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Abstract14

Fluid dynamical systems are well described by discretized partial differential equations,15

but computational costs limit accuracy, duration and/or resolution in numerical inte-16

grations. Recent studies showed that deep neural networks trained on simulations or PDE-17

derived losses can improve cost-accuracy tradeoffs, but purely data-centric approaches18

discard physical and mathematical insights and require computationally costly training19

data. Here we draw on advances in geometric deep learning to design solver networks20

that respect PDE symmetries as hard constraints. We construct equivariant convolutional21

layers for mixed scalar-vector input fields in order to capture the symmetries inherent22

to specific PDEs. We demonstrate our approach on a challenging 1D semi-implicit shal-23

low water scheme with closed boundaries, applying unsupervised learning with a physics-24

derived loss function. We report strong improvements in accuracy and stability of equiv-25

ariant solvers compared to standard convolutional networks with the same architectures26

and parameter counts. Solver equivariance also improves performance on new initial con-27

ditions not encountered during training, and suppresses error accumulation in global mo-28

mentum and energy. Strikingly, these benefits do not reduce loss values during training,29

but appear later during ML-assisted rollouts over time steps. Our results suggest that30

symmetry constraints could improve deep learning performance across a wide range of31

fluid dynamical tasks, learning algorithms and neural architectures.32

Plain Language Summary33

The complex fluid dynamics of the atmosphere and oceans can be described and sim-34

ulated using partial differential equations (PDEs). However, accurately modeling these35

systems is too computationally expensive in many important scenarios. Recent studies36

have proposed using deep learning to quickly and accurately solve these PDEs, but this37

approach discards many of our physical and mathematical insights and can result in poor38

accuracy and stability as longer time scales are simulated. To address these limitations,39

we apply symmetry constraints that describe how PDE solutions should be transformed40

when initial and boundary conditions are shifted, flipped or rotated. These symmetries41

are imposed as hard constraints, meaning they are fully satisfied at every stage of the42

learning process. To achieve this, we design new computational modules to accept mix-43

tures of scalar and vector fields as input, and mathematically prove that they possess44

the correct symmetries. We test this approach on the shallow water equations, reveal-45

ing striking improvements in accuracy and stability compared to models with similar num-46

bers of free parameters but no symmetry constraints. Symmetry-preserving networks also47

better represent global momentum and energy, and perform better on new scenarios not48

encountered during training.49

Keywords: Fluid Dynamics, Equivariance, Convolutional Networks, Physics-informed50

Deep Learning, Deep PDE Solvers, Hybrid Models, Shallow Water Equations51

1 Introduction52

Partial differential equations (PDEs) are essential for understanding and simulat-53

ing complex fluid dynamics. Examples include convection-diffusion (Egger & Schöberl,54

2010), Euler (Euler, 1757) and Navier–Stokes equations (NS) (Temam, 2001; Constantin55

& Foias, 2020). The shallow water equations (SWEs) (De St Venant, 1871), derived by56

depth integration of NS, are mathematically simpler but widely employed as test cases57

to evaluate solution techniques for ocean, weather and climate applications (Dellar & Salmon,58

2005; Bunya et al., 2009; Kärnä et al., 2011; Zängl et al., 2015; Klöwer et al., 2020; Korn59

et al., 2022).60

PDEs describing geophysical fluid flows require numerical methods, for example,61

finite difference (Sadourny, 1975; Casulli, 1990), finite element (Zienkiewicz & Ortiz, 1995;62
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Bassi & Rebay, 1997), finite volume (Eymard et al., 2000), boundary element (Grilli et63

al., 1998), and spectral element methods (Taylor et al., 1997). While small spatial do-64

mains admit direct numerical simulation, geophysical applications require coarse grids65

with Reynolds-averaging (Reynolds, 1895) or large eddy simulation (LES) (Smagorinsky,66

1963; Deardorff, 1970) to approximate unresolved scales. Explicit time stepping simpli-67

fies computations but requires small steps for stability, while (semi)implicit schemes take68

larger time steps but must iteratively solve a system of equations (Saad, 2003; Polyak,69

1969; Saad & Schultz, 1986; Van der Vorst, 1992). However, these classical approaches70

incur heavy computational costs at high spatial and temporal resolutions.71

Recent machine learning (ML) approaches aim to transcend these cost-accuracy72

tradeoffs by training a model to accurately and efficiently solve PDEs on modern com-73

putational hardware. Supervised learning uses simulations from a classical solver to train74

an ML model that uses larger space and time steps or skips the iterative computations75

of an implicit scheme. This approach has shown success in accelerating PDE solutions76

while maintaining accuracy, obeying conservation laws and preserving high frequency fea-77

tures (Kim et al., 2019; Wang, Kashinath, et al., 2020; Z. Li et al., 2020a; Wen et al.,78

2022; Gupta et al., 2021; Y. Li et al., 2022; Kohl et al., 2023), and has also been applied79

to mesh-free particle-based solvers (Z. Li et al., 2020b).80

Unsupervised learning trains the model to satisfy the PDE without requiring train-81

ing data. It is most effective for implicit schemes, since solving their equations iteratively82

is complex and costly but verifying a solution is simple and fast. Unsupervised learn-83

ing avoids overfitting by training on its own outputs, but cannot avoid discretization er-84

rors for large the space or time steps. It has been used to solve several fluid dynamical85

PDEs (Wandel et al., 2020, 2021; Raissi et al., 2019; Bar & Sochen, 2019; Cai et al., 2020;86

Stanziola et al., 2021; Michelis & Katzschmann, 2022; Zhu et al., 2019; Sun et al., 2020;87

Geneva & Zabaras, 2020).88

Hybrid models replace only part of a classical PDE solver with an ML model, leav-89

ing other components unchanged. Early work applied this to computer graphics (Grzeszczuk90

et al., 1998),while a later study demonstrated an approach combining a fluid solver with91

ML techniques to approximate NS in a Lagrangian framework using regression forests92

(Ladickỳ et al., 2015). More recently, (Um et al., 2020) used supervised learning to com-93

pute an additive correction to low-resolution incompressible NS, so that its evolution mim-94

ics a high-resolution model coarsened at each time step. An LSTM-based hybrid approach (Wiewel95

et al., 2019) with significant practical speed-ups has been presented for predicting pres-96

sure changes for incompressible flow, while (Tompson et al., 2017) proposed an ML-based97

approach for replacing the linear projection in the Eulerian fluid implicit simulation, (Wang,98

Kashinath, et al., 2020) combined two well-established turbulent flow simulation tech-99

niques with deep learning and (Obiols-Sales et al., 2020) developed an accelerated in-100

tegrative ML solverto aid convergence of Reynolds Averaged Navier-Stokes simulations.101

Overall, hybrid methods allow us to effectively incorporate physical knowledge while sim-102

plifying the learning task, and can improve accuracy and generalization capabilities.103

Major challenges remain for ML-based PDE solvers: long-term stability and ac-104

curacy are not guaranteed even for low loss values on training and testing data (Um et105

al., 2020; Nonnenmacher & Greenberg, 2021b; List et al., 2022; Wu et al., 2022), and gen-106

eralization to new scenarios remains problematic (Thuerey et al., 2020; Kashinath et al.,107

2021; Lye et al., 2020; Fresca & Manzoni, 2022). A partial explanation is that training108

neural networks means choosing from a large, high-dimensional family of functions, many109

of which are physically or mathematically implausible. Narrowing the search by constrain-110

ing the learned function has shown great promise: for example, conservation laws im-111

prove process representations in climate, weather, and ocean models (Yuval et al., 2021;112

Yuval & O’Gorman, 2020), while symmetry constraints aid image classification (T. Co-113

hen & Welling, 2016) and segmentation (Tajbakhsh et al., 2020; Han et al., 2021). How-114

ever, the potential benefit for fluid dynamics remains mostly unclear.115
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In this work we construct hybrid PDE solvers using equivariant neural networks116

that obey PDE symmetry constraints. We draw on previous work in geometric deep learn-117

ing (T. Cohen & Welling, 2016; Gerken et al., 2023), but extend group equivariant con-118

volutions to handle mixed scalar/vector inputs with the correct, PDE-specific transfor-119

mation rules. We demonstrate the benefit of equivariant solver networks using an un-120

supervised learning task, in which the network is trained to integrate a semi-implicit scheme121

for 1-D shallow water equations. These equations exhibit challenging stiff dynamics due122

to closed boundaries and reflecting waves. Our experiments show significant improve-123

ments in long term accuracy and stability compared to standard CNNs, despite similar124

loss values during training. We also observe that symmetry constraints improve perfor-125

mance on initial conditions not encountered during training, as well as representations126

of global mass, momentum and energy.127

Fluid surface

C-grid staggering for the discretization

fields:
Original

& inverted:
Flipped

Figure 1. Schematic representation of a one-dimensional shallow water problem with C-grid

staggering of discretized fields. (a) Shallow water system with domain length !. 3 and ℎ are

un-disturbed- and disturbed- water depth, Z is fluid surface elevation and ℎ = Z + 3. D is the

velocity along the space coordinate G. (b) Staggered grid for elevation and velocity. Top: fluid

surface elevation Z 9 is represented at red squares while velocity D 9+1/2 is represented at black cir-

cles. Bottom: A flipped fluid surface elevation Z8 , as well as a flipped-and-inverted velocity. These

transformed fields solve the SWE with transformed initial and boundary conditions.

2 Numerical Integration of Fluid Dynamics128

In this section we establish concepts and notation for PDE integration with clas-129

sical numerical techniques, allowing us to describe our task and approach in the follow-130

ing section. We consider a general governing partial differential equation for fluid dy-131

namics:132

m@(C, G)
mC

= F [@] = 5 (C, G, @(C, G), 3@
3G
,
32@

3G2
, . . .), G ∈ Ω (1)133

@(G, C) = @Ω(G), G ∈ mΩ (2)134

@(G, 0) = @0(G) (3)135
136

G and C are space and time coordinates and @(C, G) is the vector of modeled variable fields137

at one place and time, such as velocity and pressure in NS or velocity and height in SWE.138

F is a nonlinear operator computing time derivatives as nonlinear functions of functions139

of the fields and their spatial derivatives. The Dirichlet boundary conditions (BCs) @Ω(G)140

on the boundary mΩ and initial conditions (ICs) @0 (G) are given while @(G, C) is the un-141

known quantity for which we solve the PDE. Eqs. 1-3 are a common form for govern-142

ing a fluid flow, though other types of BCs and constraints (such as incompressibility)143

can also be used.144
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2.1 Spatial Discretization145

We solve our PDEs with the classical finite difference methods with uniform time146

step ΔC and all prognostic variables defined on a regular grid with space step ΔG. For 1-147

D fields, and denoting the :-th variable field in @ by I, we use I=9 = @( 9ΔG, =ΔC): to de-148

note the value of I at the 9-th location on the =-th time step. We employ staggered rep-149

resentations of scalar fields and velocities using Arakawa C-grids (Akio & Vivian, 1977),150

and the notation I=
1/2, I

=
3/2, . . . for shifted variables in Fig. 1b.151

2.2 Time Stepping152

Given the discretized variable fields @= at time C = =ΔC, a time stepping scheme153

is used to compute the next fields @=+1. Here we consider the broad range of schemes in154

which each occurence of @ in the definition of F is replaced by a weighted average of @=155

and @=+1, and the weighting may be different for each field and each term of the PDE.156

Thus when @= is used in every case we have an explicit method, while using (@=+@=+1)/2157

in every case gives a Crank-Nicholson method (Crank & Nicolson, 1947). Denoting the158

discretized version of F by F̃ , the scheme can be written as a system of equations159

@=+19 = @=9 + ΔCF̃ [@=, @=+1] (4)160
161

Because @=+1 appears on both sides of the equation, we must solve the equations to ob-162

tain it, for example by using iterative methods. Calculating F̃ for the discretized vari-163

able fields requires discretized versions of all spatial derivatives, which in general must164

be designed and tested for each PDE to ensure accuracy and stability. This class of time165

stepping schemes is widely used for fluid dynamical PDEs: examples include incompress-166

ible Navier Stokes (Turek, 1996; Fischer et al., 2005; Forti & Dedè, 2015) and certain shal-167

low water solvers with land-water boundaries (Backhaus, 1983) (see below).168

3 Unsupervised Learning of PDE Integration169

3.1 Problem Statement170

We aim to replace an expensive semi-implicit time scheme (Eq. 4) with a faster,171

neural-network based solver. Critically, we do not assume that we have access to sim-172

ulation data for training purposes, but must train the network using only our knowledge173

of the PDE, spatial discretization and time stepping scheme.174

Concretely, we wish to train (that is, optimize) the parameters q of a flexible func-175

tion approximator (̂q, such that (̂q (@=) ≈ ((@=) = @=+1. Here ( denotes a single step176

of time integration using a classical numerical solver that acts as our target reference so-177

lution. We aim to achieve a close approximation between (̂q and ( on PDE integrations178

with initial distributions drawn from a specified probability distribution Π(@):179

@0 ∼ Π(@) (5)180

@= = ( (=) (@0) (6)181

@̂= = (̂
(=)
q (@

0) (7)182

@̂= ≈ @= (8)183
184

Without access to simulation data, we cannot carry out supervised training of (̂q using185

input-output pairs (@=, @=+1). The motivation behind this problem formulation without186

access to training data is that it avoids expensive simulations, and does not require us187

to commit to a fixed set of simulated system states at the onset of training.188
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Figure 2. Schematic representation of equivariant U-net architecture and ‘hybrid’ training

procedure for a deep SWE solver. (a) Equivariant U-Net architecture with an example of chan-

nels. Grid staggering leads to input channels with different sizes, so we use equivariant input

layers with different kernel sizes to obtain a uniform size across channels in the first hidden layer.

All activations except for inputs and outputs are defined as real-valued functions on the infinite

discrete group � containing reflections and translations (light blue area). Network outputs pro-

vide a fluid surface update ΔZ . (b) A ‘hybrid’ training loop adapted from (Wandel et al., 2020).

A pool of system states is first filled with the initial conditions Z0, D0. For a randomly selected

batch of system states, the U-net then generates Z C+3C at the next time step while velocity is

calculated as in a numerical solver. The unsupervised loss function summed over the batch, its

gradients are used to update network parameters and the new states overwrite their own inputs

in the pool.

3.2 Physics-derived Loss Function189

To train 6q ≈ ( without simulation data, we construct a physics-derived loss (Zhu190

et al., 2019; Wandel et al., 2020) that is zero if and only if the discretized PDE is pre-191

cisely solved:192

LPDE(@, q) =



@ + ΔCF̃ [@, 6q (@)] − (̂q (@)





2

2

+ 1Ω ·



(̂q (@) − @Ω





2

2

(9)193

194

The first loss term measures deviations from the prescribed PDE, and is clearly zero when195

(̂q = (. The second term measures violation of the Dirichlet BCs, with 1Ω an indica-196

tor function for the boundary. If (̂q is constructed to satisfy the BCs for any q the sec-197

ond term can be dropped.198

3.3 Training Algorithm199

In principle, we could minimize LPDE using any input fields @, but to obtain op-200

timal results when ICs are drawn from Π(@), we should train on fields likely to occur when201

time-integrating from those ICs. We therefore train (̂q on fields it has itself integrated,202

following the strategy of (Wandel et al., 2020) in Fig. 2b.203

We first initialize a pool of 5000 simulations with ICs drawn randomly from Π(@).204

For each gradient step, a batch of simulations is randomly selected from the pool, and205

stepped forward using (̂q. The fields at the old and new time steps for this batch are206

used to compute LPDE, and the resulting gradients are used to update q. The updated207

simulations are then stored in the simulation pool, where they overwrite their own pre-208

vious values. After every 50 gradient steps, a randomly selected simulation is overwrit-209

ten with a new initialization from Π(@). We use a default batch size of 1 = 100, 60 epochs,210

and the Adam optimizer (Kingma & Ba, 2014) with an initial learning rate of 0.001.211
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3.4 Hybrid Solvers212

For a fully data-driven architecture, the time stepping function (̂q can be fully spec-213

ified by a deep neural network or other general function approximator. However, sev-214

eral studies have shown that combining deep learning and numerical physics in a single215

model can provide better results than either approach alone (Tompson et al., 2017; Long216

et al., 2019; Obiols-Sales et al., 2020; Kochkov et al., 2021; Wandel et al., 2021). A par-217

ticular focus of this hybrid approach has been semi-implicit numerical schemes that re-218

quire a system of equations to be solved at each time step. Classical numerical solvers219

for these schemes often use variable substitution to reduce the number of equations and220

unknowns: examples include elimination of velocity when solving for fluid height in the221

SWEs (Backhaus, 1983) and the pressure projection step for incompressible NS. Hybrid222

approaches therefore train a deep neural network to efficiently solve the reduced set of223

equations, after which the remaining output variables are calculated using formulae from224

the original numerical solver. We describe this approach in detail for a SWE scheme in225

Fig. 2b.226

This hybrid approach can offer several benefits compared to a learning a fully data-227

driven time stepping scheme. By replacing only expensive computations, it retains some228

inductive biases of the original scheme, and ensures that the full set of updated fields229

are accurate when the learned computations are correct. Fewer input and output chan-230

nels for the trained model also reduce parameter counts and improve optimization and231

data efficiencies.232

3.5 Neural Architectures233

To learn (hybrid) time stepping for spatially structured fields, we employ the U-234

net architecture (Ronneberger et al., 2015). The U-net is a convolutional encoder-decoder235

network. In the encoder, the number of channels increases with depth while spatial res-236

olution decreases, while the decoder enacts the opposite transformations while receiv-237

ing skip connections from the encoder at each resolution (Fig. 2a). At each resolution,238

the encoder and decoder employ two convolution layers with kernel size 7. For input fields239

with C-grid staggering, different kernel sizes are used to achieve a uniform spatial ex-240

tent for output fields in the encoder’s first convolution layer. The final outputs of the241

U-net are interpreted as updates Δ@, and added to the corresponding input fields @= to242

produce the time-step fields @=+1. The default resolution of input is 200 for mass grids243

and 199 for velocity grids. The number of parameters for the network is changed by us-244

ing a multiplier for the channel counts of all hidden layers (Fig. 2 shows a multiplier of245

16).246

4 Geometric Constraints247

Many PDEs have symmetries: certain spatial transformations of initial and bound-248

ary conditions lead to a corresponding transformation of the system state at future time249

points. We aim to improve ML-based PDE solvers by endowing them with these prop-250

erties as a hard constraint built into the neural architecture. This effectively narrows the251

class of functions through which we are searching for an effective and efficient solver, by252

filtering out functions inconsistent with the symmetry.253

4.1 Equivariance254

Suppose we have a finite group of symmetries 6 ∈ � acting on a set of spatially255

extended fields @ by transformations @ → T6 (@), with T6162
= T61

◦ T62
. A function256

Ψ(@) is equivariant when transforming its inputs is equivalent to transforming its out-257

puts. Concretely, for each 6 ∈ � the transformations T6,T ′6 act on Ψ’s inputs and out-258
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puts respectively, and259

∀6, @ : Ψ(T6@) = T ′6 Ψ(@) (10)260
261

For example, let Ψ denote time integration of the 2D heat equation m@

mC
= ^

(
m2@

mG2

1

+ m2@

mG2

2

)
.262

This Ψ is equivariant to rotations, reflections, and translations of the heat field @. In this263

case both the input and output transformations are simply the same point-to-point map-264

pings of the scalar heat fields, but for more complex PDEs involving vector fields the trans-265

formations can be more involved (see below).266

4.2 Equivariant Convolutions267

We now describe the construction of convolutional networks with equivariance as268

a hard constraint, meaning that the (̂q is equivariant for any q. Throughout this sec-269

tion we follow (T. Cohen & Welling, 2016), but simplify notation by describing a sin-270

gle input and output channel, both of which are =-D fields of the same size. We denote271

by Y ⊂ Z= the regular grid of integer valued coordinates on which the input and out-272

put channels are defined.273

A standard convolutional layer applies an =-D convolutional filter , to a spatially274

extended scalar input field @ to produce a scalar output field @ ★,:275

[@ ★,] (G) =
∑

H∈Y
@(H), (H − G) + 1 (11)276

277

where , (H) = 0 for H outside the spatial extent of the filter. @, ,, and @★, are sim-278

ply real-valued functions on Y, while 1 is a scalar. Standard convolutions are equivari-279

ant with respect to translations, but not other symmetries.280

In contrast, equivariant convolutional layers produce outputs that are real-valued281

functions of an extended discrete group � generated by the symmetry group � of inter-282

est as well as translations in R=. The first such layer takes standard scalar fields as in-283

put:284

[@ ★,] (ℎ) =
∑

H∈Y
@(H), (ℎ−1H) + 1 (12)285

286

Subsequent layers use functions on � as both inputs and outputs:287

[W ★,] (ℎ) =
∑

ℎ′∈H
W(ℎ′), (ℎ−1ℎ′) + 1 (13)288

289

W, ,, and W★, are real-valued functions of �. As shown in (T. Cohen & Welling, 2016),290

Eqs. 12-13 satsify equivariance (Eq. 10). The input transformation in Eq. 12 is simply291

�’s action on Z= described by �, while other transformations act on real-valued func-292

tions of �. For any such function U(ℎ) we have293

[)ℎU] (ℎ′) = U(ℎ−1ℎ′) (14)294
295

We visualize functions on � as collections of maps over Y, with one map (i.e. real-valued296

function on Y) for each 6 ∈ � (Fig. 3). Since the nonzero regions of @, W and , are bounded,297

the outputs’ nonzero regions are as well. In Eq. 12, , is defined on a patch of Z=, but298

in Eq. 13 , is a function on �. To include multiple input output and channels, we sim-299

ply sum over inputs for each output in Eqs. 11-13, and note that the arrays storing ,300

acquire two additional dimensions. The bias 1 is then indexed by the output channel,301

but not by location or group element.302

To build an equivariant convolutional network, a sequence of equivariant convo-303

lutional layers is interspersed with pointwise nonlinearities. To obtain an equivariant fi-304

nal output on Y instead of �, a pooling operation (e.g. a mean or maximum) operates305
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‘along the �-axis’ of the �-indexed collection of maps on Y. Concretely, we take the mean306

or maximum over all elements of � that share the same translational component.307

For a symmetry group of size |� |, a standard convolution with 2 input and out-308

put channels has as many parameters as an equivariant layer with 2/
√
|� | channels. When309

Y is a �-dimensional grid with # points per axis, the computational complexity of the310

forward and backward passes is $ (#� �22) in both cases, since the equivariant network311

has |� | times fewer input-output channel pairs but each input channel must be convolved312

with a transformed slice of the filter bank |� | times.313

conv

1D input Output

Output

Flip Flip

Flipped 

Flip Flip
conv

filters
filters

Eqs. 16-17

Eqs. A1-A2 Eqs. A5-A6

Eqs. 18-19 Eq. 20

Eq. 20

average

Figure 3. Reflection-equivariant 1D convolutional neural network (GE-CNNs). For illustrative

purposes, a network with only one channel in each layers is shown. Blue arrows indicate a pair of

fields that are reflections of each other, while black arrows indicate equivariant convolution layers.

The 1D input and its flipped duplicate are shown on the left side. Activations in each layer are

computed by applying both a standard and flipped version of the convolutional filter to the pre-

vious layer. The final output is obtained by averaging over reflected and non-reflected version of

each channel pooling on the geometrical two features.

4.2.1 Reflection-equivariant 1D Convolutions314

Having introduced equivariant convolutions for any finite symmetry group � act-315

ing on a discrete grid Y, we next focus on the concrete example of 1-D reflective sym-316

metries. This two-element group is the only nontrivial symmetry group and the main317

focus of this paper. Here Y = {−#, . . . , #}, � contains the identity and a reflection, and318

� consists of either element of � followed by any translation. In this case, a convolu-319

tional time stepping network (̂q : @= → @̂=+1 is equivariant if 'F((̂q (@)) = (̂q ('F(@)),320

for any input field(s) @ and where the ‘mirroring’ operator 'F reflects the fields on the321

spatial axis, i.e. ['F(@)] (G) = @(−G).322

A standard 1D convolutional layer in Eq. 11 with 2in inputs @ and 2out outputs 0323

is defined as:324

0 9 ,· =
2in∑

8=1

, 9 ,8,· ★ @8,· + 1 9 (15)325

326

where the · symbol denotes all values along a given axis. , is an 2in×20× array for327

filter size  , while 1 is a 2out-element vector.328
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In 1D reflection-equivariant networks, the first layer is a special case with 2in in-329

put channels @ defined on Y and 21 outputs 01 defined on �. Eq. 12 thus becomes:330

019 ,0,· =
2in∑

8=1

,1

9 ,8,· ★ @8,· + 119 (16)331

019 ,1,· =
2in∑

8=1

'F

(
,1

9 ,8,·

)
★ @8,· + 119 (17)332

333

While @,,1, 11 have the same size here as in standard convolutional layers, 01 gains a334

third dimension that indexes the elements of �.335

For subsequent layers, both the 2ℓ−1 input channels 0ℓ−1 and 2ℓ outputs 0ℓ are de-336

fined on � and are stored in 3-D arrays. Eq. 13 becomes:337

0ℓ9,0,· =
2ℓ−1∑

8=1

, 9 ,8,0,· ★ 0
ℓ−1
8,0,· +, 9 ,8,1,· ★ 0

ℓ−1
8,1,· + 1ℓ9 (18)338

0ℓ9,1,· =
2ℓ−1∑

8=1

'F

(
, 9 ,8,1,·

)
★ 0ℓ−18,0,· + 'F

(
, 9 ,8,0,·

)
★ 0ℓ−18,1,· + 1ℓ9 (19)339

340

The filter bank , now has four dimensions, the third of which indexes �. When com-341

puting results at the second index along the second, �-indexing dimension of each out-342

put channel (Eq. 19), the filters are flipped on the spatial axis and permuted on the �343

axis (Fig. 3). While the equivariance of these layers follows as a special case of the re-344

sults in (T. Cohen & Welling, 2016), we include simple proofs for the case of 1D reflec-345

tions in the Appendices A1-A2.346

Finally, to produce a network output that is defined on a simple 1D grid (not as347

a function on �), we use a mean pooling operation over the symmetry dimension348

Hout9 ,. =

(
0!9,0,· + 0!9,1,·

)
/2 (20)349

350

which also obviously has the desired equivariance property. Thus, by chaining together351

these input, internal, and output layers, our entire network Ψ is reflection equivariant.352

4.2.2 Extension to Mixed Scalar-Vector Inputs353

Unfortunately, the equivariance defined for convolutions above does not match the354

reflection symmetries of many PDEs, since it fails to account for differences in how vec-355

tor and scalar fields are affected by rotation and reflection. For a scalar field, the value356

of the transformed field (e.g. heat) is simply the value of the original field at a differ-357

ent point. But for vector fields (e.g. velocity) both a location change and a reflection/rotation358

of the vector at the corrected location are required. Simply transforming each compo-359

nent of the velocity field in a PDE solution as a separate scalar would yield a new field360

that does not solve the PDE.361

For reflections of 1-D vector field D, the necessary transformation is362

['FD] (G) = −D [−G] (21)363
364

To implement the proper transformation when @ contains both scalar fields Z and vec-365

tor fields D, we define the following input layer (compare to Eq. 19):366

019 ,0,· =

2
Z

8=∑

8=1

,
Z

9,8,· ★ Z8,· +
2D8=∑

8=1

,D
9,8,· ★ D8,· + 1ℓ9 (22)367

019 ,1,· =

2
Z

8=∑

8=1

'F(, Z

9,8,· ) ★ Z8,· +
2D8=∑

8=1

−'F(,D
9,8,· ) ★ D8,· + 1ℓ9 (23)368

369
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Symmetry of GE-CNN machine learning solver
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P������ �����

Figure 4. Empirical verification of identical PDE and GE-CNN symmetries for the shallow

water equations. (a) ICs, Z , and D for the numerical solver (top left). A flipped version is shown

with inversion of D (bottom left). One step of numerical integration produces a new Z (top, third

column), from which we compute a flipped version. Integration from the flipped/inverted ICs

produces a different Z (bottom, third column), which precisely matches the flipped output from

the non-flipped ICs (bottom right). (b) As in ‘a,’ but for a trained U-net based solver. Note

however that the equivariance of the network is not learned, but exists as a hard constraint

throughout the training process.

Since the output of this layer is a real-valued function on �, subsequent equivariant lay-370

ers can be used without modification in Eq. 13. Defining an equivariant output layer to371

produce vector fields is straightforward, but because we construct hybrid solvers (see be-372

low) scalar outputs are sufficient for our purposes.373

We prove the equivariance of our input layer in A3. For an empirical confirmation374

of this, Fig. 4 shows the equivariance of a classical PDE solver ( and a trained equiv-375

ariant convolutional network (̂q for the shallow water equations, which govern scalar height376

and vector velocity fields.377

–11–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

4.3 One-dimensional shallow water equations378

We evaluated our learning strategies using the 1D SWEs, composed of momentum379

and continuity equations:380

mD

mC
= −��

1

ℎ
D |D | − 6 mZ

mG
(24)381

mZ

mC
= −m (ℎD)

mG
(25)382

383

with spatial coordinate G ∈ [0, !], time C, velocity D, surface disturbance Z , total depth384

ℎ = 3+Z , bottom drag ��, and gravitational acceleration 6. SWEs are commonly used385

to describe large-scale flows in coasts, oceans, estuaries, and rivers, based on the assump-386

tion that fluid depth is well below the length scale of horizontal motion, as illustrated387

in Fig. 1a. Our dry BCs, common in riverine and coastal models (Backhaus, 1983; Ca-388

sulli & Walters, 2000; Zijlema & Stelling, 2008), mean that no fluid enters or escapes:389

D(G = 0) = D(G = !) = 0 (26)390

Z (G = 0) = Z (G = !) = 0 (27)391
392

By default we use ‘Gaussian bell’ ICs:393

D(G, 0) = 0 (28)394

Z (G, 0) = 1
√
2cf2

4−(G−`)
2/f2

(29)395

396

with ` and f uniformly distributed on [100 <, 1900 <] and [10 <, 100 <] respec-397

tively.398

Substituting Z ← 'F(Z ), D ← −'F(D) into Eqs. 24-27 demonstrates reflection399

equivariance of the SWEs, which we confirmed empirically in Fig. 4a.400

Since closed, wave-reflecting boundaries tend to require minuscule time steps for401

explicit schemes, we used a semi-implicit scheme (Backhaus, 1983) to generate reference402

simulations and to construct loss functions (Eq. 9) for unsupervised learning. This fi-403

nite difference method stores velocities and surface elevations on staggered grids (details404

in the Appendix B, simulation parameters in Table 1). Its computational cost is dom-405

inated by solving a tridiagonal linear system406

�Z=+1 = 1 (30)407
408

Where �, 1 are functions of Z= and D=. The relative costs of calculating the coefficients409

of � and 1 or computing D=+1 given Z=+1 are negligible.410

Table 1. Simulation parameters used for SWEs

Parameters Explanation Value

! simulation domain 2000 ( <)
3 undisturbed water depth 100 (<)
�� bottom drag coefficient 1.04 − 3
6 acceleration due to gravity 9.81 (</B2)
ΔG space step 10 ( <)
ΔC time step 300 (B)
Fimp implicit weighting 0.5

–12–
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5 Evaluation Metrics411

We compare trained solvers (̂q to a reference numerical method ( with four error412

measures described previously (Huang et al., 2020). We calculate these metrics for each413

individual field Î= estimating I= ∈ @=.414

• Normalized Root Mean Square Error (NRMSE) describes a relative difference be-415

tween estimated and reference solutions:416

NRMSE =
‖ Î= − I=‖2
‖I=‖2

(31)417

418

Note that all estimated fields Î= are integrated = time steps from the ICs of the419

reference solution.420

• Time-averaged Normalized Root Mean Square Error (ECNRMSE) averages the NRMSE421

over the full duration of a simulation (in this work, 1200 time steps spanning 100422

simulated hours).423

• Pearson’s correlation d( Î= , I=) of reference and learned solutions.424

• Training Success Rate (TSR) is the probability that training will converge to a425

ECNRMSE < 10. This measure allows us to incorporate the stochastic aspect of426

deep learning in evaluating performance (both the initial weights and the order427

of ICs differ across runs). In this work, we quantify TSR by using ECNRMSE−428

Z for SWEs.429

6 Software implementation430

Classical numerical and machine learning solvers are implemented in Pytorch and431

Numpy. Code for equivariant convolutions is partly adapted from GrouPy at https://432

github.com/jornpeters/GrouPy/tree/pytorch\ p4\ p4m\ gconv/groupy/gconv, while433

code for training on evolving simulations is based partly on code published in (Wandel434

et al., 2020), https://github.com/wandeln/Unsupervised Deep Learning of Incompressible435

Fluid Dynamics. The code for both numerical- and ML solver are publicly at https://436

github.com/m-dml/GE-CNN learning SWEs.437

7 Experiments438

We carried out unsupervised training of a hybrid PDE integration scheme for the439

SWEs, to determine whether hard symmetry constraints improve long-term accuracy and440

stability. Our reference simulations (see section 4.3) used a staggered grid with 200 height441

and 199 velocity points shown in Fig. 1b.442

The neural network inferred surface height Z= from the system state at step C−1.443

Following (Wandel et al., 2020), we provide 13 input channels describing D=−1, I=−1 and444

the BCs:445

input =
(
Z , ℎ, <1

Z , <Z , <
1
Z · Z , <Z · Z , <1

Z · ℎ, <Z · ℎ, D, <1
D , <D, <

1
D · D, <D · D

)
(32)446

447

Here, <Z is a mask for Z . It is zero for boundary values and one for interior values while448

<1
Z
= 1−<Z , and <D, <

1
D are the same for velocities. To deal with different spatial di-449

mensions across input channels, we used kernel size 6 for Z -sized inputs and kernel size450

7 for D-sized inputs, and added the results in Fig. 2a.451

In our hybrid scheme, the neural network replaced the expensive tridiagonal solve452

in Eq. 30 to compute Z=+1, while the numerical scheme computes coefficients of the tridi-453

agonal system and updates D=+1 while imposing BCs. We can therefore drop the second454

term in Eq. 9 and replace the first with:455

LSWE =


�Z=+1 − 1



2
2

(33)456
457
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Figure 5. Progress and success rate of training for standard and reflection-equivariant con-

volutional networks. (a) Training loss curves for standard CNN and GE-CNN solvers. During

training the loss of GE-CNN solver is a little larger than one of CNN solver. (b) Training success

rate standard and GE-CNNs. Here, high- and small network respectively have about 148M and

1.6M parameters.

We compared equivariant networks (GE-CNN) to standard convolutional U-nets458

with the same architecture, loss and training procedure. For both network types, we ad-459

justed the number of trainable parameters by scaling the number of output channels for460

all convolutions except the final layer, and for our default configuration as shown in Fig. 2a.461

This resulted in 148M parameters for the equivariant convolutions and 149M for stan-462

dard convolutions.463

7.1 Equivariant Networks are More Accurate and Easier to Train464

We compared default configurations of our standard convolutional neural networks465

(CNN) to reflection-equivariant versions (GE-CNN), see Fig. 2a. We trained on a library466

of Gaussian bells ICs with occasional resets, as shown in section 3.3. Both standard and467

equivariant convolutional networks achieved low loss values and accurately predicted how468

the next time step for the SWEs (Fig. 5a). Since the standard CNN architecture describes469

a less restricted function class than the GE-CNN, it achieves a slightly lower loss value470

during training, at the cost of failing to respect symmetry in autoregressive predictions.471

To test whether respecting symmetry would improve long term-accuracy, we there-472

fore evaluated we compared the CNN and GE-CNN after training in autoregressive roll-473

outs. Network outputs were used to define inputs for the next time step, and the results474

were compared to reference numerical solutions over 1200 time steps (100 simulated hours,475

Fig. 6a). The reference solutions describe waves propagating outward from the initial476

Gaussian bell before reflecting off the domain boundary five times (Fig. 6a, Fig. 6d black).477

Individual CNN rollouts successfully reproduced the propagation and reflection of478

waves, but exhibited gradually increasing errors that increased when the waves were re-479

flected by the closed boundaries (Fig. 6b). Over the CNN rollout the waves broadened,480

developed additional peaks in Z not present in the reference simulation. Compared to481

to reference simulations, CNN rollouts exhibited higher spatial frequencies, a positive482

velocity bias and spatially asymmetric errors (Fig. 6d, blue). By the end of the rollout483

the magnitude of errors reached the amplitude of the simulated wave heights and veloc-484

ities.485

The GE-CNN followed the reference solution more closely, with errors at least one486

order of magnitude smaller than the simulated signals, and difficult to discern visually487

(Fig. 6c). The shape and width of the propagating and reflecting waves and surround-488

ing smaller ripples closely matched the reference simulation. By the end of the simula-489

tion, errors appear as additional undulations in Z , while D continues to to follow the ref-490

erence simulation closely (Fig. 6d, orange).491
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Figure 6. GE-CNNs produce accurate SWE rollouts from Gaussian bell ICs. (a) Reference

simulation of surface elevation Z and velocity D. (b) Rollouts from CNN solver for Z and D, with

errors (prediction − reference). (c) As in ‘b,’ but for GE-CNNs. (d) Snapshots of Z and D ob-

tained from the reference solver (black), CNN (blue) and GE-CNN orange. (e) Mean over ICs of

NRMSE for Z and D as a function of time from the start of the simulation, for CNNs (blue) and

GE-CNNs. (f) As in ‘e,’ but for correlation. (g) Histograms of time averaged NRMSE in Z and D

for CNNs (blue) and GE-CNNs (orange).

The training success rate, defined as the probablity over multiple training runs and492

ICs of achieving low time-averaged error (in Section 5), was 10/12 for the GE-CNN but493

only 2/12 for the CNN (Fig. 5b). When using networks ∼ 100 times smaller, we observed494

9/12 successes for the GE-CNN (1.6M parameters) and 1/12 for the CNN (1.7M).495

We further measured how accuracy of CNN and GE-CNN rollouts varied over time496

and ICs by computing rollouts for each over 200 ICs. NRMSE (see Section 5) in both497

Z and D increased more quickly for the CNN, reaching average values 1-2 order of mag-498

nitude higher (Fig. 6e). Correlation coefficients between rollouts and the reference sim-499

ulation followed a similar trend, with a decrease over time but clear superiority for the500

GE-CNN (Fig. 6f). We further examined the distribution of time-averaged NRMSE across501

ICs, computing histograms for D- and Z -errors on logarithmic scales (Fig. 6g). The GE-502

CNN error distributions peaked near zero, while CNN errors peaked around the targeted503

signals’ amplitude, with a long-tailed distribution.504
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Figure 7. Reflection equivariance improves accuracy for all network sizes. (a-b) ECNRMSE-Z

and ECNRMSE-D as functions of network parameter counts in CNNs and GE-CNNs. Error bars

show standard deviations which are obtained by using the predictions in 100 ℎ. (c-f) Plots of

NRMSE-Z , NRMSE-D, d( Ẑ , Z), and d(D̂, D) as functions of integration time for several sizes of

CNN and GE-CNN.

For both CNN and GE-CNN rollouts, ECNRMSE-Z decreases with parameter count505

of the trained networks, and is lower for GE-CNNs (Fig. 7a-b). The largest CNNs com-506

puted Z as accurately as the smallest GE-CNNs, but for D even the smallest GE-CNNs507

outperformed CNNs of all sizes tested. The same trend was observed at individual time508

points for NRMSEs (Fig. 7c-d) and correlation values (Fig. 7e-f). Overall, these results509

show that the long-rollout accuracy improvement provided by equivariance is robust to510

the choice of network size and accuracy metric.511

7.2 Generalization Capabilities After Training512

We next examined how well PDEs solvers trained using Gaussian bell ICs would513

perform on conditions beyond their training data.514

We first measured rollout accuracy for an ICs described by an isosceles triangle in515

Z a the domain center with 400 km base and 0.12 m height (Fig. 8a). This system state516

was never encountered during training, as it contains a discontinuous first spatial deriva-517

tive in contrast to the smooth Gaussian bell. Rollout errors we were considerably higher518

than for a novel Gaussian bell scenario, though the GE-CNN was again more accurate,519

especially for D (Fig. 8b-c). In the CNN rollout the propagating wave dissipated into many520

high-frequency ripples, while for the GE-CNN waves propagated with the correct shape521

but too slowly, leading to a position mismatch with reference simulations (Fig. 8d). CNN522

and GE-CNN rollout performance for triangular ICs with random height, width and po-523

sition (uniform on 0.09-0.36 m, 200-300 km and 0-200 km respectively) showed similar524

trends to Gaussian bells. GE-CNN was uniformly superior, its errors grew more slowly525

over time, and its error distribution peaked near zero while the CNN’s peaked above 4526

times the estimated signals (Fig. 8g).527

For a more challenging generalization task, we used a sum of 3 Gaussian bells as528

an initial condition. The reference simulation (Fig. 9a) shows 6 propagating and reflect-529

ing waves that form a complex interference pattern. As previously, in CNN rollouts the530

waves were distorted and dissipated over time with a positive bias emerging for D, while531

the GE-CNN maintained the correct shapes but introduced timing errors (Fig. 9c), and532

was more accurate at every time point (Fig. 9d). We also computed accuracy measures533
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Figure 8. GE-CNN solver trained on Gaussian bell ICs generalizes to triangular ICs. (a) Ref-

erence simulation of surface elevation Z and velocity D from a triangular IC. (b) Rollouts from

CNN solver for Z and D, with errors (prediction − reference). (c) As in ‘b,’ but for GE-CNNs.

(d) Snapshots of Z and D obtained from the reference solver (black), CNN (blue), and GE-CNN

(orange). (e) Mean over ICs of NRMSE for Z and D as a function of time from the start of the

simulation, for CNNs (blue) and GE-CNNs. (f) As in ‘e,’ but for correlation. (g) Histograms of

time averaged NRMSE in Z and D for CNNs (blue) and GE-CNNs (orange).

for triple-bell ICs (Fig. 9e-g) with random means (uniform on 100-1900 km) and widths534

(10-100 km). The GE-CNN yielded better NRMSE and correlation values for all time535

delays, and a distribution of time-averagd NRMSE that peaked near zero and showed536

little overlap with CNN results.537

7.3 Learned Representations of Global Mass, Momentum and Energy538

A challenge for ML-based PDE solvers is that their predictions do not always sat-539

isfy conservation laws, even when these laws are manifested in their unsupervised loss540

or training data (Mohan et al., 2023; Kochkov et al., 2021). Our reference SWE solver541

conserves mass, conserves energy except for bottom drag, and conserves momentum ex-542

cept for bottom drag and boundary effects. Each reflection of a propagating wave from543

the closed boundaries involves a temporary conversion of kinetic to potential energy.544
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Figure 9. GE-CNN solver trained on Gaussian bell ICs generalizes to multi-bell ICs. (a) Ref-

erence simulation of surface elevation Z and velocity D from a multi-bell IC (centers 400, 1000,

1350 km; widths 3, 5, 7 km). (b) Rollouts from CNN solver for Z and D, with errors (prediction −
reference). (c) As in ‘b,’ but for GE-CNNs. (d) Snapshots of Z and D obtained from the reference

solver (black), CNN (blue) and GE-CNN orange. (e) Mean over ICs of NRMSE for Z and D as a

function of time from the start of the simulation, for CNNs (blue) and GE-CNNs. (f) As in ‘e,’

but for correlation. (g) Histograms of time averaged NRMSE in Z and D for CNNs (blue) and

GE-CNNs (orange).

We investigated how well trained networks represent 4 quantities: mass
∑
ℎ8, mo-545

mentum
∑
ℎ8D8, kinetic energy 1

2

∑
ℎ8D

2

8 , and potential energy 1

2

∑
6ℎ8. Note that we em-546

ployed the disturbed water depth ℎ to represent mass. We computed these for CNN and547

GE-CNN rollouts and compared to the reference solver. In individual held-out Gaussian548

bell ICs (Fig. 10a, upper row), CNN rollouts show a rapid error accumulation in all 4549

quantities, while GE-CNNs exhibited a slow drift in total mass that produced a drift in550

potential energy, and negligible errors in momentum and kinetic energy. When averag-551

ing over many ICs, we found that average values of the conserved quantities matched552

closely for GE-CNN and the reference simulation until almost 100 hours, while the CNN553

showed clear differences after 50 h (Fig. 10a, lower row). Similar results were observed554

for triangular (Fig. 10b) and multi-bell ICs (Fig. 10c); for these ICs errors grew more555

quickly but the GE-CNN matched the reference simulation more closely.556
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Figure 10. GE-CNN solver robustly predicts mass, momentum, and energy. (a) Global mass,

momentum, kinetic- and potential energy from the reference solver, CNN- and GE-CNN rollouts

(upper; same IC as Fig. 6). Mean and standard error of the mean for global mass, momentum,

kinetic- and potential energy over 200 Gaussian bell ICs. (b) As in ‘a,’ but for triangular ICs.

(c) As in ‘a,’ but for multi-bell ICs.

8 Discussion557

We developed reflection-equivariant 1D convolutional networks for mixed vector-558

scalar inputs, and trained them to solve the SWEs with an unsupervised loss. We showed559

how these networks can be endowed with the same symmetries and the targeted PDEs,560

and our experiments showed how they improve accuracy and stability over standard CNNs561

with similar parameter counts, over a broad range of scenarios and tests. GE-CNNs matched562

reference simulations more closely at all time points, performed on new IC types and more563

faithfully represented mass, momentum, and energy. A remarkable aspect of these equiv-564

ariant networks is that their advantages first become apparent when generating and eval-565

uating longer rollouts, with no differences from standard CNNs apparent during train-566

ing. Our results show that equivariant architectures offer significant benefits for long-567

term accuracy and physical consistency, with no modifications to the loss function or train-568

ing procedures.569
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8.1 Related Work570

Our work builds on and complements existing studies seeking to exploit symme-571

tries for solving PDEs. (Brandstetter et al., 2022) use PDE symmetries to design data572

augmentations for use during training, instead of making their networks equivariant. (Wang,573

Walters, & Yu, 2020) built steerable CNNs (T. S. Cohen & Welling, 2016) and demon-574

strated their utility predicting the evolution of incompressible NS and an advected tem-575

perature field, but do not consider mixed scalar/vector inputs and examine their pre-576

dictions only 10 time steps into the future.577

In (Smets et al., 2022), the authors use network layers that solve a specific PDE578

to build convolutional networks, instead of constructing layers to match the symmetry579

groups of a specific PDE as we do here. (Marcos et al., 2017) use rotation equivariant580

convolutional layers to operate on vector fields, but do not consider mixed input types581

or solve PDEs.582

The equivariant convolution layers we have developed for mixed scalar/vector in-583

puts could also be realized using steerable convolutions (T. S. Cohen & Welling, 2016)584

with the correct combination of scalar and vector capsules. Instead of transforming fil-585

ter banks, steerable convolutions are based on optimizing convolution weights within a586

pre-computed linear subspace that satisfies the desired constraints. While this approach587

is flexible and efficient, we believe our layers can provide considerable utility through their588

mathematical simplicity. Some studies have also reported successful implementation of589

equivariant network through filter bank transformation, but could not achieve the same590

results through steerable convolutions (Helwig et al., 2023).591

8.2 Future Outlook592

In future work, we intend to extend our results to higher dimensional and more com-593

plex systems, and to combine geometric and physical constraints (Guan et al., 2022; Ross594

et al., 2023). We also anticipate that by offering a combination of long-rollout perfor-595

mance and automatic differentiability, equivariant deep PDE solvers could prove useful596

for solving inverse problems (Nonnenmacher & Greenberg, 2021a; Holzschuh et al., 2023).597

The observed performance gains for long rollouts could also find useful applications in598

climate, weather and ocean modeling, which require stability and accuracy over far longer599

time intervals than commonly evaluated scenarios for deep PDE solvers.600
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Appendix A Proof of Equivariance for Convolution Layers858

For completeness, we first provide proofs for the equivariance of the original scalar-859

field-only convolution layers of (T. Cohen & Welling, 2016) in our notation. We then prove860

equivariance for our mixed scalar/vector input layers.861

A1 Proof of Equivariance for Scalar-input Convolutional Input Layer862

The outputs of the first (input) layer of an equivariant convolutional network 019 ,0,·863

and 019 ,1,· are defined in Eq. (16) and Eq. (17). We flip the input 'F(@8,· ). Applying this864

layer to a fliped input using the same weights and biases gives:865

0̃19 ,0,· =
2in∑

8=1

,1

9 ,8,· ★ 'F

(
@8,·

)
+ 119 (A1)866

0̃19 ,1,· =
2in∑

8=1

'F

(
,1

9 ,8,·

)
★ 'F

(
@8,·

)
+ 119 (A2)867

868

To prove the equivariance in this layer, we flip the first layer of output. This flipping op-869

erator can be moved into the convolution. Then, we obtain870

'F(0̃19 ,0,·) = 'F

( 2in∑

8=1

,1

9 ,8,· ★ 'F

(
@8,·

)
+ 119

)
=

2in∑

8=1

'F

(
,1

9 ,8,·

)
★ @8,· + 119 = 019 ,1,· (A3)871

'F(0̃19 ,1,·) = 'F

( 2in∑

8=1

'F

(
,1

9 ,8,·

)
★ 'F

(
@8,·

)
+ 119

)
=

2in∑

8=1

,1

9 ,8,· ★ @8,· + 119 = 019 ,0,· (A4)872

873

Now, these two equations satisfy the definition of the group equivariance in Eq. (10). Thus,874

we finish the proof. An example plot for the group equivariance of this layer is shown875

in Fig. (3).876

A2 Proof of Equivariance for Non-Input Convolution Layers877

The output of subsequent layers, for which inputs and output channels are both878

real-valued functions on �, is given in eq. 19. A flipped input 'F(G8,· ) gives the output879

0̃ℓ9,0,· =
2ℓ−1∑

8=1

, 9 ,8,0,· ★ 0̃
ℓ−1
8,0,· +, 9 ,8,1,· ★ 0̃

ℓ−1
8,1,· + 1ℓ9 (A5)880

0̃ℓ9,1,· =
2ℓ−1∑

8=1

'F(, 9 ,8,0,· ) ★ 0̃ℓ−18,1,· + 'F(, 9 ,8,1,· ) ★ 0̃ℓ−18,0,· + 1ℓ9 (A6)881

882

Flipping outputs gives883

'F(0̃ℓ9,0,·) = 'F

( 2ℓ−1∑

8=1

, 9 ,8,0,· ★ 0̃
ℓ−1
8,0,· +, 9 ,8,1,· ★ 0̃

ℓ−1
8,1,· + 1ℓ9

)
(A7)884

'F(0̃ℓ9,1,·) = 'F

( 2ℓ−1∑

8=1

'F(, 9 ,8,0,· ) ★ 0̃ℓ−18,1,· + 'F(, 9 ,8,1,· ) ★ 0̃ℓ−18,0,· + 1ℓ9
)

(A8)885

886

Then, we move the flipping operator 'F into the conversation features. We not only need887

to flip the weights but also switch the non-flipped input. Thus, Eqs. (A7-A8) can be writ-888

ten as889

'F(0̃ℓ9,0,·) =
2ℓ−1∑

8=1

'F

(
, 9 ,8,1,·

)
★ 0ℓ−18,0,· + 'F

(
, 9 ,8,0,·

)
★ 0ℓ−18,1,· + 1ℓ9 = 0ℓ9,1,· (A9)890

'F(0̃ℓ9,1,·) =
2ℓ−1∑

8=1

, 9 ,8,0,· ★ 0
ℓ−1
8,0,· +, 9 ,8,1,· ★ 0

ℓ−1
8,1,· + 1ℓ9 = 0ℓ9,0,· (A10)891

892

Therefore, according to the definition of equivariance, we have proven the equivariance893

convolution in subsequent layers. The example plot is also illustrated in Fig. (3).894
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A3 Proof of Equivariance for Mixed Scalar-Vector Convolution Layers895

The first layer’s outputs for mixed scalar-vector inputs are shown in Eqs. (22-23).896

Here, we prove the equivariance in this layers. According to the symmetry of the vec-897

tor field shown in Eq. (21), we transform the input as 'F(Z8,· ) and −'F(D8,·). Thus, the898

first layer of output using the flipping input is written as899

0̃19 ,0,· =

2
Z

8=∑

8=1

,
Z

9,8,· ★ 'F(Z8,·) +
2D
8=∑

8=1

,D
9,8,· ★−'F(D8,·) + 1ℓ9 (A11)900

0̃19 ,1,· =

2
Z

8=∑

8=1

'F(, Z

9,8,· ) ★ 'F(Z8,·) +
2D
8=∑

8=1

−'F(,D
9,8,· ) ★−'F(D8,·) + 1ℓ9 (A12)901

902

Next, we flip these outputs903

'F(0̃19 ,0,·) = 'F

( 2
Z

8=∑

8=1

,
Z

9,8,· ★ 'F(Z8,· ) +
2D
8=∑

8=1

−,D
9,8,· ★ 'F(D8,·) + 1ℓ9

)
(A13)904

'F(0̃19 ,1,·) = 'F

( 2
Z

8=∑

8=1

'F(, Z

9,8,· ) ★ 'F(Z8,· ) +
2D
8=∑

8=1

'F(,D
9,8,· ) ★ 'F(D8,·) + 1ℓ9

)
(A14)905

906

Now, we move the flipping operator into the convolution operator. The flipping weight907

and input feature can be changed as the following equations,908

'F(0̃19 ,0,·) =
2
Z

8=∑

8=1

'F(, Z

9,8,· ) ★ Z8,· +
2D
8=∑

8=1

−'F(,D
9,8,· ) ★ D8,· + 1ℓ9 = 019 ,1,· (A15)909

'F(0̃19 ,1,·) =
2
Z

8=∑

8=1

,
Z

9,8,· ★ Z8,· +
2D
8=∑

8=1

,D
9,8,· ★ D8,· + 1ℓ9 = 019 ,0,· (A16)910

911

Thus, according to the definition of equivariance of convolution, we have proven the equiv-912

ariance for mixed scalar-vector convolution layers.913

Appendix B Numerical Discretization of SWEs914

Here we describe how the space- and time-discretized variable fields D= and Z= of915

the SWE at the =-th time step are used to compute the (=+1)-th time step. We describe916

the procedures used for the semiiplict non-deep-learning-based classical numerical solver,917

which is a biased upwind scheme (Backhaus, 1983).918

We discretize the momentum equation (eq. 24) as follows:919

D=+1 = D= − ΔC��
1

ℎ
D= |D= | − ΔC6(1 − Fimp)

mZ=

mG
− ΔC6Fimp

mZ=+1

mG
(B1)920

where Fimp is a fixed parameter controlling weighting between implicit and explicit time921

stepping. The mass equation (eq. 25) is discretized as:922

Z=+1 = Z= − ΔC(1 − Fimp)
mℎ=D=

mG
− ΔCFimp

mℎ=D=+1

mG
(B2)923

Recall that ℎ = 3 + Z and 3 is the undisturbed water depth. Eq. (B1) is inserted into924

eq. (B2) to obtain925

Z=+1 = Z= − ΔC(1 − Fimp)
mℎ=D=

mG
− ΔCFimp

mℎ=D∗

mG
+ ΔC2F2

imp6
m2ℎ=Z=+1

mG2
(B3)926

–27–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

where D∗ is an ‘interim solution’ defined by927

D∗ = D= − ΔC2�
1

ℎ
D= |D= | − ΔC6(1 − Fimp)

mZ=

mG
(B4)928

When calculating the product of two variables defined on the velocity and mass points929

of the Arakawa C-grid (Fig. 1b), we interpolate the mass variable to velocity grid points930

by averaging adjacent values. For a quantity U defined on the velocity or mass gird, the931

first spatial derivative is discretized as mU
mG 8

=
U8+1/2−U8−1/2

ΔG
, with outputs staggered by932

ΔG/2 from inputs. The second spatial derivative is discretized using the second order fi-933

nite difference m2U
mG2 8

=
U8+1−2U8+U8−1

ΔG2 , with outputs on the same grid as inputs. There-934

fore, eq. (B3) can be written as935

Z=+18 =
1

1 + 2� + 2,

[
Z= + div + 2�Z=+18+1 + 2, Z=+18−1

]
(B5)936

where div = −ΔC(1 − Fimp) mℎ
=D=

mG
− ΔCFimp

mℎ=D∗

mG
, while 2� and 2, are defined as937

2� =

{
0.5ΔC2F2

imp
6 (ℎ=

8
+ℎ=

8+1 )
ΔG2 8 5 ℎ=

8+1 > 0

0 otherwise.
938

2, =

{
0.5ΔC2F2

imp
6 (ℎ=

8
+ℎ=

8−1 )
ΔG2 8 5 ℎ=8−1 > 0

0 otherwise.
939

940

Eq. (B5) describes a linear system of equations in Z=+1 that can be written in matrix-941

vector form942

�Z=+1 = 1 (B6)943

where � is a # × # tridiagonal matrix (# = !/ΔG) with �:,: = 1, �:,:−1 = − 2,
1+2�+2, ,944

�:,:+1 = − 2�
1+2�+2, and all other elements zero. 1 ∈ R# with 1 =

Z =+38E
1+2�+2, . Following945

(Backhaus, 1983), we employ Gauss-Seidel iterations to solve eq. B6. Having obtained946

Z=+1, the new velocity D=+1 is calculated as947

D=+1 = D∗ − ΔC6Fimp

mZ=+1

mG
(B7)948

–28–
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