REFERENCES
1. Tan D, Friščić T. Mechanochemistry for Organic Chemists: An Update.European Journal of Organic Chemistry . 2018;2018(1):18-33.
2. Ihlenfeldt W-D, Gasteiger J. Computer-Assisted Planning of Organic
Syntheses: The Second Generation of Programs. Angewandte Chemie
International Edition in English . 1996;34(2324):2613-2633.
3. Engkvist O, Norrby P-O, Selmi N, et al. Computational prediction of
chemical reactions: current status and outlook. Drug Discovery
Today . 2018;23(6):1203-1218.
4. Coley CW, Green WH, Jensen KF. Machine Learning in Computer-Aided
Synthesis Planning. Accounts of Chemical Research .
2018;51(5):1281-1289.
5. Baskin II, Madzhidov TI, Antipin IS, Varnek AA. Artificial
intelligence in synthetic chemistry: achievements and prospects.Russian Chemical Reviews . 2017;86(11):1127-1156.
6. Szymkuć S, Gajewska EP, Klucznik T, et al. Computer‐Assisted
Synthetic Planning: The End of the Beginning. Angewandte Chemie
International Edition . 2016;55(20):5904-5937.
7. Skoraczyński G, Kitlas M, Miasojedow B, Gambin A. Critical assessment
of synthetic accessibility scores in computer-assisted synthesis
planning. Journal of Cheminformatics . 2023;15(1).
8. Qiu F. Strategic efficiency — The new thrust for synthetic organic
chemists. Canadian Journal of Chemistry . 2008;86(9):903-906.
9. Ito S, Baba Y, Isomura T, Kashima H. Synthetic accessibility
assessment using auxiliary responses. Expert Systems with
Applications . 2020;145.
10. Podolyan Y, Walters MA, Karypis G. Assessing Synthetic Accessibility
of Chemical Compounds Using Machine Learning Methods. Journal of
Chemical Information and Modeling . 2010/06/28 2010;50(6):979-991.
11. Fukunishi Y, Kurosawa T, Mikami Y, Nakamura H. Prediction of
Synthetic Accessibility Based on Commercially Available Compound
Databases. Journal of Chemical Information and Modeling .
2014;54(12):3259-3267.
12. Li B, Chen H. Prediction of Compound Synthesis Accessibility Based
on Reaction Knowledge Graph. Molecules . 2022;27(3).
13. Ertl P, Schuffenhauer A. Estimation of synthetic accessibility score
of drug-like molecules based on molecular complexity and fragment
contributions. Journal of Cheminformatics . 2009;1(1).
14. Coley CW, Rogers L, Green WH, Jensen KF. SCScore: Synthetic
Complexity Learned from a Reaction Corpus. Journal of Chemical
Information and Modeling . 2018;58(2):252-261.
15. Voršilák M, Kolář M, Čmelo I, Svozil D. SYBA: Bayesian estimation of
synthetic accessibility of organic compounds. Journal of
Cheminformatics . 2020;12(1).
16. Thakkar A, Chadimová V, Bjerrum EJ, Engkvist O, Reymond J-L.
Retrosynthetic accessibility score (RAscore) – rapid machine learned
synthesizability classification from AI driven retrosynthetic planning.Chemical Science . 2021;12(9):3339-3349.
17. Yu J, Wang J, Zhao H, et al. Organic Compound Synthetic
Accessibility Prediction Based on the Graph Attention Mechanism.Journal of Chemical Information and Modeling .
2022;62(12):2973-2986.
18. Rogers D, Hahn M. Extended-Connectivity Fingerprints. Journal
of Chemical Information and Modeling . 2010/05/24 2010;50(5):742-754.
19. Kim S, Chen J, Cheng T, et al. PubChem 2019 update: improved access
to chemical data. Nucleic Acids Research .
2019;47(D1):D1102-D1109.
20. Wang W, Liu Q, Zhang L, Dong Y, Du J. RetroSynX: A retrosynthetic
analysis framework using hybrid reaction templates and group
contribution-based thermodynamic models. Chemical Engineering
Science . 2022;248.
21. Gao W, Coley CW. The Synthesizability of Molecules Proposed by
Generative Models. Journal of Chemical Information and Modeling .
2020;60(12):5714-5723.
22. Reaxys.https://www.reaxys.com. Accessed
August 19, 2023.https://www.reaxys.com
23. Andraos J. Aiming for a standardized protocol for preparing a
process green synthesis report and for ranking multiple synthesis plans
to a common target product. Green Processing and Synthesis .
2019;8(1):787-801.
24. Chen B, Li C, Dai H, Song L. Retro*: Learning Retrosynthetic
Planning with Neural Guided A* Search. 2020:arXiv:2006.15820.
25. Genheden S, Thakkar A, Chadimová V, Reymond J-L, Engkvist O, Bjerrum
E. AiZynthFinder: a fast, robust and flexible open-source software for
retrosynthetic planning. Journal of Cheminformatics . 2020;12(1).
26. Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE. Neural
Message Passing for Quantum Chemistry. 2017:arXiv:1704.01212.
27. Schütt KT, Sauceda HE, Kindermans PJ, Tkatchenko A, Müller KR.
SchNet - A deep learning architecture for molecules and materials.The Journal of chemical physics . Jun 28 2018;148(24):241722.
28. Yang J, Liu Z, Xiao S, et al. GraphFormers: GNN-nested Transformers
for Representation Learning on Textual Graph. 2021:arXiv:2105.02605.
29. Shui Z, Karypis G. Heterogeneous Molecular Graph Neural Networks for
Predicting Molecule Properties. presented at: 2020 IEEE International
Conference on Data Mining (ICDM); 2020;
30. Li Y, Zhang L, Liu Z. Multi-Objective De Novo Drug Design with
Conditional Graph Generative Model. 2018:arXiv:1801.07299.
31. Li Y, Vinyals O, Dyer C, Pascanu R, Battaglia P. Learning Deep
Generative Models of Graphs. 2018:arXiv:1803.03324.
32. You J, Liu B, Ying R, Pande V, Leskovec J. Graph Convolutional
Policy Network for Goal-Directed Molecular Graph Generation.
2018:arXiv:1806.02473.
33. Pinheiro GA, Da Silva JLF, Quiles MG. SMICLR: Contrastive Learning
on Multiple Molecular Representations for Semisupervised and
Unsupervised Representation Learning. Journal of Chemical
Information and Modeling . 2022;62(17):3948-3960.
34. Wang Y, Wang J, Cao Z, Barati Farimani A. Molecular contrastive
learning of representations via graph neural networks. Nature
Machine Intelligence . 2022/03/01 2022;4(3):279-287.
35. Li S, Zhou J, Xu T, Dou D, Xiong H. GeomGCL: Geometric Graph
Contrastive Learning for Molecular Property Prediction.
2021:arXiv:2109.11730.
36. Sun M, Xing J, Wang H, Chen B, Zhou J. MoCL: Data-driven Molecular
Fingerprint via Knowledge-aware Contrastive Learning from Molecular
Graph. presented at: Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining; 2021;
37. Fang Y, Zhang Q, Yang H, et al. Molecular Contrastive Learning with
Chemical Element Knowledge Graph. 2021:arXiv:2112.00544.
38. Kwon Y, Lee D, Choi Y-S, Kang S. Uncertainty-aware prediction of
chemical reaction yields with graph neural networks. Journal of
Cheminformatics . 2022;14(1).
39. Kearnes SM, Maser MR, Wleklinski M, et al. The Open Reaction
Database. Journal of the American Chemical Society .
2021;143(45):18820-18826.
40. Vaucher AC, Zipoli F, Geluykens J, Nair VH, Schwaller P, Laino T.
Automated extraction of chemical synthesis actions from experimental
procedures. Nature Communications . 2020;11(1).
41. Landrum G. Rdkit: Open-source chemoinformatics and machine learning.
. Accessed August 19, 2023.http://rdkit.org
42. Chen T, Kornblith S, Norouzi M, Hinton G. A Simple Framework for
Contrastive Learning of Visual Representations. 2020:arXiv:2002.05709.
43. Hu W, Liu B, Gomes J, et al. Strategies for Pre-training Graph
Neural Networks. 2019:arXiv:1905.12265.
44. Deep graph library.https://www.dgl.ai. Accessed August
19, 2023.
45. Zhang W, Sheng Z, Yin Z, et al. Model Degradation Hinders Deep Graph
Neural Networks. presented at: Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining; 2022;
46. Lin T-Y, Goyal P, Girshick R, He K, Dollár P. Focal Loss for Dense
Object Detection. 2017:arXiv:1708.02002.
47. Ruder S. An overview of gradient descent optimization algorithms.
2016:arXiv:1609.04747.
48. McInnes L, Healy J, Melville J. UMAP: Uniform Manifold Approximation
and Projection for Dimension Reduction. 2018:arXiv:1802.03426.
49. Yanqiong G. Study on Synthesis of Paracetamolum. JOURNAL OF
GUANGDONG UNIVERSITY OF TECHNOLOGY . 1997;
50. Si-Yi LI, You-Zhi L, Qiao-Ling Z, Mei B. Review on preparation
methods of p-aminophenol. Fine and Specialty Chemicals . 2011;
51. Kumar AV, Kiritkumar SD, Kantibhai PR, Rajendrakumar PB, Mansukhlal
TN, Rameshchandra UA. PROCESS FOR PREPARING CLOBAZAM USING NOVEL
INTERMEDIATES. 2016.
52. Fang Y, Du Y. A method for the preparation of clobazam. 2017.
53. Zhou H, Peng C, Liu Q, Zhang Z, Liao Z. A method for the industrial
production of clobazam. 2021.