References
[1] P.P. Edwards, V.L. Kuznetsov, W.I.F. David, Hydrogen energy, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365 (2007) 1043–1056. https://doi.org/10.1098/RSTA.2006.1965.
[2] M. Höök, X. Tang, Depletion of fossil fuels and anthropogenic climate change-A review, Energy Policy. 52 (2013). https://doi.org/10.1016/j.enpol.2012.10.046.
[3] Ji Li, Weiqing Wang, Zhi Yuan, Jun Chen, Lei Xu, Optimal multi-market scheduling of a sustainable photovoltaic-oriented distribution network hosting hydrogen vehicles and energy storages: A regret assessment optimization, J. Energy Storage. 66 (2023) 107489 https://doi.org/10.1016/j.est.2023.107489.
[4] G. Nicoletti, N. Arcuri, G. Nicoletti, R. Bruno, A technical and environmental comparison between hydrogen and some fossil fuels, Energy Convers. Manag. 89 (2015). https://doi.org/10.1016/j.enconman.2014.09.057.
[5] T.N. Vezirolu, F. Barbir, Hydrogen: the wonder fuel, Int. J. Hydrogen Energy. 17 (1992). https://doi.org/10.1016/0360-3199(92)90183-W.
[6] W. Lubitz, W. Tumas, Hydrogen: An overview, Chem. Rev. 107 (2007). https://doi.org/10.1021/cr050200z.
[7] Ji Li, Weiqing Wang, Zhi Yuan, Jun Chen, Lei Xu, Optimal multi-market scheduling of a sustainable photovoltaic-oriented distribution network hosting hydrogen vehicles and energy storages: A regret assessment optimization, J. Energy Storage. 66 (2023) 107489 https://doi.org/10.1016/j.est.2023.107489.
[8] I. Dincer, C. Acar, Review and evaluation of hydrogen production methods for better sustainability, Int. J. Hydrogen Energy. 40 (2014). https://doi.org/10.1016/j.ijhydene.2014.12.035.
[9] V.A. Yartys, M. V. Lototsky, An Overview of Hydrogen Storage Methods, in: 2004. https://doi.org/10.1007/1-4020-2669-2_7.
[10] Arturo Morandé, Patricio Lillo, Elodie Blanco, César Pazo, Ana Belén Dongil, Ximena Zarate, Mario Saavedra-Torres, Eduardo Schott, Roberto Canales, Alvaro Videla, Néstor Escalona, Modification of a commercial activated carbon with nitrogen and boron: Hydrogen storage application, J. Energy Storage. 64 (2023) 107193 https://doi.org/10.1016/j.est.2023.107193.
[11] D.K. Kohli, R.K. Khardekr, R. Singh, P.K. Gupta, Glass micro-container based hydrogen storage scheme, Int. J. Hydrogen Energy. (2008). https://doi.org/10.1016/j.ijhydene.2007.07.044.
[12] X. Zhang, D. Cao, J. Chen, Hydrogen adsorption storage on single-walled carbon nanotube arrays by a combination of classical potential and density functional theory, J. Phys. Chem. B. 107 (2003). https://doi.org/10.1021/jp034110e.
[13] V. Bérubé, G. Radtke, M. Dresselhaus, G. Chen, Size effects on the hydrogen storage properties of nanostructured metal hydrides: A review, Int. J. Energy Res. 31 (2007). https://doi.org/10.1002/er.1284.
[14] F.J. Isidro-Ortega, J.H. Pacheco-Sánchez, L.A. Desales-Guzmán, Hydrogen storage on lithium decorated zeolite templated carbon, DFT study, Int. J. Hydrogen Energy. 42 (2017). https://doi.org/10.1016/j.ijhydene.2017.10.098.
[15] S.H. Jhi, Y.K. Kwon, Hydrogen adsorption on boron nitride nanotubes: A path to room-temperature hydrogen storage, Phys. Rev. B - Condens. Matter Mater. Phys. 69 (2004). https://doi.org/10.1103/PhysRevB.69.245407.
[16] B. Panella, M. Hirscher, S. Roth, Hydrogen adsorption in different carbon nanostructures, Carbon N. Y. 43 (2005). https://doi.org/10.1016/j.carbon.2005.03.037.
[17] Ali Salehabadi, Elmuez A. Dawi, Dhay Ali Sabur, Waleed Khaild Al-Azzawi, Masoud Salavati-Niasari, Progress on nano-scaled alloys and mixed metal oxides in solid-state hydrogen storage; an overview, J. Energy Storage. 61 (2023) 106722 https://doi.org/10.1016/j.est.2023.106722.
[18] K. Archana, N. G. Pillai, K. V. Sai Srinivasan, P. K. Chauhan, R. Sujith, K. Y. Rhee, A. Asif, Enhanced isosteric heat of adsorption and gravimetric storage density of hydrogen in GNP incrorporated Cu based core shell metal organic framework, Int. J. Hydrogen Energy 45 (2020) https://doi.org/10.1016/j.ijhydene.2020.09.137.
[19] P. K. Chauhan, V. Vidhukiran, R. Sujith, R. Parameshwaran, Experimental investigation on multilayered graphene systems for hydrogen storage Mater. Res. Express 6 (2019) 10.1088/2053-1591/ab3cdc.
[20] S. Yadav, A. Devi, Recent advancements of metal oxides/Nitrogen-doped graphene nanocomposites for supercapacitor electrode materials, J. Energy Storage. 30 (2020). https://doi.org/10.1016/j.est.2020.101486.
[21] Perumal Naveenkumar, Munisamy Maniyazagan, Hyeon-Woo Yang, Woo Seung Kang, Sun-Jae Kim, Nitrogen-doped graphene/silicon-oxycarbide nanosphere as composite anode for high-performance lithium-ion batteries, J. Energy Storage. 59 (2023) 106572 https://doi.org/10.1016/j.est.2022.106572.
[22] Bing Bai, Linlin Qiu, Yongfeng Yuan, Lixin Song, Jie Xiong, Pingfan Du, Nitrogen doped siloxene and composite with graphene for high performance fiber-based supercapacitors, J. Energy Storage. 63 (2023) 106984,https://doi.org/10.1016/j.est.2023.106984.
[23] S. Hossain, A.M. Abdalla, S.B.H. Suhaili, I. Kamal, S.P.S. Shaikh, M.K. Dawood, A.K. Azad, Nanostructured graphene materials utilization in fuel cells and batteries: A review, J. Energy Storage. 29 (2020). https://doi.org/10.1016/j.est.2020.101386.
[24] Musfique Salehin Shruti, Santimoy Khilari, E. James Jebaseelan Samuel, HyukSu Han, Arpan Kumar Nayak, Recent trends in graphene assisted vanadium based nanocomposites for supercapacitor applications, J. Energy Storage. 63 (2023) 107006 https://doi.org/10.1016/j.est.2023.107006.
[25] S. Bagheri, N. Mansouri, E. Aghaie, Phosphorene: A new competitor for graphene, Int. J. Hydrogen Energy. 41 (2016). https://doi.org/10.1016/j.ijhydene.2016.01.034.
[26] D.A.C. Brownson, D.K. Kampouris, C.E. Banks, An overview of graphene in energy production and storage applications, J. Power Sources. 196 (2011). https://doi.org/10.1016/j.jpowsour.2011.02.022.
[27] J. Dai, J. Yuan, P. Giannozzi, Gas adsorption on graphene doped with B, N, Al, and S: A theoretical study, Appl. Phys. Lett. (2009). https://doi.org/10.1063/1.3272008.
[28] S. Yadav, Z. Zhu, C.V. Singh, Defect engineering of graphene for effective hydrogen storage, Int. J. Hydrogen Energy. (2014). https://doi.org/10.1016/j.ijhydene.2014.01.051.
[29] R.E. Ambrusi, C.R. Luna, A. Juan, M.E. Pronsato, DFT study of Rh-decorated pristine, B-doped and vacancy defected graphene for hydrogen adsorption, RSC Adv. (2016). https://doi.org/10.1039/c6ra16604k.
[30] R. Shreyas, K.V. Sai Srinivasan, R. Sujith, Nickel-decorated single vacancy phosphorene - A favourable candidate for hydrogen storage, Int. J. Hydrogen Energy 46 (2021) https://doi.org/10.1016/j.ijhydene.2021.05.206.
[31] K. V. Sai Srinivasan, A. Seth, D. Mohapatra, S. Ramachandran, R. Sujith, Iron-decorated defective phosphorene a viable hydrogen storage medium - A DFT study, Int. J. Hydrogen Energy 47 (2022) https://doi.org/10.1016/j.ijhydene.2022.08.074.
[32] M. EL Kassaoui, M. Houmad, M. Lakhal, A. Benyoussef, A. El Kenz, M. Loulidi, Hydrogen storage in lithium, sodium and magnesium-decorated on tetragonal silicon carbide, Int. J. Hydrogen Energy. (2021). https://doi.org/10.1016/j.ijhydene.2021.04.183.
[33] D. John, R. Chatanathodi, Hydrogen adsorption on alkali metal decorated blue phosphorene nanosheets, Appl. Surf. Sci. (2019). https://doi.org/10.1016/j.apsusc.2018.09.158.
[34] Z. Liu, S. Liu, S. Er, Hydrogen storage properties of Li-decorated B2S monolayers: A DFT study, Int. J. Hydrogen Energy. (2019). https://doi.org/10.1016/j.ijhydene.2019.04.234.
[35] A.J. Wirth-Lima, M.G. Silva, A.S.B. Sombra, Comparisons of electrical and optical properties between graphene and silicene - A review, Chinese Phys. B. (2018). https://doi.org/10.1088/1674-1056/27/2/023201.
[36] Q. Xu, G.M. Yang, X. Fan, W.T. Zheng, Adsorption of metal atoms on silicene: Stability and quantum capacitance of silicene-based electrode materials, Phys. Chem. Chem. Phys. (2019). https://doi.org/10.1039/c8cp05982a.
[37] B. Mortazavi, A. Dianat, G. Cuniberti, T. Rabczuk, Application of silicene, germanene and stanene for Na or Li ion storage: A theoretical investigation, Electrochim. Acta. (2016). https://doi.org/10.1016/j.electacta.2016.08.027.
[38] S.M. Seyed-Talebi, I. Kazeminezhad, J. Beheshtian, Theoretical prediction of silicene as a new candidate for the anode of lithium-ion batteries, Phys. Chem. Chem. Phys. (2015). https://doi.org/10.1039/c5cp04666a.
[39] Sandhya Venkateshalu, G. Subashini, Preetam Bhardwaj, George Jacob, Raja Sellappan, Vimala Raghavan, Sagar Jain, Saravanan Pandiaraj, Varagunapandiyan Natarajan, Basem Abdullah M. Al Alwan, Mohammed Khaloofah Mola Al Mesfer, Abdullah Alodhayb, Mohammad Khalid, Andrews Nirmala Grace, Phosphorene, antimonene, silicene and siloxene based novel 2D electrode materials for supercapacitors-A brief review, J. Energy Storage. 48 (2022) 104027,https://doi.org/10.1016/j.est.2022.104027.
[40] J. Huang, H.J. Chen, M.S. Wu, G. Liu, C.Y. Ouyang, B. Xu, First-principles calculation of lithium adsorption and diffusion on silicene, Chinese Phys. Lett. (2013). https://doi.org/10.1088/0256-307X/30/1/017103.
[41] D. Jose, A. Datta, Structures and chemical properties of silicene: Unlike graphene, Acc. Chem. Res. (2014). https://doi.org/10.1021/ar400180e.
[42] T. Hussain, T. Kaewmaraya, S. Chakraborty, R. Ahuja, Functionalization of hydrogenated silicene with alkali and alkaline earth metals for efficient hydrogen storage, Phys. Chem. Chem. Phys. (2013). https://doi.org/10.1039/c3cp52830h.
[43] Y. Wang, R. Zheng, H. Gao, J. Zhang, B. Xu, Q. Sun, Y. Jia, Metal adatoms-decorated silicene as hydrogen storage media, in: Int. J. Hydrogen Energy, 2014. https://doi.org/10.1016/j.ijhydene.2014.06.164.
[44] Y. Zhang, P. Liu, X. Zhu, Li decorated penta-silicene as a high capacity hydrogen storage material: A density functional theory study, Int. J. Hydrogen Energy. (2021). https://doi.org/10.1016/j.ijhydene.2020.10.193.
[45] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter. (2009). https://doi.org/10.1088/0953-8984/21/39/395502.
[46] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. (1996). https://doi.org/10.1103/PhysRevLett.77.3865.
[47] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B. (1976). https://doi.org/10.1103/PhysRevB.13.5188.
[48] S. Grimme, Accurate description of van der Waals complexes by density functional theory including empirical corrections, J. Comput. Chem. (2004). https://doi.org/10.1002/jcc.20078.
[49] C.G. Broyden, The convergence of a class of double-rank minimization algorithms: 2. The new algorithm, IMA J. Appl. Math. (Institute Math. Its Appl. (1970). https://doi.org/10.1093/imamat/6.3.222.
[50] J.R. Soto, B. Molina, J.J. Castro, Reexamination of the origin of the pseudo Jahn-Teller puckering instability in silicene, Phys. Chem. Chem. Phys. (2015). https://doi.org/10.1039/c4cp05912c.
[51] S. Li, Y. Wu, Y. Tu, Y. Wang, T. Jiang, W. Liu, Y. Zhao, Defects in silicene: Vacancy clusters, extended line defects, and di-adatoms, Sci. Rep. (2015). https://doi.org/10.1038/srep07881.
[52] Chinnathambi, Kamal. ”Controlling band gap in silicene monolayer using external electric field.” arXiv preprint arXiv:1202.2636 (2012).
[53] G. Yang, L. Li, W.B. Lee, M.C. Ng, Structure of graphene and its disorders: a review, Sci. Technol. Adv. Mater. (2018). https://doi.org/10.1080/14686996.2018.1494493.
[54] M.J. Momeni, M. Mousavi-Khoshdel, T. Leisegang, Exploring the performance of pristine and defective silicene and silicene-like XSi3 (X= Al, B, C, N, P) sheets as supercapacitor electrodes: A density functional theory calculation of quantum capacitance, Phys. E Low-Dimensional Syst. Nanostructures. (2020). https://doi.org/10.1016/j.physe.2020.114290.
[55] S. Haldar, R.G. Amorim, B. Sanyal, R.H. Scheicher, A.R. Rocha, Energetic stability, STM fingerprints and electronic transport properties of defects in graphene and silicene, RSC Adv. (2016). https://doi.org/10.1039/c5ra23052g.
[56] H. Wang, M. Wu, X. Lei, Z. Tian, B. Xu, K. Huang, C. Ouyang, Siligraphene as a promising anode material for lithium-ion batteries predicted from first-principles calculations, Nano Energy. (2018). https://doi.org/10.1016/j.nanoen.2018.04.038.
[57] L.P. Ma, Z.S. Wu, J. Li, E.D. Wu, W.C. Ren, H.M. Cheng, Hydrogen adsorption behavior of graphene above critical temperature, Int. J. Hydrogen Energy. (2009). https://doi.org/10.1016/j.ijhydene.2008.12.079.
[58] S. Srinivasan K V, A. Seth, D. Mohapatra, S. Ramachandran, R. Sujith, Iron decorated defective phosphorene as a viable hydrogen storage medium – A DFT study, Int. J. Hydrogen Energy. 47 (2022) 34976–34993. https://doi.org/10.1016/J.IJHYDENE.2022.08.074.
[59] L. Ma, J.M. Zhang, K.W. Xu, V. Ji, Hydrogen adsorption and storage of Ca-decorated graphene with topological defects: A first-principles study, Phys. E Low-Dimensional Syst. Nanostructures. (2014). https://doi.org/10.1016/j.physe.2014.05.004.