed by IFC (IFCA) based on the specific 139 

attenuation algorithm proposed by (Ryzhkov et al., 2014) and implemented by Seo et al., (2020). 140 

Both products are derived as a mosaic of data from the following seven WSR-88DP weather 141 

radars: KDVN in Davenport, Iowa, KDMX in Des Moines, Iowa, KEAX in Kansas City, 142 



Preprint 

Missouri, KOAX in Omaha, Nebraska, KFSD in Sioux Falls, South Dakota, KMPX in 143 

Minneapolis, Minnesota, and KRAX in La Cross, Wisconsin.  We clarify that MRMS QPE used 144 

for our study period was generated using reflectivity-based algorithms (Zhang et al., 2016), and 145 

the synthetic QPE algorithm (Zhang et al., 2020) mainly based on specific attenuation was not 146 

operationally implemented for the period.  In our approach, we altered the QPE products with 147 

multiplicative factors (𝑓𝑐) that took values between 0.1 and 5.  We applied the proposed 148 

framework to 112 watersheds defined by the USGS streamflow gauges in Iowa between 2015 149 

and 2020.  150 

We also used a prior, reflectivity-based IFC product (e.g. Seo et al., 2019), but we do not show 151 

the results as they are qualitatively similar. For each product, we assumed a multiplicative error 152 

represented by 𝑓𝑐.  We ran the HLM configuration described in Velásquez et al., (2023) for each 153 

product after altering it and evaluated the performance metrics at each observed hydrograph. 154 

Finally, we assessed the impact of rainfall bias by analyzing the results corresponding to the 155 

highest performance factors.  In Figure 3, we present a schematic of the experiment setup and 156 

describe it in detail. 157 

 158 

Figure 3. Experiment setup from left to right: QPE alteration using the multiplicative factor (𝑓𝑐), 159 

open-loop streamflow simulation using the Hillslope Link Model, and simulations evaluation at 160 

the event scale by comparing  𝑓𝑐 = 1 (blue line) with the factor that provides the optimal 161 

performance 𝑓𝑐
𝑜𝑝𝑡

 (red line). 162 

2.1 Study area  163 

For our analysis, we used 112 USGS gauges (colored dots in Figure 2) within Iowa, USA. The 164 

gauges monitor watersheds with areas ranging between 10 and 36,000 𝑘𝑚2. With a landscape 165 

dominated by gently rolling plains, Iowa’s land use is predominantly agricultural with two main 166 

crops being corn and soybeans. Nevertheless, the region also has prairie potholes (in the Des 167 

Moines Lobe area), deep loess deposits (around 30 meters deep) at the Loess Hills, and two 168 

extensive alluvial plains next to the Missouri and Mississippi rivers. Due to its landscape and 169 

weather, Iowa has been affected by several historical floods, usually in spring and summer.  170 

2.2 The Hillslope Link Model  171 

As described in detail by Mantilla et al., (2022), the Hillslope Link Model (HLM) is a distributed 172 

hydrological modeling framework that solves a set of ordinary differential equations (ODEs) 173 

representing the hillslope processes and channel routing while preserving the river network 174 

topological connectivity.  As a framework, HLM allows the formulation of runoff mechanisms 175 

with different complexity and parameter requirements.  For this experiment, we used the HLM 176 
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formulation that includes a nonlinear representation of the subsurface fluxes (Fonley et al., 2021; 177 

Velasquez et al., 2021) and a snowmelt parametrization (Koya et al., 2023; Velásquez et al., 178 

2023).  The nonlinear sub-surface fluxes better represent the hydrograph recession and baseflow. 179 

At the same time, the snow component captures the winter-to-spring transition events. We set up 180 

HLM using a network derived from a 10 m digital elevation model (DEM) (USGS, 2022) that 181 

closely follows the high-resolution version of the NHDPlus network (USGS, 2017), obtaining 182 

around one million links over Iowa.     183 

2.3 Rainfall Uncertainty Assessment 184 

We opted to perform our study at the event scale to avoid the effects of prolonged no-rain 185 

periods in continuous simulation. We identified around 7,800 basin response events in the 112 186 

discharge gauges between 2015 and 2022. Following, we provide a detail of the event 187 

identification and the relative rainfall (𝑅𝑟) estimation procedures. 188 

2.4 Events Identification  189 

We evaluated all the model outputs using the standardized discharge (𝑍) by dividing the 190 

observed and simulated discharges (𝑄𝑜 and 𝑄𝑠, respectively) by the mean annual peak flow 191 

(𝑄̅𝑝𝑒𝑎𝑘) of each gauge, allowing us to compare results from watersheds with areas varying 192 

between 10 and 36,000 𝑘𝑚2. After the standardization, we identified the events at each 193 

watershed by separating the runoff from baseflow using the (Nathan and McMahon, 1990) filter: 194 

𝑍𝑟(𝑡) = 𝑎 ⋅ 𝑍𝑟(𝑡 − 1) +
1+𝑎

2
⋅ (𝑍𝑜(𝑡) − 𝑍𝑜(𝑡 − 1))    (1) 195 

where 𝑍𝑟(𝑡) is the runoff component at time 𝑡, 𝑎 a parameter set to 0.98, and 𝑍𝑜 the standardized 196 

observed discharge. Using 𝑍𝑟, we create a binary time series (𝐵𝑟) where 𝐵𝑟 = 1 if 𝑍𝑟 > 𝑍𝑐𝑟𝑖𝑡 and 197 

0 otherwise. 𝑍𝑐𝑟𝑖𝑡 is the runoff threshold set equal to 0.01. Then, we take the first derivative of 198 

𝐵𝑟 (Δ𝐵𝑟) to identify the beginning of each event (Δ𝐵𝑟 = 1). The end of the events corresponds to 199 

the beginning of the next one or the watershed response time (whichever happens first). After 200 

using the described procedure, we evaluated only the events with a relative peak flow greater 201 

than 20% of the mean annual peak flow.  202 

2.5 Performance Metrics  203 

For each event, we computed the performance metrics, the average relative rainfall (𝑅𝑟) and 204 

identified the optimal factor (𝑓𝑐
𝑜𝑝𝑡

) for the performance metrics. The metrics include the peak 205 

flow bias (𝑄𝑝), the time-to-peak difference (Δ𝑡𝑝), and the volumetric bias (𝑉). With the 206 

described metrics, our goal is to obtain a robust assessment of the QPE basin-wide bias while 207 

analyzing its impact on features of the simulated hydrographs related to flood forecast 208 

performance.  209 

2.6 Relative Rainfall (𝑅𝑟) Estimation 210 

We used 𝑅𝑟 to perform conditional analyses of our results. To identify 𝑅𝑟, we first obtained the 211 

accumulated rainfall (𝑅 [𝑚𝑚]) of each event between a temporal lag and the peak flow time. We 212 

estimated the lag for each watershed by looking at the correlation between the observed 213 

discharge and the MRMS average rainfall aggregated between 𝑡 and 𝑡 − Δ𝑡 with Δ𝑡 varying 214 
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between 2 and 400 hours. The lag corresponds to the Δ𝑡 value that maximizes the correlation. 215 

Finally, we obtained the total relative rainfall of the events (𝑅𝑟) dividing 𝑅 by the average of the 216 

sum of the observed events.  217 

Additionally, we estimated event-based mean areal precipitation over 60 watersheds using rain 218 

gauge records from the National Weather Service (NWS) Cooperative (COOP) Hourly 219 

Precipitation Data (HPD) Network, Version 2.0 (Lawrimore et al., 2020). Mean areal 220 

precipitation was estimated by taking a simple average of rainfall observations from 221 

corresponding rain gauges within each watershed.  We used these estimates to calculate QPE 222 

bias and compare the calculated bias with the optimal factor (𝑓𝑐
𝑜𝑝𝑡

) derived from our experiment.       223 

3 Results and Discussion 224 

As described in Section 2, we use a collection of multiplicative factors (𝑓𝑐) to represent the QPE 225 

uncertainty of two products (MRMS and IFCA).  This simple representation of QPE uncertainty 226 

does not affect small-scale (pixel) variability and errors and, thus, the spatial distribution of the 227 

radar-rainfall patterns.  Instead, it focuses on the basin-wide bias of the radar-rainfall input.  In 228 

the following, we present the assessment of the results obtained at 112 USGS gauges with 229 

discharge observations.  For each watershed and each event, we evaluated the 𝑄𝑃𝐸 ⋅ 𝑓𝑐 230 

combination that provided the best performance.  As shown in Figure 4, changes in 𝑓𝑐 provide 231 

significant differences in streamflow simulation performance compared with the original result 232 

for 𝑓𝑐 = 1.  In our analysis, we assumed that QPE bias explains the 𝑓𝑐 variability allowing us to 233 

analyze possible structural biases in the radar-rainfall products.  234 

235 
Figure 4. Comparison of simulated hydrographs using 𝑓𝑐 = 1 (blue) and 𝑓𝑐

𝑜𝑝𝑡
(red) according to 236 

the peak flow bias (𝑄𝑝 bias). The gray hydrographs correspond to simulations using 𝑓𝑐 values 237 

between 0.2 and 1.6. 238 

3.1 Multiplicative Factors and Performance Frequencies   239 

As shown in Figure 4, QPE magnitude changes induced by 𝑓𝑐 can bring significant predictive 240 

improvements. To achieve these improvements, 𝑓𝑐
𝑜𝑝𝑡

 exhibited notable variability (between 0.7 241 

and 2) representing QPE over- and under-estimations, respectively (see Figure 5). Despite the 242 

𝑓𝑐
𝑜𝑝𝑡

 range, its distribution and magnitude are comparable to the gauge/QPE biases obtained at 243 

the watersheds (black line in Figure 5), where the range and median values (~1.2 for 𝑓𝑐
𝑜𝑝𝑡

, 1.14 244 

for MRMS, and 1.12 for IFCA) provide a validation of our results. On the other hand, the 𝑓𝑐
𝑜𝑝𝑡

 245 
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distributions exhibited similar histograms for the selected performance metrics with some 246 

differences between our two QPE products.  247 

 248 

Figure 5. Multiplicative factors frequency distribution for the 𝑉 bias (blue), 𝑄𝑝 bias (orange) 249 

metrics, and for the rainfall Gauge/QPE ratio (black). Panels a and b correspond to MRMS and 250 

IFCA results, respectively. 251 

We further compare 𝑓𝑐 (using 𝑉 bias) with the gauge/QPE bias by analyzing their joint 252 

distribution (Figure 6). In contrast with Figure 5, this approach allows us to present in more 253 

detail the differences between 𝑓𝑐 and the bias of both products. In the MRMS case, both 𝑓𝑐 and 254 

the gauge/QPE ratio exhibit some converge for values between 0.9 and 1.3 with significant 255 

discrepancies for 𝑓𝑐 values above 1.3. The IFCA case, exhibits a stronger agreement between 𝑓𝑐 256 

and the gauge/QPE ratio with a higher frequency around 1 and more disagreement on the QPE 257 

for values below 0.9.  We attribute these differences to discrepancies in the spatial organization 258 

of both QPEs and the low density of gauges used in the gauge/QPE bias estimation. These 259 

differences between the two QPE products may come as a surprise.  Recall that the MRMS is 260 

gauge-corrected. 261 

 262 

Figure 6. The joint distribution between the 𝑉 bias 𝑓𝑐
𝑜𝑝𝑡

 values and the Gauge/QPE ratio for 263 

MRMS (a) and IFCA (b). 264 
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We attribute the described discrepancies to differences in the way we obtained 𝑓𝑐
𝑜𝑝𝑡

 and the 265 

gauge/QPE ratio. The 𝑓𝑐
𝑜𝑝𝑡

 represents the bias at a watershed scale looked through the lens of a 266 

hydrological model. On the other hand, the gauge/QPE ratio is the bias of a direct comparison 267 

between gauged rainfall at a given point and the collection of pixels that correspond to a given 268 

watershed. Due to differences on both approaches, drawing strong conclusions about their 269 

correctness is difficult. Nevertheless, their magnitude and distribution similarities point to an 270 

existing issue on the QPE.   271 

Additionally, we evaluated the potential bias induced by the QPE uncertainty by comparing the 272 

performance frequency of using a multiplicative factor of 1 and 𝑓𝑐
𝑜𝑝𝑡

 value (Figure 7). According 273 

to our results, 𝑓𝑐
𝑜𝑝𝑡

 induces a large improvement in both QPE products. The improvement is 274 

impressive for the three metrics, with differences bounded within 50% and centered around 0. As 275 

discussed before, model uncertainties likely explain a significant portion of the errors in the 𝑓𝑐 =276 

1 case. Improvements in the model parameters (Francés et al., 2007; Refsgaard, 1997) or a better 277 

representation of the runoff and routing processes (Velásquez et al., 2021; Velasquez et al., 278 

2022) can also increase model performance.   279 

 280 
Figure 7. Model performance frequencies for the case of 𝑓𝑐 = 1 (blue) and for 𝑓𝑐

𝑜𝑝𝑡
(red) during 281 

each event. The rows correspond to the MRMS and IFCA results, respectively. The columns 282 

correspond to 𝑉 bias, 𝑄𝑝 bias, and Δ𝑡𝑝 histograms. 283 

In the 𝑄𝑝 bias case, improvements represented changes from around 50% to 2% for MRMS and 284 

IFCA (see Figure 8). In the MRMS case (Figure 8a), we observe more dispersion for the 𝑓𝑐
𝑜𝑝𝑡

 𝑄𝑝 285 

bias case with values oscillating between 1 and 7%. On the other hand, the IFCA case (Figure 286 

8b), most of the change happens around 4%. Despite the differences, both QPE products exhibit 287 

a similar improvement, indicating that the basin-wide magnitude is a key feature controlling the 288 

hydrograph. The results presented here and by Ghimire et al., (2022) highlight the essential role 289 
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of the QPE and how critical it is to understand its uncertainty at the watershed level to improve 290 

our forecasting capabilities. 291 

 292 
Figure 8. 𝑄𝑝 bias performance (in log space) for 𝑓𝑐 equals to 1 vs 𝑓𝑐

𝑜𝑝𝑡
 for MRMS (a) and IFCA 293 

(b). 294 

Up to this point we analyzed the corrective factors as a distribution over all stream gauges and 295 

events.  Therefore, a fair question could be whether these factors are random which would make 296 

them less insightful.  To address this question we analyzed their temporal variations at the 297 

seasonal scale and the spatial variations as basin scale and simple maps. 298 

3.2 Seasonal trends 299 

It is well-established that QPE uncertainty follows seasonal patterns (Bytheway et al., 2020; 300 

Ciach et al., 2007; Derin et al., 2016; Gupta et al., 2010) due to atmospheric changes (Lu et al., 301 

2010) that induce error sources such as melting layer height changes (Cocks et al., 2017). 302 

Considering this, we explored the performance improvements and 𝑓𝑐
𝑜𝑝𝑡

 variability for the 303 

MRMS case (Figure 9). The three metrics exhibited performance increases in the transition 304 

periods of winter to spring and summer to fall. 𝑉 bias (Figure 9b) have the most pronounced 305 

improvements in the winter to spring transition while 𝑄𝑝 bias (Figure 9a) has it during the 306 

summer.  𝑓𝑐
𝑜𝑝𝑡

 also follows the similar pattern for all the metrics except Δ𝑡𝑝 (Figure 9d and e). 307 

During the winter to spring transition 𝑓𝑐
𝑜𝑝𝑡

 tends towards values above 1.5 and in the summer, it 308 

oscillates around one. The described seasonal patterns suggest a link between the QPE-modeling 309 

uncertainties and the atmospheric changes worth of exploring. 310 
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 311 
Figure 9. Performance improvement (first row) and 𝑓𝑐

𝑜𝑝𝑡
 (second row) seasonal variability for 312 

HLM runs with MRMS. The yellow vertical band indicates the warm season, the blue band 313 

corresponds to the interquartile range, and the tick blue line corresponds to the median value.  314 

 315 

3.3 Scale analysis 316 

Scaling of flood peaks at the event scale has been a well-researched problem (e.g. Ayalew et al. 317 

2014a, b; Gupta et al., 2010).  Therefore, in addition to the seasonal uncertainties, we analyzed 318 

the role of the watershed scale. We compared the performance improvement and the 319 

multiplicative factor variations with the upstream area of the gauged watersheds (Figure 10). 320 

According to the figure, the performance improvement has a weak link with the upstream area 321 

where only Δ𝑡𝑝 shows an improvement for areas ranging between 10 and 100 𝑘𝑚2. Conversely, 322 

𝑄𝑝 bias, 𝑉 bias, and 𝑓𝑐
𝑜𝑝𝑡

 (second row) do not present a clear relationship with the scale. For 323 

most of the performance indexes, 𝑓𝑐
𝑜𝑝𝑡

 oscillates between 1 and 1.5. For 𝑄𝑝 bias, 𝑓𝑐
𝑜𝑝𝑡

 slightly 324 

decreases with the scale, and in the 𝑉 bias case, its variability (blue bands) seems to increase. 325 

Nevertheless, a strong connection with the watershed area is not evident.   326 
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 327 

Figure 10. Performance improvement (first row) and 𝑓𝑐
𝑜𝑝𝑡

 (second row) versus the watershed 328 

upstream area. a) and d) correspond to 𝑄𝑝 bias, b) and e) to 𝑉 bias, and c) and f) to Δ𝑡𝑝. 329 

3.4 Spatial patterns  330 

Here, we expand the assessment to the spatial domain, considering the median value of the 331 

performance at each gauge, its improvement, and 𝑓𝑐
𝑜𝑝𝑡

 value. Figure 11 presents the median 𝑄𝑝 332 

bias performance at each USGS gauge for the two QPE products. According to the figure, the 333 

products have similar spatial patterns but with some differences. The most significant difference 334 

corresponds to performance differences between MRMS and IFCA over the south-west and 335 

north-east areas. We attribute the similarity between the results to the model parameterization 336 

and the shared origin of the radar data used to develop the QPEs. The performance shown in 337 

Figure 11 is a reference for the following analysis, where we compared the forecast 338 

improvements for the optimal 𝑓𝑐
𝑜𝑝𝑡

 at each gauge.    339 

 340 



Preprint 

Figure 11. Event-based 𝑄𝑝 bias performance for HLM forced with MRMS (a) and IFCA (b). 341 

The colored dots represent the median 𝑄𝑝 bias, the black triangles represent the radars and the 342 

dark circles, the radar coverage at 150 km. 343 

In Figure 12, we present the improvements for 𝑄𝑝 and 𝑉 bias performance metrics for the 344 

MRMS and IFCA products. Accordingly, gauges of relatively low improvement coincide with 345 

high performance at 𝑓𝑐
𝑜𝑝𝑡

= 1 (Figure 11). Moreover, we also found similarities and differences 346 

between the QPE products. In the 𝑄𝑝 bias case (Figure 12a and b), we found more differences 347 

with higher improvements over the north for IFCA and around the south-west for MRMS. With 348 

larger improvements in IFCA, the 𝑉 bias pattern (Figure 12c and d) is similar for both QPEs 349 

presenting more significant differences over the North-West and Center. The described patterns 350 

suggest the existence of spatial QPE biases, probably due to the radars' characteristics (and 351 

limitations), the algorithms used to merge them, and differences between the atmospheric 352 

conditions at the radar domains.         353 

 354 

Figure 12. The median value of the 𝑄𝑝 bias (a and b) and 𝑉 bias (c and d) performance 355 

improvements after comparing events using 𝑓𝑐 = 1 and 𝑓𝑐
𝑜𝑝𝑡

 for MRMS (a and c) and IFCA (b 356 

and d).   357 
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Following the performance improvement biases, the median 𝑓𝑐
𝑜𝑝𝑡

 value at each gauge (Figure 358 

13) also arises a spatial pattern. The 𝑓𝑐
𝑜𝑝𝑡

 variability coincides at some extent with the 359 

performance improvement results. Nevertheless, Figure 13 exhibits stronger spatial trends and 360 

some differences between the 𝑄𝑝 and 𝑉 bias cases (first and second rows, respectively). In 361 

contrast with Figure 12, high and low 𝑓𝑐
𝑜𝑝𝑡

 values tend to be more influenced by the radar’s 362 

coverage radius. For instance, watersheds close to the South-West radar tend to have 𝑓𝑐
𝑜𝑝𝑡

 values 363 

around 0.8 while the watersheds around the central radar have 𝑓𝑐
𝑜𝑝𝑡

 values around 1.3. We 364 

observe a similar behavior with the other radars, on the East, 𝑓𝑐
𝑜𝑝𝑡

 values oscillate around 1.1 365 

and, in the center, it takes values between 1.0 and 1.5. However, the described 𝑓𝑐
𝑜𝑝𝑡

 values are in 366 

overall larger for the 𝑉 bias performance metric.  367 

 368 

Figure 13. Median 𝑓𝑐
𝑜𝑝𝑡

 values for each product (columns) and for the 𝑄𝑝 bias and 𝑉 bias 369 

metrics (rows). Yellow colors indicate 𝑓𝑐
𝑜𝑝𝑡

 values close to 1.0, blue values below 1.0, and red 370 

values over 1.0. 371 

The spatial variability of 𝑓𝑐
𝑜𝑝𝑡

 exhibits some differences among the QPE products. In the IFCA 372 

case (Figure 13 b and d), 𝑓𝑐
𝑜𝑝𝑡

 values around the North-West radar tend towards higher values, 373 

while in the MRMS case (Figure 13 a and d), South-West values are lower. We attribute the 374 

differences to the algorithms used to develop each product. Nevertheless, both products exhibit 375 

similar patterns, which are also present when we compare 𝑓𝑐
𝑜𝑝𝑡

 with the performance increase 376 

(Figure 14). Here, we find similar patterns with increased performance for 𝑓𝑐
𝑜𝑝𝑡

 values different 377 
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from one. On the other hand, the MRMS case (blue dots) exhibit lower 𝑓𝑐
𝑜𝑝𝑡

 values for the Δ𝑄𝑝 378 

and Δ𝑉 bias cases corresponding to larger improvements indicating QPE overestimations.  379 

 380 

Figure 14. Comparison of the median 𝑓𝑐 with the median of the performance improvement for 381 

𝑙𝑜𝑔𝐾𝐺𝐸 (a), 𝑄𝑝 bias (b), and 𝑉 bias (c) for MRMS (blue) and IFCA (red). 382 

The similarities between the QPE products suggest consistent biases affecting the simulations at 383 

the event scale. However, we also notice differences that highlight the uncertainties of each QPE. 384 

Previous work by Quintero et al., (2020) also presented performance differences when 385 

comparing MRMS, Stage IV (Lin & Mitchell, 2005), and IFC rainfall. In this case, we explored 386 

how the QPE uncertainty impacts the forecasting skill of a distributed hydrological model. 387 

According to our spatial analysis, there is variability in the function of the radars and their 388 

unique characteristics, as previously suggested by (Post & Krajewski, 2023). However, the 389 

relationship seems complex and requires a more in-depth study considering QPE from 390 

independent radars and the distance to the watersheds.     391 

3.5 Rainfall Conditioned Assessment   392 

The nature and magnitude of rainfall events also condition QPE uncertainty (Derin et al., 2016; 393 

Lu et al., 2010), and therefore it may also change the streamflow forecast biases. We used the 394 

relative total rainfall (𝑅𝑟) of each event and watershed to explore this link. We repeated the 395 

previously described analysis, conditioning the events to 𝑅𝑟 values greater than 0, 1, 1.5, and 2. 396 

Figure 15 presents a summary of this analysis for the performance improvement (first row) and 397 

𝑓𝑐
𝑜𝑝𝑡

 (second row).  398 

According to the performance improvement histograms, Δ𝑉 bias (Figure 15b and d) exhibit some 399 

reduction for 𝑅𝑟 thresholds above 1.0. Conversely, the Δ𝑄𝑝 bias increase with 𝑅𝑟 (Figure 15a 400 

and c). Nevertheless, in both cases, the connection between 𝑅𝑟 and the performance 401 

improvement seems weak. We attribute this weakness to additional uncertainty factors other than 402 

the QPE. On the other hand, the relationship is stronger in the 𝑓𝑐
𝑜𝑝𝑡

 case. In both cases, 403 

𝑓𝑐
𝑜𝑝𝑡

 tends to decrease with the 𝑅𝑟 magnitude.   404 
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 405 

Figure 15. Summary of the performance improvement and 𝑓𝑐
𝑜𝑝𝑡

 change conditioned to MRMS 406 

relative rainfall 𝑅𝑟. The first row presents the performance improvement histograms, and the 407 

second row to the 𝑓𝑐
𝑜𝑝𝑡

 histogram. The colors from yellow to black correspond to increasing 𝑅𝑟 408 

thresholds (0 to 2). 409 

3.6. Spatial analysis  410 

The results we described in Figure 15 suggest a relationship between the magnitude of the 411 

rainfall event and the QPE-modeling uncertainty. During large events, QPE overestimations may 412 

lead to significant errors in estimating hydrological signatures, such as the peak flow, which in 413 

this case are corrected through 𝑓𝑐
𝑜𝑝𝑡

. However, the described relationships for the performance 414 

and 𝑓𝑐
𝑜𝑝𝑡

 also have an spatial component as shown in (Figure 16 and Figure 17). In contrast with 415 

Figure 12 a and c (corresponding to MRMS), the improvement exhibits an accentuated spatial 416 

change for increasing 𝑅𝑟 values.  417 

The 𝑄𝑝 bias case (Figure 16 a to c), exhibits significant improvements at most of the watersheds 418 

(> 100%) with radar-related solid patterns in the three cases. In the 𝑅𝑟 > 2.0 case (Figure 16 c), 419 

the Δ𝑄𝑝bias reached values larger than 200% indicating increased biases during events with a 420 

significative rainfall accumulation. Also, there is a more evident difference between the 421 

southwest and northeast radars. The Δ𝑉 case (Figure 16 a to c), also follows a spatial pattern that 422 

accentuates with 𝑅𝑟. In contrast with Δ𝑄𝑝, Δ𝑉 has a stronger differentiation between radars for 423 

increased 𝑅𝑟 values.  424 
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 425 

Figure 16. 𝑄𝑝 bias and 𝑉 bias performance increases conditioned on the MRMS relative rainfall 426 

(𝑅𝑟) of each event. The columns correspond to 𝑅𝑟 values above 1, 1.5, and 2. The rows 427 

correspond to performance differences in the 𝑄𝑝 bias (a to c) and 𝑉 bias (d to f) performance 428 

metrics. 429 

Like the results described for the conditional performance increase (Figure 16), the 430 

multiplicative factors also increased with 𝑅𝑟  (Figure 17). In both, 𝑄𝑝 and 𝑉 bias cases, 𝑓𝑐
𝑜𝑝𝑡

 took 431 

more extreme values for larger 𝑅𝑟 values. In the 𝑄𝑝 case (Figure 17a to c), 𝑓𝑐
𝑜𝑝𝑡

 bounds change 432 

from 0.8 and 1.3 (Figure 17a) to values below 0.5 and above 1.8 (Figure 17c). The 𝑉 bias case is 433 

similar, with the difference that 𝑓𝑐
𝑜𝑝𝑡

 values tend to become lower than 1.0 for 𝑅𝑟 > 2 (Figure 434 

17f). Despite the differences between the 𝑓𝑐
𝑜𝑝𝑡

 values for both metrics, the spatial patterns remain 435 

with the south-west region having lower values, the central Iowa values kept around the unity, 436 

and the northeast values above 1.0 in the 𝑉 bias case.  Moreover, the accentuated 𝑓𝑐
𝑜𝑝𝑡

 values 437 

coincide with the performance increase shown in Figure 16.  438 
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 439 

Figure 17. Median 𝑓𝑐
𝑜𝑝𝑡

 in function of the MRMS relative rainfall (𝑅𝑟) of each event. The 440 

columns correspond to 𝑅𝑟 values above 1, 1.5, and 2. The rows correspond to the 𝑓𝑐
𝑜𝑝𝑡

 values for 441 

the 𝑄𝑝 (a to c) and 𝑉 bias (d to f) performance metrics. 442 

4 Conclusions 443 

Using a straightforward approach, we have comprehensively analyzed the connection between 444 

radar-based QPE uncertainties regarding basin-wide bias and streamflow forecasting errors. In 445 

our experiment, we assumed that QPE uncertainties represent a significant portion of the 446 

modeling errors. From this assumption, we described the QPE uncertainty using a multiplicative 447 

factor oscillating between 0.1 and 5. We ran the HLM distributed hydrological model in open-448 

loop mode between 2015 and 2020 using two QPE products (MRMS and IFCA). We compared 449 

the results at the event scale using 112 USGS stream gauges in Iowa. For each event and gauge, 450 

we identified the best-performing multiplicative factor and the performance differences with 451 

respect to a factor of one. According to our results, we can draw the following conclusions: 452 

• As Bárdossy et al., (2022) suggested, errors in precipitation are a significant contributor 453 

to streamflow forecast uncertainty. We obtained improvements over 50% in most cases 454 

and over 100% for some peak flow cases. Compared to previous calibration and data 455 

assimilation efforts, the magnitude of our improvements indicates that rainfall 456 

uncertainties induce a significant bias in hydrological models, probably also affecting our 457 

efforts to parametrize them and discriminate the proper rainfall-runoff mechanisms.   458 

• As QPE quality has a seasonal component (Cocks et al., 2017), so does the QPE-459 

modeling uncertainty structure. Our study obtained differentiable performance 460 

improvements between the warm and cold seasons (see Figure 9). We largely improved 461 

the 𝑉 bias at the end of the cold season with factors around 0.4 and the 𝑄𝑝 bias near the 462 

end of the warm season with increments around 100%. The multiplicative factor 𝑓𝑐
𝑜𝑝𝑡

 463 
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also reflects the seasonal trends with relatively large values during the cold season and 464 

lower values during the warm season. We did not explore the seasonal component further 465 

in this work. However, our results indicate that it is essential to understand this 466 

connection to improve our streamflow forecasts throughout the year.  467 

• In our analysis, the spatial distribution of radar locations seems to determine streamflow 468 

forecasting performance and the QPE bias factors. Despite working with a mosaic 469 

product of radar data, we identified significant spatial differences that coincide with the 470 

distance between radars and the watersheds defined by the USGS stream gauges. We will 471 

explore this connectivity further by analyzing rainfall events relative to the watersheds 472 

and their relative distance to individual radars. This requires a specialized reprocessing of 473 

the radar data.  More progress and results in this direction would help us create corrective 474 

algorithms for the QPE bias.     475 

• We found that QPE-modeling uncertainty is not independent of the magnitude of the 476 

storm event. In our study, we found larger improvements during larger rainfall events. On 477 

the other hand, 𝑓𝑐
𝑜𝑝𝑡

 exhibited diverging results for the evaluated performance metrics (𝑉 478 

and 𝑄𝑝 bias). The described results suggest that total rainfall determines the QPE 479 

uncertainty and the selection of the best-performing parameters. Similar results have been 480 

reported for the calibration case during high and low flows (Asadzadeh et al., 2014). This 481 

is an intricate issue as it shows significant variability in the QPE uncertainty between 482 

rainfall events.     483 

We see the current study as a step towards separating the QPE and rainfall-runoff model 484 

uncertainty. At this point, we are still far from achieving the goal. Nevertheless, we consider our 485 

results relevant to the community as they indicate the existence of spatial, seasonal, and rainfall-486 

magnitude conditional patterns. Our results set up the context for developing an effective 487 

algorithm for basin-wide correction of radar-rainfall. Moreover, we consider that there are 488 

multiple future work avenues in this topic. Further analysis may consider the connections 489 

between the observed spatial bias and the seasons. Also, we would like to analyze the 490 

relationships between nested watersheds, expand the analysis area, and evaluate our results using 491 

different models.    492 

Acknowledgments 493 

This work was completed with partial support from the Iowa Flood Center, Mid-America 494 

Transportation Center via a grant from the U.S. Department of Transportation’s University 495 

Transportation Centers Program (USDOT UTC grant number for MATC: 69A3551747107), the 496 

Iowa Highway Research Board and Iowa Department of Transportation (Contract number:TR-497 

699). Partial funding for this project was provided by the National Oceanic and Atmospheric 498 

Administration (NOAA), awarded to the Cooperative Institute for Research on Hydrology 499 

(CIROH) through the NOAA Cooperative Agreement with The University of Alabama, 500 

NA22NWS4320003. 501 

 502 

References 503 

Addor, N., & Melsen, L. A. (2019). Legacy, Rather Than Adequacy, Drives the Selection of 504 



Preprint 

Hydrological Models. Water Resources Research, 55(1), 378–390. 505 

https://doi.org/10.1029/2018WR022958 506 

Arsenault, R., Brissette, F., & Martel, J. L. (2018). The hazards of split-sample validation in 507 

hydrological model calibration. Journal of Hydrology, 566(September), 346–362. 508 

https://doi.org/10.1016/j.jhydrol.2018.09.027 509 

Asadzadeh, M., Tolson, B. A., & Burn, D. H. (2014). A new selection metric for multiobjective 510 

hydrologic model calibration. Water Resources Research, 50, 7082–7099. 511 

https://doi.org/10.1002/2013WR014979.Reply 512 

Ayalew, T. B., Krajewski, W. F., & Mantilla, R. (2014). Connecting the power-law scaling 513 

structure of peak-discharges to spatially variable rainfall and catchment physical properties. 514 

Advances in Water Resources, 71, 32–43. https://doi.org/10.1016/j.advwatres.2014.05.009 515 

Ayalew, T. B., Krajewski, W. F., Mantilla, R., & Small, S. J. (2014). Exploring the effects of 516 

hillslope-channel link dynamics and excess rainfall properties on the scaling structure of 517 

peak-discharge. Advances in Water Resources, 64, 9–20. 518 

https://doi.org/10.1016/j.advwatres.2013.11.010 519 

Berne, A., & Krajewski, W. F. (2013). Radar for hydrology: Unfulfilled promise or unrecognized 520 

potential? Advances in Water Resources, 51, 357–366. 521 

https://doi.org/10.1016/j.advwatres.2012.05.005 522 

Beven, K., & Binley, A. (2014). GLUE: 20 years on. Hydrological Processes, 28(24), 5897–523 

5918. https://doi.org/10.1002/hyp.10082 524 

Beven, K. J. (2012). Rainfall-Runoff Modelling. In Rainfall-Runoff Modelling: The Primer: 525 

Second Edition. https://doi.org/10.1002/9781119951001 526 

Bytheway, J. L., Hughes, M., Mahoney, K., & Cifelli, A. R. (2020). On the uncertainty of high-527 

resolution hourly quantitative precipitation estimates in California. Journal of 528 

Hydrometeorology, 21(5), 865–879. https://doi.org/10.1175/JHM-D-19-0160.1 529 

Ciach, G. J., Krajewski, W. F., & Villarini, G. (2007). Product-Error-Driven Uncertainty Model 530 

for Probabilistic Quantitative Precipitation Estimation with NEXRAD Data. Journal of 531 

Hydrometeorology, 8(6), 1325–1347. https://doi.org/10.1175/2007JHM814.1 532 

Cocks, S. B., Zhang, J., Martinaitis, S. M., Qi, Y., Kaney, B., & Howard, K. (2017). MRMS 533 

QPE performance east of the Rockies during the 2014 warm season. Journal of 534 

Hydrometeorology, 18(3), 761–775. https://doi.org/10.1175/JHM-D-16-0179.1 535 

Derin, Y., Anagnostou, E., Berne, A., Borga, M., Boudevillain, B., Buytaert, W., Chang, C. H., 536 

Delrieu, G., Hong, Y., Hsu, Y. C., Lavado-Casimiro, W., Manz, B., Moges, S., 537 

Nikolopoulos, E. I., Sahlu, D., Salerno, F., Rodríguez-Sánchez, J. P., Vergara, H. J., & 538 

Yilmaz, K. K. (2016). Multiregional satellite precipitation products evaluation over 539 

complex terrain. Journal of Hydrometeorology, 17(6), 1817–1836. 540 

https://doi.org/10.1175/JHM-D-15-0197.1 541 



Preprint 

Duan, Q., Sorooshian, S., & Gupta, V. K. (1994). Optimal use of the SCE-UA global 542 

optimization method for calibrating watershed models. Journal of Hydrology, 158, 265–543 

284. https://doi.org/10.1201/9781351076586 544 

Ehlers, L. B., Sonnenborg, T. O., & Refsgaard, J. C. (2019). Observational and predictive 545 

uncertainties for multiple variables in a spatially distributed hydrological model. 546 

Hydrological Processes, 33(5), 833–848. https://doi.org/10.1002/hyp.13367 547 

Fenicia, F., Savenije, H. H. G., Matgen, P., & Pfister, L. (2007). A comparison of alternative 548 

multiobjective calibration strategies for hydrological modeling. Water Resources Research, 549 

43(3), 1–16. https://doi.org/10.1029/2006WR005098 550 

Fenicia, F., Savenije, H. H. G., Matgen, P., & Pfister, L. (2008). Understanding catchment 551 

behavior through stepwise model concept improvement. Water Resources Research, 44(1), 552 

1–13. https://doi.org/10.1029/2006WR005563 553 

Fonley, M. R., Qiu, K., Velásquez, N., Haut, N. K., & Mantilla, R. (2021). Development and 554 

Evaluation of an ODE Representation of 3D Subsurface Tile Drainage Flow Using the 555 

HLM Flood Forecasting System. Water Resources Research, 57(3). 556 

https://doi.org/10.1029/2020WR028177 557 

Francés, F., Vélez, J. I., & Vélez, J. J. (2007). Split-parameter structure for the automatic 558 

calibration of distributed hydrological models. Journal of Hydrology, 332(1–2), 226–240. 559 

https://doi.org/10.1016/j.jhydrol.2006.06.032 560 

Gharari, S., Gupta, H. V., Clark, M. P., Hrachowitz, M., Fenicia, F., Matgen, P., & Savenije, H. 561 

H. G. (2021). Understanding the Information Content in the Hierarchy of Model 562 

Development Decisions: Learning From Data. Water Resources Research, 57(6). 563 

https://doi.org/10.1029/2020WR027948 564 

Ghimire, G. R., Krajewski, W. F., Ayalew, T. B., & Goska, R. (2022). Hydrologic investigations 565 

of radar-rainfall error propagation to rainfall-runoff model hydrographs. Advances in Water 566 

Resources, 161(September 2021), 104145. https://doi.org/10.1016/j.advwatres.2022.104145 567 

Gupta, V. K., Mantilla, R., Troutman, B. M., Dawdy, D., & Krajewski, W. F. (2010). 568 

Generalizing a nonlinear geophysical flood theory to medium size river basins. Geophysical 569 

Research Letters, 37(11), 1–6. https://doi.org/10.1029/2009GL041540 570 

He, X., Sonnenborg, T. O., Refsgaard, J. C., Vejen, F., & Jensen, K. H. (2013). Evaluation of the 571 

value of radar QPE data and rain gauge data for hydrological modeling. Water Resources 572 

Research, 49(9), 5989–6005. https://doi.org/10.1002/wrcr.20471 573 

Kavetski, D., Kuczera, G., & Franks, S. W. (2006a). Bayesian analysis of input uncertainty in 574 

hydrological modeling: 1. Theory. Water Resources Research, 42(3), n/a-n/a. 575 

https://doi.org/10.1029/2005WR004368 576 

Kavetski, D., Kuczera, G., & Franks, S. W. (2006b). Bayesian analysis of input uncertainty in 577 

hydrological modeling: 2. Application. Water Resources Research, 42(3), n/a-n/a. 578 



Preprint 

https://doi.org/10.1029/2005WR004376 579 

KlemeŠ, V. (1986). Operational testing of hydrological simulation models. Hydrological 580 

Sciences Journal, 31(1), 13–24. https://doi.org/10.1080/02626668609491024 581 

Koya, S. R., Velasquez, N., Mantilla, R. I., Rojas, M., Harvey, K., Ceynar, D., Krajewski, W. F., 582 

& Roy, T. (2023). A Prototype Flood Forecasting System for Nebraska Watersheds. 583 

Environmental Modelling and Software, 164(April), 105693. 584 

https://doi.org/10.1016/j.envsoft.2023.105693 585 

Krajewski, W. F., & Smith, J. A. (2002). Radar hydrology: Rainfall estimation. Advances in 586 

Water Resources, 25(8–12), 1387–1394. https://doi.org/10.1016/S0309-1708(02)00062-3 587 

Krajewski, W.F., & Smith, J. A. (2023). Radar Hydrology. In V. N. Mishra, K. V Mishra, & M. 588 

Thurai (Eds.), Advances in Weather Radar. IET Press. 589 

Krajewski, Witoldld F., Ceynar, D., Demir, I., Goska, R., Kruger, A., Langel, C., Mantilllla, R., 590 

Niemeier, J., Quintero, F., Seo, B. C., Smallll, S. J., Weber, L. J., & Young, N. C. (2017). 591 

Real-time flood forecasting and information system for the state of Iowa. Bulletin of the 592 

American Meteorological Society, 98(3), 539–554. https://doi.org/10.1175/BAMS-D-15-593 

00243.1 594 

Legates, D. R., & McCabe, G. J. (1999). Evaluating the use of “goodness-of-fit” measures in 595 

hydrologic and hydroclimatic model validation. Water Resources Research, 35(1), 233–596 

241. https://doi.org/10.1029/1998WR900018 597 

Lin, Y., & Mitchell, K. E. (2005). The NCEP Stage II/IV hourly precipitation analyses: 598 

development and applications. Preprints, 19th Conf. on Hydrology, American 599 

Meteorological Society, San Diego, CA, 9-13 January 2005, Paper 1.2, 2–5. 600 

Lu, C., Yuan, H., Tollerud, E. I., & Wang, N. (2010). Scale-dependent uncertainties in global 601 

QPFs and QPEs from NWP model and satellite fields. Journal of Hydrometeorology, 11(1), 602 

139–155. https://doi.org/10.1175/2009JHM1164.1 603 

Mantilla, R., Fonley, M., & Velasquez, N. (2023). Technical Note : Testing the Connection 604 

Between Hillslope Scale Runoff Fluctuations and Streamflow Hydrographs at the Outlet of 605 

Large River Basins. Hydrology and Earth System Sciences, August, 1–13. 606 

Mantilla, R. I., Krajewski, W. F., Velasquez, N., Small, S. J., Ayalew, T. B., Quintero, F., 607 

Jadidoleslam, N., & Fonley, M. (2022). The Hydrological Hillslope-Link Model for Space-608 

Time Prediction of Streamflow: Insights and Applications at the Iowa Flood Center. In 609 

Extreme Weather Forecasting. Elsevier. 610 

Mantilla, R., Krajewski, W. F., Velasquez, N., Small, S. J., Ayalew, T. B., Quintero, F., 611 

Jadidoleslam, N., & Fonley, M. (2022). The hydrological hillslope-link model for space-612 

time prediction of streamflow: insights and applications at the Iowa Flood Center. Extreme 613 

Weather Forecasting, 200. 614 



Preprint 

Nathan, R.J., McMahon, T. A. (1990). Evaluation of Automated Techniques for Base Flow and 615 

Recession Analyses. Water Resources Research, 26(7), 1465–1473. 616 

https://doi.org/10.1029/2006WR005467 617 

Post, R., & Krajewski, W. F. (2023). Correction to: Examining the stage-IV radar-rainfall 618 

product for Probabilistic rainfall estimation: case study over Iowa. Stochastic 619 

Environmental Research and Risk Assessment, 37(9), 3677. https://doi.org/10.1007/s00477-620 

023-02522-0 621 

Quintero, F., Krajewski, W. F., Seo, B. C., & Mantilla, R. (2020). Improvement and evaluation 622 

of the Iowa Flood Center Hillslope Link Model (HLM) by calibration-free approach. 623 

Journal of Hydrology, 584. https://doi.org/10.1016/j.jhydrol.2020.124686 624 

Refsgaard, J. C. (1997). Parameterisation, calibration and validation of distributed hydrological 625 

models. Journal of Hydrology, 198(1–4), 69–97. https://doi.org/10.1016/S0022-626 

1694(96)03329-X 627 

Ryzhkov, A., Diederich, M., Zhang, P., & Simmer, C. (2014). Potential utilization of specific 628 

attenuation for rainfall estimation, mitigation of partial beam blockage, and radar 629 

networking. Journal of Atmospheric and Oceanic Technology, 31(3), 599–619. 630 

https://doi.org/10.1175/JTECH-D-13-00038.1 631 

Schoups, G., & Vrugt, J. A. (2010). A formal likelihood function for parameter and predictive 632 

inference of hydrologic models with correlated, heteroscedastic, and non-Gaussian errors. 633 

Water Resources Research, 46(10), 1–17. https://doi.org/10.1029/2009WR008933 634 

Seo, B. C., Keem, M., Hammond, R., Demir, I., & Krajewski, W. F. (2019). A pilot 635 

infrastructure for searching rainfall metadata and generating rainfall product using the big 636 

data of NEXRAD. Environmental Modelling and Software, 117(March), 69–75. 637 

https://doi.org/10.1016/j.envsoft.2019.03.008 638 

Seo, B. C., & Krajewski, W. F. (2020). Statewide real-time quantitative precipitation estimation 639 

using weather radar and NWP model analysis: Algorithm description and product 640 

evaluation. Environmental Modelling and Software, 132, 104791. 641 

https://doi.org/10.1016/j.envsoft.2020.104791 642 

Seo, B. C., Krajewski, W. F., & Ryzhkov, A. (2020). Evaluation of the specific attenuation 643 

method for radar-based quantitative precipitation estimation: Improvements and practical 644 

challenges. Journal of Hydrometeorology, 21(6), 1333–1347. https://doi.org/10.1175/JHM-645 

D-20-0030.1 646 

Seo, B. C., Quintero, F., & Krajewski, W. F. (2018). High-resolution QPF uncertainty and its 647 

implications for flood prediction: A case study for the eastern Iowa flood of 2016. Journal 648 

of Hydrometeorology, 19(8), 1289–1304. https://doi.org/10.1175/JHM-D-18-0046.1 649 

Shen, H., A. Tolson, B., & Mai, J. (2022). Shen-Tolson-Mai_2020_Time to Update the Split‐650 

Sample Approach in Hydrological Model Calibration.pdf. 651 



Preprint 

Stedinger, J. R., Vogel, R. M., Lee, S. U., & Batchelder, R. (2008). Appraisal of the generalized 652 

likelihood uncertainty estimation (GLUE) method. Water Resources Research, 44(12), 1–653 

17. https://doi.org/10.1029/2008wr006822 654 

Survey, U. S. G. (2022). USGS 1/3 Arc Second. 655 

USGS. (2017). National Hydrography Dataset Plus High Resolution (NHDPlus HR) - USGS 656 

National Map Downloadable Data Collection. 657 

Velásquez, N., Mantilla, R., Krajewski, W., Fonley, M., & Quintero, F. (2021). Improving 658 

Hillslope Link Model Performance from Non-Linear Representation of Natural and 659 

Artificially Drained Subsurface Flows. Hydrology, 8(4), 187. 660 

Velásquez, N., Quintero, F., Koya, S. R., Roy, T., & Mantilla, R. (2023). Snow-detonated floods: 661 

Assessment of the U.S. midwest march 2019 event. Journal of Hydrology: Regional 662 

Studies, 47. https://doi.org/10.1016/j.ejrh.2023.101387 663 

Velasquez, N, Mantilla, R., Krajerwski, W. F., Quintero, F., & Zanchetta, A. (2022). 664 

Identification and Regionalization of Streamflow Routing Parameters Using Machine 665 

Learning for the HLM Hydrological Model in Iowa. Journal of Advances in Modeling Earth 666 

Systems, 14(7). 667 

Velasquez, Nicolas, Mantilla, R., Krajewski, W. F., Fonley, M., & Quintero, F. (2021). 668 

Improving Hillslope Link Model Performance fromNon-Linear Representation of Natural 669 

and Artificially Drained Subsurface Flows. Hydrology, 8(187). 670 

Villarini, G., & Krajewski, W. F. (2010). Review of the different sources of uncertainty in single 671 

polarization radar-based estimates of rainfall. Surveys in Geophysics, 31(1), 107–129. 672 

https://doi.org/10.1007/s10712-009-9079-x 673 

Zhang, J., Howard, K., Langston, C., Kaney, B., Qi, Y., Tang, L., Grams, H., Wang, Y., 674 

Cockcks, S., Martinaitis, S., Arthur, A., Cooper, K., Brogden, J., & Kitzmillller, D. (2016). 675 

Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating 676 

capabilities. Bulletin of the American Meteorological Society, 97(4), 621–638. 677 

https://doi.org/10.1175/BAMS-D-14-00174.1 678 

Zhang, J., Tang, L., Cocks, S., Zhang, P., Ryzhkov, A., Howard, K., Langston, C., & Kaney, B. 679 

(2020). A dual-polarization radar synthetic QPE for operations. Journal of 680 

Hydrometeorology, 21(11), 2507–2521. https://doi.org/10.1175/JHM-D-19-0194.1 681 

 682 


