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Abstract13

Space weather indices are used to drive forecasts of thermosphere density, which directly14

affects objects in low-Earth orbit (LEO) through atmospheric drag force. A set of prox-15

ies and indices (drivers), F10.7, S10.7, M10.7, and Y10.7 are used as inputs by the JB200816

thermosphere density model. The United States Air Force (USAF) operational High Ac-17

curacy Satellite Drag Model (HASDM), relies on JB2008, and forecasts of solar drivers18

from a linear algorithm. We introduce methods using long-short term memory (LSTM)19

model ensembles to improve over the current prediction method as well as a previous uni-20

variate approach. We investigate the usage of principal component analysis (PCA) to21

enhance multivariate forecasting. A novel method, referred to as striped sampling, is cre-22

ated to produce statistically consistent machine learning data sets. We also investigate23

forecasting performance and uncertainty estimation by varying the training loss func-24

tion and by investigating novel weighting methods. Results show that stacked neural net-25

work model ensembles make multivariate driver forecasts which outperform the oper-26

ational linear method. When using MV-MLE (multivariate multi-lookback ensemble),27

we see an improvement of RMSE for F10.7, S10.7, M10.7, and Y10.7 of 17.7%, 12.3%, 13.8%,28

13.7% respectively, over the operational method. We provide the first probabilistic fore-29

casting method for S10.7, M10.7, and Y10.7. Ensemble approaches are leveraged to pro-30

vide a distribution of predicted values, allowing an investigation into robustness and re-31

liability (R&R) of uncertainty estimates. Uncertainty was also investigated through the32

use of calibration error score (CES), with the MV-MLE providing an average CES of 5.63%,33

across all drivers.34

Plain Language Summary35

Objects in low-Earth orbit, are affected by atmospheric drag, which depends on36

density. A currently used thermosphere density model, JB2008, relies on a collection of37

space weather solar drivers as inputs. Currently, these drivers rely on a linear forecast-38

ing algorithm, which supplies single point forecasts for 6 days. No current methods ex-39

ist for providing probabilistic forecasts and uncertainty estimates for three of the drivers.40

In this work, we introduce a machine learning approach which provides a probabilistic41

forecast of all solar drivers used by JB2008. The new approach uses a combination of42

individual predictions, which can be combined to produce less error than the current op-43

erational method. This new approach provides improvement over single point forecast-44

ing made by the operational method and provides a measure of confidence in the fore-45

casted values.46

1 Introduction47

Just a few decades ago, the number of objects in LEO was small; the detection, track-48

ing, and identification of artificial objects, known as catalog maintenance, was relatively49

easy. However, in the last two decades there has been an exponential growth in total ob-50

jects, especially due to large satellite constellations. LEO has quickly become the most51

populated orbital region, and these objects pose immediate danger to multi-billion dol-52

lar space assets and human spaceflight missions. As the total number of artificial objects53

in LEO grows, catalog maintenance has become non-trivial. A need for more real-time54

knowledge of the space environment has caused a shift to space domain awareness (SDA),55

which stresses the ability to accurately predict an object’s orbital state.56

For objects in LEO, atmospheric drag accounts for the largest source of uncertainty57

in predicted state. Atmospheric drag is directly tied to thermosphere heating and neu-58

tral atmosphere density of the thermosphere. The properties of Earth’s upper atmosphere59

are heavily impacted by solar activity, specifically extreme ultra-violet (EUV) irradiance.60

Changes in thermosphere density occur with changing solar activity levels. High energy61

EUV solar radiation is absorbed by the Earth’s upper atmosphere and causes large den-62
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sity variations due to heating. This change in thermosphere density directly impacts the63

dynamics of LEO objects in the thermosphere. More robust predictions for solar EUV64

will lead to more accurate modeling of density and orbit propagation.65

The F10.7 solar radio flux proxy is one of the most widely used proxies for solar ac-66

tivity. (Tapping, 2013) describes the proxy measurement as a “determination of the strength67

of solar radio emissions in a 100 MHz-wide band centered on 2800 MHz (a wavelength68

of 10.7 cm) averaged over an hour”. F10.7 has a high correlation with both sunspot num-69

ber and solar EUV irradiance, seen in both (Svalgaard & Hudson, 2010) and (Vourlidas70

& Bruinsma, 2018); and is considered a good indicator for thermosphere heating (K. W. To-71

biska et al., 2009). F10.7 is the recognized historical EUV proxy and daily values have72

been recorded consistently since 1947.73

Care should be taken to describe the difference between index and proxy;F10.7 has74

been found to be correlated with solar EUV but is not a direct measure. Similar to (R. J. Li-75

cata et al., 2020), we encourage the distinction that a proxy is an indirect measure, while76

an index relies on direct measurements. The F10.7 proxy is reported in solar flux units77

(SFU), where78

1 SFU = 10−22 W
Hzm279

Three more indices and proxies were introduced for use as inputs to the Jacchia-80

Bowman 2008 (JB2008) empirical thermosphere density model. S10.7, M10.7, and Y10.7,81

which we refer to as drivers, map energy from specific solar irradiances to major ther-82

mosphere layers. (K. W. Tobiska et al., 2009) Using the four solar drivers, JB2008 pro-83

vides significant improvement in empirical thermosphere density modeling. (K. W. To-84

biska et al., 2009) S10.7, M10.7, and Y10.7 are scaled with linear regression to units of SFU,85

to be consistent with the historical F10.7 and enable direct comparison. This scaling is86

done to more easily qualitatively compare various indices/proxies. (K. W. Tobiska et al.,87

2009)88

The S10.7 index (Bowman et al., 2008) is the integrated 26-34 nm irradiance mea-89

sured by the Solar Extreme-ultraviolet Monitor (SEM) instrument on the NASA/ESA90

Solar and Heliospheric Observatory (SOHO), and is used to represent heating in regions91

near 180 or 200 km. SET provides an operational backup for SEM data processing as92

well as provides values of S10.7. SEM has been making measurements since December93

1995. A more specific description of the process for scaling the data and converting to94

solar flux units (SFU), units consistent with other drivers, are discussed by Tobiska et95

al. (K. W. Tobiska et al., 2009). Daily values for index are archived and available since96

January 1, 1997;97

The M10.7 proxy (Bowman et al., 2008) is created from the Magnesium II (Mg II)98

core to wing ratio, which originates from the NOAA (National Oceanic and Atmospheric99

Administration) satellites (NOAA -16,-17,-18). The satellites host the Solar Backscat-100

ter Ultraviolet (SBUV) spectrometer, which can make solar UV measurements. MG II101

is a proxy for solar FUV and EUV emissions that is mapped into the lower thermosphere102

and represents heating in the thermosphere regions between 95-110 km. MG II is trans-103

lated into SFU as discussed in the work by Tobiska et al. (K. W. Tobiska et al., 2009).104

Daily values for M10.7 are archived and available since January 1, 1997.105

The Y10.7 index (Bowman et al., 2008) is created from the combination of both GOES/XRS106

0.1-0.8 nm x-ray observations and Lyman-α, which is measured by the SOSTICE instru-107

ment on the UARS and SORCE satellites as well as the SEE instrument on TIMED. The108

observations made are represented by an L10.7 and X10.7 index, which are combined by109

Tobiska et al. (K. W. Tobiska et al., 2009) to form the Y10.7 index, representing heat-110

ing in regions between 85-100 km. Data for Y10.7 has been reported daily and archived111

since January 1, 1997.112
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JB2008 takes these solar drivers and two geomagnetic drivers to predict density at113

discrete global positions and at a variety of altitudes. The United States Air Force (USAF)114

uses the operational High Accuracy Satellite Drag Model (HASDM) for satellite drag115

modeling. HASDM relies on an adjustment of the density nowcast made by JB2008, us-116

ing satellite observations. to produce corrected densities for use in orbit propagation. Space117

Environment Technologies (SET) is currently contracted by the USAF to provide fore-118

casted driver values for use with HASDM. SET uses a linear auto-regressive algorithm119

for forecasting driver values, specifically the “TS FCAST” subroutine in IDL (Indepen-120

dent Data Language) (R. J. Licata et al., 2020).121

Historically, forecasting of model drivers have relied on deterministic methods. Work122

done by (Daniell & Mehta, 2023b), (R. Licata et al., 2021), and (R. J. Licata et al., 2022)123

have shown methods which provide probabilistic forecasting using neural network mod-124

els. Recent work by (Daniell & Mehta, 2023b) showed that neural network ensemble meth-125

ods outperformed the linear algorithm for univariate F10.7 prediction and provided a well126

calibrated probabilistic forecast. The linear algorithm used by SET is the only current127

method for forecasting S10.7, M10.7, and Y10.7, so it is important to explore a similar ap-128

proach to enable probabilistic forecasting of these drivers.129

There has been a dramatic increase in the past few decades in the number of ob-130

jects in LEO, especially due to large satellite constellations, leading to the need for bet-131

ter understanding of predicted orbital state, to avoid collisions. This increase in objects132

has led to the shift from SDA to space traffic management (STM), where operators must133

perform risk-assessments and potential high-cost maneuvers to avoid collisions. By pro-134

viding improved short-term forecasts of model drivers to JB2008, more accurate short-135

term forecasts of density can be made. Additionally by providing probabilistic forecasts136

of model drivers, models will be able to provide robust and reliable uncertainty estimates137

for density. An improvement in driver forecasts would lead to an improvement in den-138

sity forecasts made by JB2008, which would lead to an improvement in drag modeling139

performed by HASDM and would enhance STM efforts.140

The paper is organized as follows. In Section 2, we introduce the dataset for the141

drivers and necessary data preparation procedures for our machine learning approaches.142

In Section 3 we discuss LSTM models, hyperparameter tuning, the proposed neural net-143

work ensemble approach, error metrics, and the methods for uncertainty quantification.144

In Section 4; we investigate ensemble diversity and methods for combining forecasts. We145

also compare the results of the multivariate ensemble method against the univariate lin-146

ear algorithm and the univariate ensemble method used in (Daniell & Mehta, 2023b).147

We also discuss the probabilistic forecast uncertainty estimates by performing uncertainty148

quantification (UQ).149

2 Methodology150

The operational model for driver forecasting utilizes the “TS FCAST” subroutine151

in the Interactive Data Language (IDL), which was discussed by (R. J. Licata et al., 2020),152

can be seen in the following equation,153

xt =

P∑
i=1

θi xt−i + ϵt (1)

where P is the order of the model, ϵt is an error term, θ are scalar coefficients, and154

xt−i are the values of the driver i days prior. This algorithm is a P-th order linear auto155

regressive model which captures persistence and recurrence. (W. K. Tobiska et al., 2008)156

The linear algorithm was implemented by (Daniell & Mehta, 2023b) for comparisons with157
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neural network ensemble approaches. An extensive benchmarking of this method was158

presented by (R. J. Licata et al., 2020).159

The SET algorithm is deterministic, providing a single output for a given input.160

The model also makes iterative forecasts, requiring forecasts to be “chained” together161

to reach a prediction horizon larger than one day. It should be noted that the SET al-162

gorithm is unable to provide any uncertainty estimates in its forecasts due to the deter-163

ministic nature of the algorithm. This algorithm is the method that we will be making164

comparisons to, considered the baseline.165

This work introduces a novel approach for preparing machine learning data sets,166

a novel approach for preparing multivariate data, and a novel approach for probabilis-167

tic forecasting all solar drivers. We investigate the performance of neural network model168

ensembles for proving the first ever probabilistic forecasts of S10.7, M10.7, and Y10.7. We169

also investigate methods similar to the univariate approaches used by (Daniell & Mehta,170

2023b). We seek to answer the question, “will multivariate models provide better fore-171

casts than four separate univariate models?”172

2.1 Data173

The dataset for F10.7 is the largest, with observed values being recorded since 1947.174

The other 3 drivers are limited by data being produced by spacecraft, for example S10.7175

data prior to the launch of the SOHO spacecraft would not be possible as no measure-176

ments would have been made. Due to this limitation, archived daily values for drivers177

exists between January 1, 1997 and the present day, seen in Figure 1. Missing values are178

noticed in the S10.7 driver between 6/25/1998 and 10/24/1998 and linear interpolation179

was used to fill in missing data, accounting for about 1% of the S10.7 driver data.180

Figure 1: It is desired for a neural network model to see many repeated patterns during
training. In the case of the newer drivers, several phases of the solar cycle have only been
seen a few times.

2.2 Data Preparation181

It is necessary to carefully preprocess data to efficiently apply and train neural net-182

work models. It was shown that normalization of data is a critical step to both improve183
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results and decrease computational time. (Sola & Sevilla, 1997) To normalize the data,184

we use the standard normalization equation,185

D̃ =
D −mean(D)

standard deviation(D)
=

D − µD

σD
(2)

where D represents any arbitrary driver.186

Previous forecasting efforts, such as the work done by (Daniell & Mehta, 2023b),187

(Stevenson et al., 2022), (Luo et al., 2022), and (Huang et al., 2009) leveraged histor-188

ical values of F10.7 as inputs, referred to as auto-regressive (AR) modeling. Since the SET189

method is AR, we limit ourselves to using only previous driver values for making pre-190

dictions to maintain consistency Additionally, we consider historical values of multiple191

drivers simultaneously in an effort to improve forecasting results.192

To apply neural networks, we must provide the network with input/output pairs,193

which are used by the model during training. By providing pairs to the model, compar-194

isons between model predictions and true outputs can occur. We consider the sliding win-195

dow method to split the data; providing inputs as the previous observations L (Look-196

back) and the future H (Horizon) driver values. (Daniell & Mehta, 2023b)197

(Daniell & Mehta, 2023b) identified the importance of the lookback range used in198

the models, stating that a combination of short-term and longer-term lookbacks can be199

beneficial to probabilistic model performance. To provide a direct comparison to the lin-200

ear SET method, we choose a 6-day horizon, which is consistent with the thorough so-201

lar driver forecasting analysis performed by (R. J. Licata et al., 2020).202

2.2.1 Creating Data Subsets for Machine Learning203

Training of a neural network model is the step where changes are made to weights204

and biases within the model in order to improve the output, it can be thought of as teach-205

ing by example. (Wasserman & Schwartz, 1988) The model makes an educated guess based206

on the inputs, compares with the expected output, changes weights/biases, and makes207

another educated guess and compares once more. Training allows for the weights and208

biases to be adjusted to minimize a given optimization loss function. The weights and209

biases are internal to the model and can be adjusted to improve results.210

For typical regression and model selection/training work flows, we split the data211

into 3 subsets; training data, validation data, and testing data. The training data is what212

is used to teach the model by example; the model is provided with training data as an213

input, it makes a prediction, and predictions are compared against the expected output.214

This training set is used to adjust model weights and biases, which will change future215

model outputs. Validation is used as a method to mitigate model over-fitting, or a “re-216

membering” of the training data. The validation data is used after a training step and217

can provide insight into how well the model can generalize on data it has not seen yet.218

(Xu et al., 2016) claim that the model validation step is the most important part of build-219

ing a supervised model. The test set, is data that has been entirely hidden from mod-220

els during training steps. By keeping a dataset hidden, the model is “tested” on entirely221

new data and the model’s ability to form generalizations can be evaluated more clearly.222

2.2.2 Choosing a Validation Scheme223

The holdout method is one of the most typical methods for splitting data into the224

three sets. A percentage for splitting, typically used in machine learning (ML), is a 70%/15%/15%225

split for training/validation/testing sets. When considering time series data, such as the226

data set used in this work, typical holdout methods would preserve the temporal order227

of data by partitioning a percentage of data at the end of the full set, referred to as the228
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test set. After the first partition is made, a second partition is made using a specified229

percentage of data at the end of the non-test set. This second partition will contain the230

data which can be used for training and validation steps.231

In machine learning, the amount of data used to train a model greatly impacts the232

performance of final models. By providing larger number of samples to the model dur-233

ing training, better generalization can be expected. However, when training data is lim-234

ited, worse generalization can be expected. It is important to ensure that the validation235

scheme chosen supplies the models with enough training data so that models can learn236

on statistically consistent data. In this case, ensuring that data sets capture similar lev-237

els of solar activity. We are limited by the amount of historical data that exists for the238

non-F10.7 drivers.239

If one were to use typical holdout validation methods, or even cross validation, there240

exist several issues:241

• Training, validation, and test sets may be based on differing portions of the so-242

lar cycle; i.e. differing activity levels.243

• If using traditional holdout, the test set may not be statistically consistent to the244

training or validation sets. This would lead to good test set prediction only when245

data is similar with that of the training or validation sets.246

• If a model is trained and validated on only solar maximum data; one would ex-247

pect over prediction or poor performance when predictions at solar minimum oc-248

cur. A similar problem would occur if training was done on solar minimum data,249

and solar maximum predictions were desired.250

To combat these issues, we introduce a novel method, striped sampling. Striped sam-251

pling involves a structured data splitting to ensure adequate data for effective model train-252

ing while also statistically balancing the dataset. First, data is split into weekly input253

output pairs; such that for every 10 weeks, 6 weeks are used for training, the following254

2 weeks are used for validation, and the following 2 weeks are used for testing. The strip-255

ing method results in a nearly desired 60%/20%/20% split; samples of such splitting are256

shown in Figure 2.257

Using the traditional holdout method on the full dataset, significant statistical dif-258

ferences were seen between training, validation, and test data, seen in Figure 3a. By us-259

ing striped validation, we effectively capture similar statistics between our training, val-260

idation, and testing sets; seen in Figure 3b. This result indicates that, with limited data,261

a more intelligent method for splitting data, such as striping, can create more useful datasets262

for ML methods.263

Striped sampling of data results in sets that are statistically consistent, but still264

have minor differences, especially as solar activity level increases. Small variations can265

be seen, most notably, Y10.7 with values between 70 - 130 SFU in 3b. We consider the266

striped sampling approach to be beneficial for sampling data and this work will imple-267

ment it.268

2.2.3 PCA Rotation269

Principal component analysis, or PCA, is considered the most popular multivari-270

ate statistical technique and likely to be the oldest multivariate technique. PCA is typ-271

ically used on large dimension data; compressing the size of the set while keeping the more272

important information. PCA involves a transformation from the original data into lin-273

ear combinations of the original variables known as principal components (PCs). The274

PCs are calculated in such a way as to maximize variance between the PCs and constrains275

the components to be orthogonal to one another (Abdi & Williams, 2010).276
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Figure 2: By creating ”chunks” of input/output pairs, we allow the ML models to see
sequential data while also providing statistically similar data for training, validation, and
testing.

Typical methods using PCA would truncate PCs, to reduce the dimension of the277

dataset, allowing for easier applications of machine learning techniques; especially those278

involving very large or high dimension data. Since the PCs are a linear combination of279

the initial space, the dimensions may not be interpretable; these new components no longer280

represent the original driver values. The PCA algorithm is as follows:281

1. Starting with a time series of four drivers (which are separated into the training,282

validation, and test sets), standardize the data based on statistics of the training283

set.284

2. Calculate the covariance matrix based on the training set; a 4x4 symmetric ma-285

trix that contains the covariances associated with all pairs of variables, which is286

performed via Numpy.cov() in Python.287

3. Compute eigenvectors and eigenvalues of covariance matrix C to identify PCs.288

4. Sort eigenvalues and associated eigenvectors based on scale of eigenvalue (max-289

imizing variance) and construct a feature vector matrix.290

5. Perform ML methods (training, validation, and prediction) in the PCA rotated291

space using the feature vector matrix.292

6. Transform predictions back into the original space and reverse standardize the out-293

puts.294

Redundant information is contained within the solar drivers and it may be consid-295

ered less important to forecast them all at once. Applying ML techniques to make mul-296

tivariate forecasts on highly correlated variables could be less useful. By applying a tech-297

nique like PCA, we “untangle” our data, and force our dimensions to be orthogonal and298

have a maximized variance (less correlated). We have not seen a PCA rotation method299

used in the forecasting of density model drivers and introduce a rotation similar to the300

one discussed by (Abdi & Williams, 2010). Most ML applications for machine learning301

truncate PCs due to the small amount of variance that they capture (Hu et al., 2016).302

We consider the typical PCA algorithm with no truncation, simply a “rotation” to max-303
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(a) Approximate PDFs indicate that the average solar activity level of the sets are drastically

different; leading to difficulty with traditional machine learning sampling methods.

(b) By capturing similarly approximated PDFs between datasets using striped validation, we give

machine learning models the best chance to effectively generalize and reduce potential bias.

Figure 3: Top: Holdout methods are used to split the data into the three ML subsets,
which produces inconsistent statistics. Bottom: Striped sampling allows for consistent
statistics between subsets.

imize variance and create orthogonal PCs. We aim to investigate whether de-correlation304

of the drivers can improve forecasting.305

By applying PCA rotation, we create a set principal components that are drasti-306

cally different than the original drivers. The original driver distributions, seen in Fig-307
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(a) Main Diagonal: Approximate distributions for individual drivers. Lower Entries: Correla-

tion between pairs of drivers.

(b) Main Diagonal: Approximate distributions for individual PCs. Lower Entries: Correla-

tion between pairs of PCs.

Figure 4: Top: Raw driver data is highly correlated and may hold promise for an ML
approach known as transfer learning. Bottom: PCA rotation yields PCs which are signif-
icantly less correlated and should be investigated as ML model inputs.

ure 4a, were very similar; PCA rotation provides PCs with more unique distributions,308

seen in Figure 4b. The rotated data can be used by neural networks in nearly the same309

way as unrotated data. The only difference in the process of evaluating models with PC310

inputs, is that PCA based models will require data to be rotated back to the original driver311

space after predictions are made. To our knowledge, this is the first application of PCA312

rotation in the field of solar driver forecasting.313
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2.3 Long-Short Term Memory (LSTM) and Training314

An important model type for time-series forecasting is Long-Short Term Memory315

(LSTM), which was introduced by (Hochreiter & Schmidhuber, 1997). LSTM models316

have been used extensively in time-series forecasting problems such as stock market pre-317

diction (Bhandari et al., 2022), terrestrial weather forecasting (Karevan & Suykens, 2020),318

and the domain of space weather and forecasting; (Luo et al., 2022),(R. Licata et al., 2021)319

and (Benson et al., 2021).320

LSTM models leverage a feature known as the hidden cell state to “remember” in-321

formation that had been provided to the model earlier (Hochreiter & Schmidhuber, 1997).322

LSTM models are commonly used in leveraging prior information without being directly323

used as an input. For example, text prediction algorithms such as those seen in email324

and smart phones, leverage LSTM models to use prior text to suggest an expected out-325

put based on what has been typed. In this work our goal is to utilize LSTM models for326

forecasting drivers by considering both directly input data at the current time step and327

the ”remembered” prior inputs/outputs of the model.328

It is important to note that during LSTM training and prediction steps, data can-329

not be temporally disjoint. Data preparation is non-trivial and the LSTM cell state must330

be cleared between each sample that is input into the model. For example, training sam-331

ples contain 7 days of input/output pairs for 6 weeks and then there are 4 weeks of val-332

idation and test data. If the model were to see the next training sample directly after333

the first, it would attempt to use “short-term memory” of data from 4 weeks ago, which334

would drastically decrease model performance. By using a “striped” validation approach,335

seen in Figure 2, the temporal ordering of the data between the training, validation, and336

test samples is preserved.337

To our knowledge, approaches for forecasting of the three drivers: S10.7, M10.7, and338

Y10.7; with methods other than the linear method used by SET have not yet been intro-339

duced. We aim to provide multivariate forecasting for all four drivers using LSTM neu-340

ral network model ensembles. We provide the first probabilistic method for forecasting341

S10.7, M10.7, and Y10.7 and aim to improve on errors seen in the SET algorithm. Addi-342

tionally, we aim to provide robust and reliable uncertainty estimates for each of the drivers.343

2.3.1 Transfer Learning (Univariate)344

A common practice in the field of machine learning involves using a previously trained345

model (or set of models) as a starting point, known as transfer learning. Transfer learn-346

ing is a powerful tool that allows the use of an already made model without the need for347

excessive training or hyperparameter selection. Due to the lack of a large available data348

set for S10.7, M10.7, and Y10.7, a transfer learning approach should be investigated. The349

work done by (Daniell & Mehta, 2023b) showed a univariate approach that enabled a350

probabilistic forecast of F10.7 using NN ensembles. It can be seen in Figure 4a, the drivers351

with limited data correlate well with the F10.7 proxy. Transfer learning may provide rea-352

sonable forecasts for tasks that are related; such as highly correlated variables (Qureshi353

et al., 2017). Transfer learning can also significantly improve the efficiency in learning354

by exploiting the relatedness between a data-scarce target task and a data-abundant source355

task (Gerace et al., 2022).356

To accomplish transfer learning, NN models which have been created for forecast-357

ing F10.7 can be used for the other drivers. Models already trained for solar proxy pre-358

diction should be considered, such as models created by (Daniell & Mehta, 2023b). To359

prepare for transfer learning, data for the drivers must be formatted identically to the360

data used for the original model. Models loaded for transfer learning may be starting361

“ahead” of newly created models and may be able to provide good performance with-362

out the need for excessive training, only needing a small amount of training to “fine-tune”363
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model weights and biases (Weiss et al., 2016). The models can then be evaluated on the364

training, validation, and test data.365

Based on the work done by (Daniell & Mehta, 2023b), we select the univariate MLE366

LSTM. The MLE LSTM is an ensemble approach, which is selected due to its good per-367

formance metrics and well behaving uncertainty estimates. The MLE LSTM showed rea-368

sonable performance improvements over the SET algorithm when forecasts of F10.7 were369

made and provided robust uncertainty estimates. For the remainder of the work, we re-370

fer to the application of a MLE for univariate data as UV-MLE (UniVariate Multi-Lookback371

Ensemble) and multivariate case as MV-MLE (MultiVariate Multi-Lookback Ensemble).372

2.3.2 Univariate Approach (UV-MLE)373

A logical next step, is to use the method described by (Daniell & Mehta, 2023b)374

to create MLE that are tuned and trained specifically for S10.7, M10.7, and Y10.7. The375

univariate approach showed an improvement over the SET linear method, as well as the376

NOAA Space Weather Prediction Center (SWPC) forecasts. The same steps are used377

to construct a set of models to forecast drivers, using the new training, validation, and378

test data splitting methods discussed in Section 2.2.1. A hyperparameter tuner is con-379

structed for each driver and a set of lookbacks and backwards averaged values are con-380

sidered for the generating of neural network ensemble members. Using the same meth-381

ods as the authors, approximately 180 models are created for each driver and are trained382

and used to predict separately.383

2.3.3 Multivariate Approach (MV-MLE)384

Due to the high correlation between drivers, seen in Figure 4a, trends seen in one385

driver are most likely to be seen in the other drivers. Rather than limit a model to a sin-386

gle stream of data, we can consider a model which is input four sets of previous driver387

values and provides a forecast for all four variables simultaneously. Such a model would388

increase the dimensions of considered data by a factor of four; all inputs and outputs would389

involve all four drivers as opposed to just one. By considering all drivers simultaneously,390

patterns seen in one driver may be useful for forecasting of another driver. For exam-391

ple, a short-term decrease in S10.7 may indicate a similar drop would occur in M10.7, even392

if a pattern is not seen in previous M10.7 data. In this work, simultaneous multivariate393

forecasting is performed and compared with univariate methods. This work is done to394

determine if such multivariate methods are more beneficial than univariate methods. Two395

approaches will be explored for multivariate forecasting; we will prepare data by stan-396

dardization (Equation 2) and consider both standard and PCA rotated inputs.397

2.3.4 Model Training398

During neural network model training, an optimization loss is necessary to “teach”399

the model if it is doing well. Most often, it is desired to minimize the loss values. A min-400

imized loss indicates that the model has found an optimal combination of weights and401

biases. Two of the most popular loss functions used in regression tasks are mean squared402

error (MSE) and mean absolute error (MAE),403

MSE =
1

N

N∑
i

(yi − ŷi)
2 (3)

MAE =
1

N

N∑
i

|yi − ŷi| (4)
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where N is the number of predictions made for a given set, yi is the expected value404

of a given sample, and ŷi is the output of the model for a given sample. It is desired to405

adjust network weights and biases such that the loss function is minimized; which is a406

procedure called training. These loss functions have been used successfully in the field407

of space weather by (Liu et al., 2020), (Stevenson et al., 2022), and (R. J. Licata et al.,408

2022).409

Due to the exponential term in the MSE loss, large errors are penalized more than410

small errors. The nature of this loss function forces the model to focus on fitting sam-411

ples with larger errors. As a loss function, MAE does not penalize large errors as much412

and may provide better performance for areas with lower errors. (Xu et al., 2016) con-413

cluded that by including multiple loss functions, the risk of overfitting may be mitigated.414

Based on the results from (Xu et al., 2016), the work done by (Stevenson et al., 2022),415

and the suggestions by (Daniell & Mehta, 2023b); we investigate the impact of differ-416

ent loss function on the performance of models.417

2.4 Neural Network Ensembles418

A neural network ensemble can be used to provide an improved forecast when com-419

pared to even individual best performing models (Hansen & Salamon, 1990). Neural net-420

work ensembles are created using multiple models to provide outputs for a given set of421

inputs. Typical regression models provide a deterministic forecast, which only provides422

a single output for a given input. A neural network ensemble uses the concept of diver-423

sity (Brown et al., 2005), to allow for predictions to be spread across models with dif-424

ferent strengths. Neural network model diversity can be encouraged by considering vary-425

ing architectures, model types, weight initialization, varying loss functions, and varied426

inputs. Variation of inputs have been used successfully in proxy forecasting by (Daniell427

& Mehta, 2023b) and (Stevenson et al., 2022).428

(Daniell & Mehta, 2023b) explored NN ensembles constructed using a singular loss429

function, while (Stevenson et al., 2022) used multiple. An investigation into loss func-430

tions is performed to show the impact of changing the loss function on both error met-431

rics and uncertainty estimates. To determine which models to use for our neural network432

ensemble, sets of model hyperparameters must be determined. Diversity is a key element433

into providing probabilistic forecasts with robust and reliable uncertainty estimates; it434

is necessary to investigate many potential sources of diversity. We investigate the effects435

of PCA rotation, varied loss function, model architecture, and weight initialization on436

prediction accuracy as well as uncertainty quantification. To provide models with a di-437

verse set of architectures, we consider changing model hyperparameters; thus an opti-438

mal way of searching for good hyperparameters is needed.439

Hyperparameters include model parameters such as; number of layers, number of440

neurons per layer, neuron activation function and dropout rate; which can be seen in Ta-441

ble 1. KerasTuner (a hyperparameter tuner) is used to generate models which make up442

the neural network ensemble. KerasTuner can be used to identify architectures and model443

hyperparameters which give a minimal loss based on a validation dataset. The results444

of KerasTuner can be used to generate models with varied architectures, creating diver-445

sity. The top three architectures for each lookback and loss function are used; the con-446

sidered search space can be seen in Table 1.447

2.4.1 Stacking Ensemble448

Once the ensemble members are selected, one must carefully consider combination449

methods. In previous ensemble approaches for forecasting F10.7; (Daniell & Mehta, 2023b)450

and (Stevenson et al., 2022) used an equal weighted output. Although an improvement451

was seen, one must consider that certain models are more skilled than others, well per-452
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Table 1: Tuning configurations to generate ensemble members at each lookback for multi-
lookback ensemble methods.

UV-MLE and MV-MLE

Tuner Option Choice Parameter Value/Range

Scheme Bayesian Optimization Number of LSTM Layers [1-2]

Total Trials 50 LSTM Neurons [32-256]

Initial Points 25 LSTM Activation [tanh, sigmoid, softsign]

Repeats per Trial 2 Number of Dense Layers [1-3]

Minimization Parameter MSE or MAE Dense Neurons [64-256]

Epochs 50 Dense Activations [relu, tanh, sigmoid, elu]

Optimizer adam Learning Rate [.01, .001, .0001]

Batch Size 1 Dropout Rate 1% - 25%

Figure 5: Twenty four linear regression models are fit using the validation data set,
providing a 2-D array of weights. The weight array has 2 dimensions, 180: The number
of models to combine and 24: The number of outputs per model (6 day prediction x 4
drivers).

forming models should be weighted more heavily than models with worse performance.453

Weighted ensembles performed better than unweighted for upper atmosphere models (Elvidge454

et al., 2023). We consider a stacked ensemble approach (Sridhar et al., 1996), which uses455

linear regression to optimally combine predictions. The stacking algorithm can be used456

to provides a set of weights, indicating which models have ”more say” in the ensemble457

output.458

Stacking, in practice, is the process of fitting a linear regression (Equation 1) of all459

model outputs and expected value over a set of samples. A representation of the stack-460

ing process can be seen in Figure 5. In this case, an ensemble made of 180 models will461

result in 180 coefficients (or weights), θ, associated with each output. In order to imple-462

ment stacking, a set of predictions and ground truths must be used. We choose to use463

the validation set to determine stacking weights. We choose the validation set to avoid464

any potential leakage into the test set, keeping the set completely isolated from the set465

of models.466
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2.5 Metrics467

As used in (Daniell & Mehta, 2023b) and (Stevenson et al., 2022), a relative met-468

ric can be used as a single value measure of model performance when considering mul-469

tiple forecasst days. Relative metrics, introduced by (Yaya et al., 2017), are metrics which470

have been scaled with respect to another set of metrics and prevent larger horizon er-471

rors from dominating. We elect to maintain consistency with past work by using per-472

sistence as a baseline for comparison, due to its availability and role as a standard bench-473

mark for time series forecasting. Relative metrics are defined by (Stevenson et al., 2022)474

as ”the average, over all horizons, of the ratio of model performance to that of persis-475

tence”,476

Relative X =
1

Hmax + 1

Hmax∑
h=1

Xmodel,h

Xpersistence,h
(5)

where X is a metric, and Hmax is the largest horizon forecasted. We consider a max-477

imum horizon of 6 days, which is the same horizon predicted by SET.478

When performing univariate forecasting, metrics apply to a single variable and per-479

formance is easily captured by error metrics. Although it may seem easiest to evaluate480

metrics for multivariate methods across the entire output, it is important to investigate481

performance on each individual driver. When we evaluate combining models with un-482

equal weighting, it is inevitable to find models that may perform better on certain drivers.483

We consider using common metrics like root mean squared error (RMSE), mean abso-484

lute percentage error (MAPE), and the Pearson Correlation Coefficient (R); Equations485

6, 7, and 8 respectively. We select these to show general model performance. Metrics should486

be generated for all drivers to quantify the full skill of various models.487

RMSE =

√√√√ 1

N

N∑
i

(yi − ŷi)2 (6)

MAPE =
100%

N

N∑
i

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (7)

R =
cov(ŷ, y)

σŷ, σy
(8)

2.5.1 Uncertainty Quantification (UQ)488

Each model provides forecasts for all drivers over a 6-day period, generating a set489

of forecasted values. We combine the predictions using the various methods discussed490

above to form an ensemble forecast, which provides a single point daily values for each491

variable for a 6-day period. The set of model predictions allow for a distribution of fore-492

casted values to be generated, saved, and sampled for operations. Work done by (Paul493

et al., 2023) quantified the uncertainty in orbital state, illustrating the importance of an-494

alyzing uncertainty. (R. Licata et al., 2021) investigated the effects of driver uncertainty495

on orbital state and found that in-track position error was found to be larger when con-496

sidering driver uncertainty.497

A set of driver forecasts can be used to form probabilistic driver forecasts. Eval-498

uating statistics across the forecast distribution allows the uncertainty of forecast to be499

quantified. The neural network ensemble approach in this work generates a combined500

(single point) forecast as well as a distribution for each driver. It is necessary to eval-501

uate the robustness and reliability of uncertainty estimates similar to work by (Daniell502
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& Mehta, 2023b). By calculating the calibration error score (CES), a quantitative mea-503

sure of a model’s ability to provide reliable uncertainty estimates can be provided. The504

CES metric, originally by (Anderson et al., 2020), is modified by (R. J. Licata et al., 2022)505

for use in uncertainty quantification. CES quantifies the average deviation from perfect506

calibration in percentage, averaged across each output and is shown as,507

CES =
100%

r ∗m

r∑
i=1

m∑
j=1

| p(αi,j)− p(âi.j) | (9)

where r is the number of model outputs, m is the number of prediction intervals inves-508

tigated, p is the expected cumulative probability, and p̂ is the observed cumulative prob-509

ability. A broader explanation of the modified CES metric is given by (R. J. Licata et510

al., 2022).511

We additionally generate a qualitative measure of uncertainty, which we refer to512

as a calibration curve. A calibration curve is a plot that shows the expected and observed513

cumulative probability, plotting of p vs p̂ from Equation 9. Calibration curves show how514

well calibrated the uncertainty estimates are at capturing the expected percentage of true515

samples in the distribution. A model that is perfectly calibrated has a calibration curve516

with a slope of one. Models which are under or over confident have calibration curves517

with slopes of less than one or greater than one respectively.518

A scaling factor can be applied to adjust the uncertainty estimates, which is referred519

to as σ-scaling. σ-scaling, introduced by (Laves et al., 2021), uses the validation set to520

“check” the validity of uncertainty estimates. This check provides a scaling factor based521

on the results and adjusts uncertainty estimates based on over or under prediction. For522

example, if a calibration curve shows a tendency to over predict on validation data, then523

a scaling factor can be generated to “correct” the uncertainty estimates. The scaling fac-524

tor is generated as follows,525

σS =
√
S ∗ σ =

√√√√ 1

N

N∑
i=1

σ−2
i ∗ (y − ŷ)2 ∗ σ (10)

where S is the scaling factor , N is the number of samples in the validation set, σi526

is the sample standard deviation at step i, σS is the scaled standard deviation and (y−527

ŷ)2 is the squared error of prediction.528

Another method for combining models, ensemble model output statistics (EMOS)529

was introduced by (Gneiting et al., 2005). EMOS is a post-processing technique which530

addresses forecast bias, underdispersion, and spread-skill relationship. EMOS relies on531

linear regression, to yield a probabilistic forecast; formed by a Gaussian predictive prob-532

ability density function (PDF). The general form of the Gaussian predictive distribution,533

N (a+ b1X1 + ...+ bmXm, c+ dS2) (11)

where a, bi, c, and d are regression coefficients, Xi are individual model forecasts,534

and S2 is the ensemble variance. EMOS uses either the continuous ranked probability535

score (CRPS) or ignorance (IGN) scoring, to determine the linear regression coefficients.536

This distribution provides a probabilistic forecast which may outperform both the raw537

output and σ-scaling methods. EMOS techniques are investigated for their potential well538

calibrated probabilistic forecasts. With a method of providing the skill of a neural net-539

work ensemble, we can now provide a comparison of the operational method to the method540

discussed in this work.541
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Figure 6: Left: A mixture of loss functions provide better calibrated uncertainty es-
timates. Right: The RMSE metric is not nearly as sensitive to loss function but may
benefit from other sources of diversity.

3 Results542

3.1 Diversity Through Loss Function543

As a potential source of ensemble diversity, the optimization loss is investigated.544

By evaluating models with different loss functions, we can identify if the introduced di-545

versity provides enhanced forecasts. We perform a sweep analysis by creating an ensem-546

ble composed of models with different loss functions. For this investigation, a model en-547

semble of size 100 was constructed using the 10 best architectures from KerasTuner, which548

were trained 10 times, with random weight initialization.549

It is clear from Figure 6, introducing diversity to an ensemble by augmenting the550

learning process indeed changes performance and UQ metrics. We see a clear minimum551

appear in the CES metric. Using an equal contribution from MSE and MAE models, we552

can improve the calibration of the ensemble model. To produce reliable probabilistic fore-553

casts, we seek to minimize the CES metric. By using a neural network model ensemble554

with varied loss functions, we decrease the CES metric by about 1% in the training and555

validation sets, as well as nearly 2% in the testing set. Performance metrics seen in Fig-556

ure 6 indicates that diversity, by way of loss function variation, does not contribute much557

to the combined forecast error. Due to the improvement seen in CES and insignificant558

changes in performance error metrics; we opt for a neural network model ensemble which559

is constructed using an equal split of models trained with MSE and MAE loss functions.560

3.2 Ensemble Member Combination Methods561

Although a probabilistic forecast provides a distribution, it is critical to provide562

single point, or combined forecast values. The individual models are combined to im-563

prove overall prediction. To provide an improved single point forecast, considerations for564

how best to combine models were needed. In previous work, (Daniell & Mehta, 2023b)565

showed mathematical average could be used to combine ensemble members effectively.566

However, we believe it is necessary to investigate methods for a combined forecast other567

than averaging. Using both a stacked ensemble and by combining predictions using the568
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mathematical median, we determine more sophisticated methods, which outperform the569

previously used average prediction.570

Figure 7: Non-mean combination of ensemble methods (orange & green) show improved
errors over all horizons when compared to the persistence baseline and linear TS FCAST
methods.

We explore the use of mean, median, and stacking for the predictions made by the571

individual members of the MV-MLE model on the test set data. Seen in Figure 7, it is572

clear that, when averaged, the MV-MLE model is able to provide better predictions across573

all horizons when compared to both the persistence baseline and the linear SET algo-574

rithm. We find that the averaged prediction works well, but using methods such as me-575

dian prediction or stacking, further improvements are seen the performance metrics. We576

believe that by using the median predicted values, we eliminate the outliers that may577

occur when considering the mean prediction.578

We perform a stacking approach using the validation set, providing a weigh asso-579

ciated with each model. Once the models have been combined using these weights, we580

see a dramatic increase in performance in nearly all drivers and horizons. We see that581

stacking increases performance at larger horizons more so than smaller horizons. This582

result may indicate that some models are better learners at larger horizons and have an583

associated larger weight. We see that predictions of S10.7 using mean or TS FCAST pro-584

vide similar errors, it is not until stacking is performed do we see noticeable improve-585

ments.586

When using median and stacking, we see a considerable improvement over the mean587

approach, see Table 2. When RMSE is averaged over the 6 day horizon, we see improve-588

ment in all drivers. Stacking outperforms median combination on the training, valida-589

tion, and test sets. It should be noted that the significant improvement seen in the val-590

idation set is expected. This is due to the procedure used to create model weights, stack-591

ing weights were created to fit the validation data and therefore would perform well. Both592

the training and test can be considered better measures of true stacking performance.593

When compared to the mean combination, the lowest improvement over seen by stack-594

ing is 0.57 SFU; while the best improvements reach 2.19 SFU.595
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Table 2: The RMSE metric was averaged over the 6 day horizon for each combination
method. The difference between the mean prediction and both median and stacking
approaches are reported. Negative values indicated an improvement over the mean combi-
nation method, with bold indicating favorable values.

Combination Method Difference vs. Mean (RMSE)

F10 S10 M10 Y10

Training Set

Median -0.28 -0.80 -0.64 -0.40

Stacking -0.65 -1.33 -1.12 -0.57

Validation Set

Median -0.29 -0.79 -0.63 -0.37

Stacking -2.19 -1.86 -1.87 -1.24

Test Set

Median -0.36 -0.79 -0.70 -0.47

Stacking -1.40 -1.57 -1.23 -0.86

Due to the decrease in error; we consider the stacking approach to be the most use-596

ful method for combining our ensemble members. Since a validation or training set has597

already been ”seen” by the models, we believe that the stacking approach can utilize such598

sets for another step in the machine learning process. A linear regression model is used599

to ”learn” the best combination method for the neural network models; referred to as600

a meta learner. We show that with stacking, we can effectively use another machine learn-601

ing step to enhance predictions. Based on the improvements in performance based er-602

ror metrics, we select stacking as the preferred method for combining models.603

3.3 Comparison of Forecasting Methods604

We consider neural network models which have been trained using striped valida-605

tion data, with PCA and non-PCA input data, MSE and MAE training loss functions,606

and have been combined via stacking. Due to the statistical similarity between the split607

datasets, we consider the test set as a primary indicator for model performance. The test-608

ing set has been completely hidden during training and stacking, and can be used to ef-609

fectively measure performance error metrics. We aim to establish a preferred method for610

forecasting; one driver at a time, or simultaneously. Relative metrics for test set predic-611

tions are compared in Table 3.612

Table 3 clearly shows that ensemble approaches, specifically MV-MLE outperform613

linear methods. The MV-MLE approach, with standard or PCA inputs, provide signif-614

icant improvement over the SET method. When using MV-MLE with non-PCA inputs,615

we see an improvement of RMSE for F10.7, S10.7, M10.7, and Y10.7 of 17.7%, 12.3%, 13.8%,616

13.7% respectively, over the SET method. It is clear that the SET method outperforms617

persistence and ensemble methods further improve on the SET method.618

Transfer learning methods also perform well, an improvement is seen over the SET619

method in all cases. This improvement indicates that architectures and models devel-620

oped for the F10.7 driver can be applied to the other drivers, with adequate training and621

fine tuning of weights. Interestingly, we see a dramatic difference between the transfer622

learning and UV-MLE methods. We believe that the performance difference between these623

methods can be attributed to the amount of data available for training. The models de-624

veloped originally for univariate forecasting of F10.7 had substantially more data to de-625
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Table 3: Relative metric comparison of the SET linear method and stacked ensemble ap-

proaches on the test set. Metrics are scaled against the persistence baseline, and averaged over

forecast horizons. Lower error metrics and higher correlation metrics are preferred, with a value

of one exhibiting the same performance as persistence. The best performing values in each metric

are highlighted in bold.

Driver Relative Metric SET Transfer Learning UV-MLE MV-MLE MV-MLE (PCA)

RMSE 0.927 0.799 0.911 0.75 0.773

F10.7 MAPE 0.939 0.823 0.904 0.771 0.805

R 1.005 1.024 1.013 1.029 1.028

RMSE 0.854 0.735 0.738 0.731 0.703

S10.7 MAPE 0.835 0.758 0.755 0.803 0.736

R 1.005 1.008 1.008 1.01 1.009

RMSE 0.761 0.646 0.751 0.623 0.596

M10.7 MAPE 0.771 0.687 0.764 0.658 0.651

R 1.019 1.026 1.021 1.029 1.029

RMSE 0.971 0.836 0.999 0.834 0.832

Y10.7 MAPE 0.996 0.865 1.136 0.863 0.87

R 1.003 1.009 1.002 1.01 1.009

velop models before being applied to the new drivers, while the UV-MLE models were626

limited to a much smaller historic dataset. It should be noted that comparison with uni-627

variate methods provides an indirect comparison to SWPC methods for F10.7. UV-MLE628

methods could outperform transfer learning but may require a greater amount of his-629

toric data for S10.7, M10.7, and Y10.7, to encourage ML efforts.630

The ensemble requiring PCA rotated inputs seems to outperform the standard MV-631

MLE ensemble on the test set, for S10.7 and M10.7, while the standard MV-MLE per-632

forms better on F10.7. The methods perform similarly on Y10.7, with a difference of only633

0.2% RMSE and 0.7% MAPE.634

We show an additional comparison between the best performing, MV-MLE stacked635

ensemble approaches, seen in Table 4. Neither method stands out, when considering rel-636

ative error metrics alone. We cannot definitively say whether PCA or non-PCA ensem-637

ble is preferred for probabilistic forecasting. We must instead look to uncertainty quan-638

tification to determine if one method is the better.639

3.4 Quantified Uncertainties640

The probabilistic forecasts are evaluated on the three datasets, seen in Table 5. We641

see that the CES varies across drivers; the calibration error scores associated with F10.7642

and Y10.7 are smaller, while S10.7 and M10.7 have slightly larger CES values. In general,643

the raw outputs from both non-PCA and PCA inputs produce reasonable CES values.644

Regarding the effectiveness of σ-scaling, we notice that cases where CES is relatively large645

to begin with, are improved by scaling efforts. This can be seen most prominently in the646

S10.7 driver, indicating that S10.7 may benefit more from σ-scaling than other drivers.647

When calibrations are good to begin with, σ-scaling seems detrimental and leads to worse648

CES values.649

We found that the EMOS method for probabilistic forecasting yielded unfavorable650

CES metrics for the multivariate ensemble methods. Due to the already reasonable cal-651
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Table 4: Relative metric comparison of the SET linear method and MV-MLE approaches on

the training and validation sets. Metrics are scaled against the persistence baseline, and averaged

over forecast horizons. Lower error metrics and higher correlation metrics are preferred, with a

value of one exhibiting the same performance as persistence. The best performing values in each

metric are highlighted in bold.

Driver Relative Metric SET MV-MLE MV-MLE (PCA)

Training Set

RMSE 0.964 0.632 0.642

F10.7 MAPE 0.975 0.685 0.677

R 1.008 1.043 1.044

RMSE 0.79 0.621 0.585

S10.7 MAPE 0.806 0.705 0.633

R 1.007 1.012 1.011

RMSE 0.701 0.53 0.504

M10.7 MAPE 0.725 0.569 0.555

R 1.024 1.035 1.034

RMSE 0.983 0.723 0.73

Y10.7 MAPE 0.985 0.762 0.771

R 1.003 1.013 1.1013

Validation Set

RMSE 0.96 0.730 0.759

F10.7 MAPE 0.982 0.767 0.794

R 1.01 1.03 1.028

RMSE 0.811 0.745 0.715

S10.7 MAPE 0.783 0.814 0.779

R 1.006 1.009 1.008

RMSE 0.704 0.64 0.609

M10.7 MAPE 0.715 0.681 0.652

R 1.023 1.029 1.029

RMSE 0.964 0.835 0.851

Y10.7 MAPE 0.966 0.863 0.887

R 1.003 1.009 1.008

ibration of the MV-MLE and MV-MLE (PCA) ensembles, the application of EMOS did652

not help. EMOS generally worsened CES metrics, ranging from 6-18%. We believe that653

potentially, the number of coefficients necessary for EMOS may have caused the poor654

performance. To apply EMOS, regression for every model and output is needed (180 mod-655

els and 24 outputs). This high number of terms may have caused typical linear regres-656

sion to fail, as EMOS has been typically used on much fewer outputs and models.657

We choose to not apply σ-scaling or EMOS methods to the probabilistic forecasts.658

The application of σ-scaling helped marginally for some drivers but significantly wors-659

ened CES values for other drivers, and EMOS provided poor CES values overall. Direct660

use of the ensemble member outputs is a more intuitive method, and provides reason-661

able CES values. Additionally, no uncertainty scaling or regression must be performed662

after the prediction step, and no scaling terms need to be calculated. With no need for663
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Table 5: Calibration error score (CES) for ensemble methods when evaluated on all
datasets. Lower values are better and bold terms indicate the best method for a given
driver.

Train Set MV-MLE MV-MLE (PCA) MV-MLE MV-MLE (PCA)

Driver (Raw Output) (Raw Output) (σ-scaled) (σ-scaled)

F10.7 1.92 3.00 8.76 8.39

S10.7 9.94 11.26 9.22 8.15

M10.7 8.55 5.59 7.02 8.17

Y10.7 3.93 2.34 3.89 5.13

Validation Set MV-MLE MV-MLE (PCA) MV-MLE MV-MLE (PCA)

Driver (Raw Output) (Raw Output) (σ-scaled) (σ-scaled)

F10.7 1.9 1.87 8.58 8.61

S10.7 9.21 10.67 8.68 8.41

M10.7 7.53 5.50 6.73 7.78

Y10.7 3.70 2.07 3.64 4.78

Test Set MV-MLE MV-MLE (PCA) MV-MLE MV-MLE (PCA)

Driver (Raw Output) (Raw Output) (σ-scaled) (σ-scaled)

F10.7 3.08 2.62 8.48 8.57

S10.7 8.64 10.63 8.36 8.62

M10.7 7.74 5.63 6.66 8.33

Y10.7 3.18 6.27 4.04 6.54

extra processing, using the direct predictions directly is less computationally expensive664

and can be considered quicker.665

We choose the test set for evaluation since it has been unseen during training and666

is statistically similar to both the training and validation sets. The direct model outputs667

lead to the calibration curves seen in Figure 8. The MV-MLE (green) and UV-MLE (or-668

ange) models follow the same trends; methods are well calibrated for smaller confidence669

intervals, with a tendency to over predict when the confidence interval grows for S10.7,670

M10.7, and Y10.7. The F10.7 driver is very well calibrated, with only a minor tendency671

to under predict at very large confidence intervals. Neither MV-MLE or MV-MLE (PCA)672

stand out when examining the calibration curves. When averaged across all four drivers;673

the MV-MLE (PCA) ensemble yields an improvement in CES of only 0.16%. Based on674

the marginal differences, both methods can be considered useful, with a slight edge to675

MV-MLE (PCA) for uncertainty estimates.676

4 Summary and Conclusions677

In this work, the ability for neural network ensembles to provide simultaneous prob-678

abilistic forecasts for all four solar drivers used by the operational HASDM was inves-679

tigated. A comparison between neural network ensemble methods and the currently used680

forecasting method was performed. Single point forecasting was significantly improved681

when compared to the linear algorithm used by SET. Due to the high correlation between682

solar drivers, transfer learning was investigated. Transfer learning leveraged models pre-683

viously used in forecasting the F10.7 driver and provided improvements over the SET method;684

reinforcing the ability for models to learn across solar drivers. The MV-MLE approach685
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Figure 8: Evaluation of the multivariate ensemble methods on the test set. Curves above
or below the 45o line indicate over predicted uncertainty and under predicted uncertainty
respectively. Curves closer to the 45o dashed line are desired.

provided the most significant improvement of RMSE. RMSE of F10.7, S10.7, M10.7, and686

Y10.7 improved by 17.7%, 12.3%, 13.8%, 13.7% respectively when compared to the cur-687

rently used method.688

We provide a novel method for simultaneous probabilistic forecasting of F10.7, S10.7,689

M10.7, and Y10.7. Previously, no probabilistic forecasting methods existed for S10.7, M10.7,690

and Y10.7. The probabilistic methods are well calibrated when using directly output pre-691

dictions; providing an average CES of 5.63%, across all drivers. It is clear that simul-692

taneous forecasting of drivers offers an improvement over univariate methods. We be-693

lieve that multivariate neural network methods are useful for forecasting space weather694

indices.695

To effectively apply ensemble methods, we introduce a new method called striped696

validation to create statistically similar training, validation, and test data sets. We be-697

lieve that creating statistically similar data sets is critical for machine learning approaches698

in space weather, due to inadequate historic driver data. Without such splitting, mod-699

els performed poorly and biases to certain solar activity levels were encountered. We ad-700

ditionally find that multivariate forecasting using PCA inputs offers little improvement701

over non-PCA; an average CES improvement of 0.16% over all drivers and sets is seen.702

To investigate the diversity of our ensemble members, we varied the loss function703

used during training. We found that by using a mixture of MAE and MSE losses, we achieved704

similar performance metrics, with an improved calibration error score. We select an equal705

mixture of MAE and MSE models due to the minimal CES seen during a sweep anal-706

ysis. Our analysis of ensemble diversity, by variation of loss function, is supported by707

the conclusions made by (Daniell & Mehta, 2023b).708
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Methods for combining individual predictions were investigated in this work. Me-709

dian combination provided an improvement over traditional averaging. A stacked ensem-710

ble approach provided significant improvement over the traditionally used equal weight-711

ing, or average method. We used multiple linear regression on validation data to create712

weights associated with each model and output. A weighted combination of stacked mod-713

els reduced the RMSE by an average of 1.22 SFU, when compared to the traditional av-714

eraging method.715

The ensemble approaches used in this work allow a user to sample from a proba-716

bilistic range of values, rather than use a single deterministic value (like TS FCAST).717

By forecasting a range of solar driver values, a prediction could contain both a combined718

forecast and associated uncertainty bounds, which creates a more robust and operationally719

useful forecast. Our novel ensemble method provides an improved forecast over the SET720

method and provides, for the first time, an approach capable of providing robust and re-721

liable uncertainty estimates for S10.7, M10.7, and Y10.7.722

5 Future Work723

A key requirement for application of machine learning techniques is access to ad-724

equate data sets, which are used to learn from. Due to the relatively small datasets for725

S10.7, M10.7 , and Y10.7, a difficulty is seen in training models effectively while using tra-726

ditional methods. A potential solution for data depends on the time resolution of cap-727

tured data. Daily values for all solar drivers are issued, but an enhanced resolution (less728

than 1 day) would provide ML techniques with more data to determine hidden patterns.729

Geomagnetic indices such as DST and ap, have a time resolution of 3 hours, a similar730

time cadence of solar driver measurement would yield an 8 fold increase in collected data.731

Such an increase in data would be expected to lead to dramatic and quick improvements732

in neural network modeling efforts.733

With the constant advancements taking place in the field of machine learning, new734

time series techniques are constantly developed and should be investigated. Developed735

by (Vaswani et al., 2017), transformers are a current state of the art method for sequen-736

tial data prediction. These models rely on self attention, multi-head attention, and po-737

sitional encoding to enhance predictions. Transformers were briefly investigated in fore-738

casting of solar drivers but did not provide noticeable improvement over the SET method.739

As a state of the art method, and constantly advancing topic, we believe further inves-740

tigation into transformers may be beneficial for forecasting not just solar drivers, but all741

space weather indices.742

While the methods presented in this work have demonstrated their superiority over743

the operational linear approach for short-term forecasting, it remains crucial to assess744

the efficacy of multivariate methods for longer-term forecasts. As of now, forecasts for745

S10.7, M10.7, and Y10.7 use a six-day horizon, but future work extending the probabilis-746

tic forecast horizon may enhance our ability to plan for events such as re-entry and other747

critical activities.748

Providing robust and reliable uncertainty estimates and probabilistic input drivers749

to JB2008 may provide improved density modeling and density uncertainty estimates.750

We believe that in the future, it is necessary to investigate the coupling between solar751

driver uncertainty and density modeling uncertainty. We believe that a framework which752

couples the major sources of uncertainty with orbit propagation is necessary, and would753

allow for more robust and reliable uncertainty estimates for the position and trajecto-754

ries of tracked objects in LEO. An overall framework which links the solar driver uncer-755

tainty methods in this work with model uncertainty and predicted orbital state uncer-756

tainty should be a major focus for providing improved drag modeling with the opera-757

tional HASDM.758
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6 Open Research759

Software and data related to model development, data processing, figures, and method760

comparison are available as a Zenodo repository (Daniell & Mehta, 2023a). Addition-761

ally, this repository contains an example of forecasting using pre-trained models(Daniell762

& Mehta, 2023a). The repository does not requires registration for access and is licensed763

under Creative Commons Attribution 4.0 International; version information can be found764

in the repository.765

SET proprietary data used for verification of the SET algorithm are not made pub-766

licly available since they reside on operational servers run for the sole benefit of the USAF.767

Data are provided courtesy of Space Environment Technologies, 2019. These data have768

been provided to West Virginia University with license to use for scientific research. How-769

ever, the verified TS FCAST algorithm used by this work and accompanying forecast770

files used for this work are available within the repository, located within the Zenodo repos-771

itory at URL https://doi.org/10.5281/zenodo.10063536772

The JB2008 solar and geomagnetic indices are provided for scientific use courtesy773

of Space Environment Technologies and are available at https://spacewx.com/jb2008/774

(Space Environment Technologies, 2023). Figures were made with Matplotlib version 3.5.2775

(Caswell et al., 2022) available under the Matplotlib license at https://matplotlib.org/.776
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E., . . . Baydin, A. G. (2021, December). Simultaneous multivariate forecast of794

space weather indices using deep neural network ensembles.795

doi: 10.48550/ARXIV.2112.09051796

Bhandari, H. N., Rimal, B., Pokhrel, N. R., Rimal, R., Dahal, K. R., & Khatri,797

R. K. (2022, sep). Predicting stock market index using LSTM. Machine798

Learning with Applications, 9 , 100320. doi: 10.1016/j.mlwa.2022.100320799

Bowman, B., Tobiska, W. K., Marcos, F., Huang, C., Lin, C., & Burke, W. (2008,800

jun). A new empirical thermospheric density model JB2008 using new solar801

and geomagnetic indices. In AIAA/AAS astrodynamics specialist confer-802

ence and exhibit. American Institute of Aeronautics and Astronautics. doi:803

10.2514/6.2008-6438804

Brown, G., Wyatt, J. L., Tino, P., & Bengio, Y. (2005). Managing diversity in re-805

gression ensembles. Journal of machine learning research, 6 (9).806

–25–



manuscript submitted to Space Weather

Caswell, T. A., Droettboom, M., Lee, A., de Andrade, E. S., Hoffmann, T., Klymak,807

J., . . . Ivanov, P. (2022, May). matplotlib/matplotlib: Rel: v3.5.2 [software].808

Zenodo. Retrieved from https://doi.org/10.5281/zenodo.6513224 doi:809

10.5281/zenodo.6513224810

Daniell, J. D., & Mehta, P. M. (2023a, November). Probabalistic Short-Term Solar811

Driver Forecasting with Neural Network Ensembles Software and Data. [Soft-812

ware]. Zenodo. Retrieved from https://doi.org/10.5281/zenodo.10063536813

doi: 10.5281/zenodo.10063536814

Daniell, J. D., & Mehta, P. M. (2023b, sep). Probabilistic solar proxy fore-815

casting with neural network ensembles. Space Weather , 21 (9). doi:816

10.1029/2023sw003675817

Elvidge, S., Granados, S. R., Angling, M. J., Brown, M. K., Themens, D. R., &818

Wood, A. G. (2023, mar). Multi-model ensembles for upper atmosphere819

models. Space Weather , 21 (3). doi: 10.1029/2022sw003356820

Gerace, F., Saglietti, L., Mannelli, S. S., Saxe, A., & Zdeborová, L. (2022,821
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