References
[1] P.P. Edwards, V.L. Kuznetsov, W.I.F. David, Hydrogen energy,
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365 (2007) 1043–1056.
https://doi.org/10.1098/RSTA.2006.1965.
[2] M. Höök, X. Tang, Depletion of fossil fuels and anthropogenic
climate change-A review, Energy Policy. 52 (2013).
https://doi.org/10.1016/j.enpol.2012.10.046.
[3] Ji Li, Weiqing Wang, Zhi Yuan, Jun Chen, Lei Xu, Optimal
multi-market scheduling of a sustainable photovoltaic-oriented
distribution network hosting hydrogen vehicles and energy storages: A
regret assessment optimization, J. Energy Storage. 66 (2023) 107489
https://doi.org/10.1016/j.est.2023.107489.
[4] G. Nicoletti, N. Arcuri, G. Nicoletti, R. Bruno, A technical and
environmental comparison between hydrogen and some fossil fuels, Energy
Convers. Manag. 89 (2015).
https://doi.org/10.1016/j.enconman.2014.09.057.
[5] T.N. Vezirolu, F. Barbir, Hydrogen: the wonder fuel, Int. J.
Hydrogen Energy. 17 (1992).
https://doi.org/10.1016/0360-3199(92)90183-W.
[6] W. Lubitz, W. Tumas, Hydrogen: An overview, Chem. Rev. 107
(2007). https://doi.org/10.1021/cr050200z.
[7] Ji Li, Weiqing Wang, Zhi Yuan, Jun Chen, Lei Xu, Optimal
multi-market scheduling of a sustainable photovoltaic-oriented
distribution network hosting hydrogen vehicles and energy storages: A
regret assessment optimization, J. Energy Storage. 66 (2023) 107489
https://doi.org/10.1016/j.est.2023.107489.
[8] I. Dincer, C. Acar, Review and evaluation of hydrogen production
methods for better sustainability, Int. J. Hydrogen Energy. 40 (2014).
https://doi.org/10.1016/j.ijhydene.2014.12.035.
[9] V.A. Yartys, M. V. Lototsky, An Overview of Hydrogen Storage
Methods, in: 2004. https://doi.org/10.1007/1-4020-2669-2_7.
[10] Arturo Morandé, Patricio Lillo, Elodie Blanco, César Pazo, Ana
Belén Dongil, Ximena Zarate, Mario Saavedra-Torres, Eduardo Schott,
Roberto Canales, Alvaro Videla, Néstor Escalona, Modification of a
commercial activated carbon with nitrogen and boron: Hydrogen storage
application, J. Energy Storage. 64 (2023) 107193
https://doi.org/10.1016/j.est.2023.107193.
[11] D.K. Kohli, R.K. Khardekr, R. Singh, P.K. Gupta, Glass
micro-container based hydrogen storage scheme, Int. J. Hydrogen Energy.
(2008). https://doi.org/10.1016/j.ijhydene.2007.07.044.
[12] X. Zhang, D. Cao, J. Chen, Hydrogen adsorption storage on
single-walled carbon nanotube arrays by a combination of classical
potential and density functional theory, J. Phys. Chem. B. 107 (2003).
https://doi.org/10.1021/jp034110e.
[13] V. Bérubé, G. Radtke, M. Dresselhaus, G. Chen, Size effects on
the hydrogen storage properties of nanostructured metal hydrides: A
review, Int. J. Energy Res. 31 (2007). https://doi.org/10.1002/er.1284.
[14] F.J. Isidro-Ortega, J.H. Pacheco-Sánchez, L.A. Desales-Guzmán,
Hydrogen storage on lithium decorated zeolite templated carbon, DFT
study, Int. J. Hydrogen Energy. 42 (2017).
https://doi.org/10.1016/j.ijhydene.2017.10.098.
[15] S.H. Jhi, Y.K. Kwon, Hydrogen adsorption on boron nitride
nanotubes: A path to room-temperature hydrogen storage, Phys. Rev. B -
Condens. Matter Mater. Phys. 69 (2004).
https://doi.org/10.1103/PhysRevB.69.245407.
[16] B. Panella, M. Hirscher, S. Roth, Hydrogen adsorption in
different carbon nanostructures, Carbon N. Y. 43 (2005).
https://doi.org/10.1016/j.carbon.2005.03.037.
[17] Ali Salehabadi, Elmuez A. Dawi, Dhay Ali Sabur, Waleed Khaild
Al-Azzawi, Masoud Salavati-Niasari, Progress on nano-scaled alloys and
mixed metal oxides in solid-state hydrogen storage; an overview, J.
Energy Storage. 61 (2023) 106722
https://doi.org/10.1016/j.est.2023.106722.
[18] K. Archana, N. G. Pillai, K. V. Sai Srinivasan, P. K. Chauhan,
R. Sujith, K. Y. Rhee, A. Asif, Enhanced isosteric heat of adsorption
and gravimetric storage density of hydrogen in GNP incrorporated Cu
based core shell metal organic framework, Int. J. Hydrogen Energy 45
(2020) https://doi.org/10.1016/j.ijhydene.2020.09.137.
[19] P. K. Chauhan, V. Vidhukiran, R. Sujith, R. Parameshwaran,
Experimental investigation on multilayered graphene systems for hydrogen
storage Mater. Res. Express 6 (2019) 10.1088/2053-1591/ab3cdc.
[20] S. Yadav, A. Devi, Recent advancements of metal
oxides/Nitrogen-doped graphene nanocomposites for supercapacitor
electrode materials, J. Energy Storage. 30 (2020).
https://doi.org/10.1016/j.est.2020.101486.
[21] Perumal Naveenkumar, Munisamy Maniyazagan, Hyeon-Woo Yang, Woo
Seung Kang, Sun-Jae Kim, Nitrogen-doped graphene/silicon-oxycarbide
nanosphere as composite anode for high-performance lithium-ion
batteries, J. Energy Storage. 59 (2023) 106572
https://doi.org/10.1016/j.est.2022.106572.
[22] Bing Bai, Linlin Qiu, Yongfeng Yuan, Lixin Song, Jie Xiong,
Pingfan Du, Nitrogen doped siloxene and composite with graphene for high
performance fiber-based supercapacitors, J. Energy Storage. 63 (2023)
106984,https://doi.org/10.1016/j.est.2023.106984.
[23] S. Hossain, A.M. Abdalla, S.B.H. Suhaili, I. Kamal, S.P.S.
Shaikh, M.K. Dawood, A.K. Azad, Nanostructured graphene materials
utilization in fuel cells and batteries: A review, J. Energy Storage. 29
(2020). https://doi.org/10.1016/j.est.2020.101386.
[24] Musfique Salehin Shruti, Santimoy Khilari, E. James Jebaseelan
Samuel, HyukSu Han, Arpan Kumar Nayak, Recent trends in graphene
assisted vanadium based nanocomposites for supercapacitor applications,
J. Energy Storage. 63 (2023) 107006
https://doi.org/10.1016/j.est.2023.107006.
[25] S. Bagheri, N. Mansouri, E. Aghaie, Phosphorene: A new
competitor for graphene, Int. J. Hydrogen Energy. 41 (2016).
https://doi.org/10.1016/j.ijhydene.2016.01.034.
[26] D.A.C. Brownson, D.K. Kampouris, C.E. Banks, An overview of
graphene in energy production and storage applications, J. Power
Sources. 196 (2011). https://doi.org/10.1016/j.jpowsour.2011.02.022.
[27] J. Dai, J. Yuan, P. Giannozzi, Gas adsorption on graphene doped
with B, N, Al, and S: A theoretical study, Appl. Phys. Lett. (2009).
https://doi.org/10.1063/1.3272008.
[28] S. Yadav, Z. Zhu, C.V. Singh, Defect engineering of graphene
for effective hydrogen storage, Int. J. Hydrogen Energy. (2014).
https://doi.org/10.1016/j.ijhydene.2014.01.051.
[29] R.E. Ambrusi, C.R. Luna, A. Juan, M.E. Pronsato, DFT study of
Rh-decorated pristine, B-doped and vacancy defected graphene for
hydrogen adsorption, RSC Adv. (2016).
https://doi.org/10.1039/c6ra16604k.
[30] R. Shreyas, K.V. Sai Srinivasan, R. Sujith, Nickel-decorated
single vacancy phosphorene - A favourable candidate for hydrogen
storage, Int. J. Hydrogen Energy 46 (2021)
https://doi.org/10.1016/j.ijhydene.2021.05.206.
[31] K. V. Sai Srinivasan, A. Seth, D. Mohapatra, S. Ramachandran,
R. Sujith, Iron-decorated defective phosphorene a viable hydrogen
storage medium - A DFT study, Int. J. Hydrogen Energy 47 (2022)
https://doi.org/10.1016/j.ijhydene.2022.08.074.
[32] M. EL Kassaoui, M. Houmad, M. Lakhal, A. Benyoussef, A. El
Kenz, M. Loulidi, Hydrogen storage in lithium, sodium and
magnesium-decorated on tetragonal silicon carbide, Int. J. Hydrogen
Energy. (2021). https://doi.org/10.1016/j.ijhydene.2021.04.183.
[33] D. John, R. Chatanathodi, Hydrogen adsorption on alkali metal
decorated blue phosphorene nanosheets, Appl. Surf. Sci. (2019).
https://doi.org/10.1016/j.apsusc.2018.09.158.
[34] Z. Liu, S. Liu, S. Er, Hydrogen storage properties of
Li-decorated B2S monolayers: A DFT study, Int. J.
Hydrogen Energy. (2019). https://doi.org/10.1016/j.ijhydene.2019.04.234.
[35] A.J. Wirth-Lima, M.G. Silva, A.S.B. Sombra, Comparisons of
electrical and optical properties between graphene and silicene - A
review, Chinese Phys. B. (2018).
https://doi.org/10.1088/1674-1056/27/2/023201.
[36] Q. Xu, G.M. Yang, X. Fan, W.T. Zheng, Adsorption of metal atoms
on silicene: Stability and quantum capacitance of silicene-based
electrode materials, Phys. Chem. Chem. Phys. (2019).
https://doi.org/10.1039/c8cp05982a.
[37] B. Mortazavi, A. Dianat, G. Cuniberti, T. Rabczuk, Application
of silicene, germanene and stanene for Na or Li ion storage: A
theoretical investigation, Electrochim. Acta. (2016).
https://doi.org/10.1016/j.electacta.2016.08.027.
[38] S.M. Seyed-Talebi, I. Kazeminezhad, J. Beheshtian, Theoretical
prediction of silicene as a new candidate for the anode of lithium-ion
batteries, Phys. Chem. Chem. Phys. (2015).
https://doi.org/10.1039/c5cp04666a.
[39] Sandhya Venkateshalu, G. Subashini, Preetam Bhardwaj, George
Jacob, Raja Sellappan, Vimala Raghavan, Sagar Jain, Saravanan Pandiaraj,
Varagunapandiyan Natarajan, Basem Abdullah M. Al Alwan, Mohammed
Khaloofah Mola Al Mesfer, Abdullah Alodhayb, Mohammad Khalid, Andrews
Nirmala Grace, Phosphorene, antimonene, silicene and siloxene based
novel 2D electrode materials for supercapacitors-A brief review, J.
Energy Storage. 48 (2022)
104027,https://doi.org/10.1016/j.est.2022.104027.
[40] J. Huang, H.J. Chen, M.S. Wu, G. Liu, C.Y. Ouyang, B. Xu,
First-principles calculation of lithium adsorption and diffusion on
silicene, Chinese Phys. Lett. (2013).
https://doi.org/10.1088/0256-307X/30/1/017103.
[41] D. Jose, A. Datta, Structures and chemical properties of
silicene: Unlike graphene, Acc. Chem. Res. (2014).
https://doi.org/10.1021/ar400180e.
[42] T. Hussain, T. Kaewmaraya, S. Chakraborty, R. Ahuja,
Functionalization of hydrogenated silicene with alkali and alkaline
earth metals for efficient hydrogen storage, Phys. Chem. Chem. Phys.
(2013). https://doi.org/10.1039/c3cp52830h.
[43] Y. Wang, R. Zheng, H. Gao, J. Zhang, B. Xu, Q. Sun, Y. Jia,
Metal adatoms-decorated silicene as hydrogen storage media, in: Int. J.
Hydrogen Energy, 2014. https://doi.org/10.1016/j.ijhydene.2014.06.164.
[44] Y. Zhang, P. Liu, X. Zhu, Li decorated penta-silicene as a high
capacity hydrogen storage material: A density functional theory study,
Int. J. Hydrogen Energy. (2021).
https://doi.org/10.1016/j.ijhydene.2020.10.193.
[45] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C.
Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal
Corso, S. De Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann,
C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F.
Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C.
Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P.
Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: A modular and open-source
software project for quantum simulations of materials, J. Phys. Condens.
Matter. (2009). https://doi.org/10.1088/0953-8984/21/39/395502.
[46] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient
approximation made simple, Phys. Rev. Lett. (1996).
https://doi.org/10.1103/PhysRevLett.77.3865.
[47] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone
integrations, Phys. Rev. B. (1976).
https://doi.org/10.1103/PhysRevB.13.5188.
[48] S. Grimme, Accurate description of van der Waals complexes by
density functional theory including empirical corrections, J. Comput.
Chem. (2004). https://doi.org/10.1002/jcc.20078.
[49] C.G. Broyden, The convergence of a class of double-rank
minimization algorithms: 2. The new algorithm, IMA J. Appl. Math.
(Institute Math. Its Appl. (1970).
https://doi.org/10.1093/imamat/6.3.222.
[50] J.R. Soto, B. Molina, J.J. Castro, Reexamination of the origin
of the pseudo Jahn-Teller puckering instability in silicene, Phys. Chem.
Chem. Phys. (2015). https://doi.org/10.1039/c4cp05912c.
[51] S. Li, Y. Wu, Y. Tu, Y. Wang, T. Jiang, W. Liu, Y. Zhao,
Defects in silicene: Vacancy clusters, extended line defects, and
di-adatoms, Sci. Rep. (2015). https://doi.org/10.1038/srep07881.
[52] Chinnathambi, Kamal. ”Controlling band gap in silicene
monolayer using external electric field.” arXiv preprint
arXiv:1202.2636 (2012).
[53] G. Yang, L. Li, W.B. Lee, M.C. Ng, Structure of graphene and
its disorders: a review, Sci. Technol. Adv. Mater. (2018).
https://doi.org/10.1080/14686996.2018.1494493.
[54] M.J. Momeni, M. Mousavi-Khoshdel, T. Leisegang, Exploring the
performance of pristine and defective silicene and silicene-like XSi3
(X= Al, B, C, N, P) sheets as supercapacitor electrodes: A density
functional theory calculation of quantum capacitance, Phys. E
Low-Dimensional Syst. Nanostructures. (2020).
https://doi.org/10.1016/j.physe.2020.114290.
[55] S. Haldar, R.G. Amorim, B. Sanyal, R.H. Scheicher, A.R. Rocha,
Energetic stability, STM fingerprints and electronic transport
properties of defects in graphene and silicene, RSC Adv. (2016).
https://doi.org/10.1039/c5ra23052g.
[56] H. Wang, M. Wu, X. Lei, Z. Tian, B. Xu, K. Huang, C. Ouyang,
Siligraphene as a promising anode material for lithium-ion batteries
predicted from first-principles calculations, Nano Energy. (2018).
https://doi.org/10.1016/j.nanoen.2018.04.038.
[57] L.P. Ma, Z.S. Wu, J. Li, E.D. Wu, W.C. Ren, H.M. Cheng,
Hydrogen adsorption behavior of graphene above critical temperature,
Int. J. Hydrogen Energy. (2009).
https://doi.org/10.1016/j.ijhydene.2008.12.079.
[58] S. Srinivasan K V, A. Seth, D. Mohapatra, S. Ramachandran, R.
Sujith, Iron decorated defective phosphorene as a viable hydrogen
storage medium – A DFT study, Int. J. Hydrogen Energy. 47 (2022)
34976–34993. https://doi.org/10.1016/J.IJHYDENE.2022.08.074.
[59] L. Ma, J.M. Zhang, K.W. Xu, V. Ji, Hydrogen adsorption and
storage of Ca-decorated graphene with topological defects: A
first-principles study, Phys. E Low-Dimensional Syst. Nanostructures.
(2014). https://doi.org/10.1016/j.physe.2014.05.004.