REFERENCES

1. Tan D, Friščić T. Mechanochemistry for Organic Chemists: An Update.European Journal of Organic Chemistry . 2018;2018(1):18-33.
2. Ihlenfeldt W-D, Gasteiger J. Computer-Assisted Planning of Organic Syntheses: The Second Generation of Programs. Angewandte Chemie International Edition in English . 1996;34(2324):2613-2633.
3. Engkvist O, Norrby P-O, Selmi N, et al. Computational prediction of chemical reactions: current status and outlook. Drug Discovery Today . 2018;23(6):1203-1218.
4. Coley CW, Green WH, Jensen KF. Machine Learning in Computer-Aided Synthesis Planning. Accounts of Chemical Research . 2018;51(5):1281-1289.
5. Baskin II, Madzhidov TI, Antipin IS, Varnek AA. Artificial intelligence in synthetic chemistry: achievements and prospects.Russian Chemical Reviews . 2017;86(11):1127-1156.
6. Szymkuć S, Gajewska EP, Klucznik T, et al. Computer‐Assisted Synthetic Planning: The End of the Beginning. Angewandte Chemie International Edition . 2016;55(20):5904-5937.
7. Skoraczyński G, Kitlas M, Miasojedow B, Gambin A. Critical assessment of synthetic accessibility scores in computer-assisted synthesis planning. Journal of Cheminformatics . 2023;15(1).
8. Qiu F. Strategic efficiency — The new thrust for synthetic organic chemists. Canadian Journal of Chemistry . 2008;86(9):903-906.
9. Ito S, Baba Y, Isomura T, Kashima H. Synthetic accessibility assessment using auxiliary responses. Expert Systems with Applications . 2020;145.
10. Podolyan Y, Walters MA, Karypis G. Assessing Synthetic Accessibility of Chemical Compounds Using Machine Learning Methods. Journal of Chemical Information and Modeling . 2010/06/28 2010;50(6):979-991.
11. Fukunishi Y, Kurosawa T, Mikami Y, Nakamura H. Prediction of Synthetic Accessibility Based on Commercially Available Compound Databases. Journal of Chemical Information and Modeling . 2014;54(12):3259-3267.
12. Li B, Chen H. Prediction of Compound Synthesis Accessibility Based on Reaction Knowledge Graph. Molecules . 2022;27(3).
13. Ertl P, Schuffenhauer A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. Journal of Cheminformatics . 2009;1(1).
14. Coley CW, Rogers L, Green WH, Jensen KF. SCScore: Synthetic Complexity Learned from a Reaction Corpus. Journal of Chemical Information and Modeling . 2018;58(2):252-261.
15. Voršilák M, Kolář M, Čmelo I, Svozil D. SYBA: Bayesian estimation of synthetic accessibility of organic compounds. Journal of Cheminformatics . 2020;12(1).
16. Thakkar A, Chadimová V, Bjerrum EJ, Engkvist O, Reymond J-L. Retrosynthetic accessibility score (RAscore) – rapid machine learned synthesizability classification from AI driven retrosynthetic planning.Chemical Science . 2021;12(9):3339-3349.
17. Yu J, Wang J, Zhao H, et al. Organic Compound Synthetic Accessibility Prediction Based on the Graph Attention Mechanism.Journal of Chemical Information and Modeling . 2022;62(12):2973-2986.
18. Rogers D, Hahn M. Extended-Connectivity Fingerprints. Journal of Chemical Information and Modeling . 2010/05/24 2010;50(5):742-754.
19. Kim S, Chen J, Cheng T, et al. PubChem 2019 update: improved access to chemical data. Nucleic Acids Research . 2019;47(D1):D1102-D1109.
20. Wang W, Liu Q, Zhang L, Dong Y, Du J. RetroSynX: A retrosynthetic analysis framework using hybrid reaction templates and group contribution-based thermodynamic models. Chemical Engineering Science . 2022;248.
21. Gao W, Coley CW. The Synthesizability of Molecules Proposed by Generative Models. Journal of Chemical Information and Modeling . 2020;60(12):5714-5723.
22. Reaxys.https://www.reaxys.com. Accessed August 19, 2023.https://www.reaxys.com
23. Andraos J. Aiming for a standardized protocol for preparing a process green synthesis report and for ranking multiple synthesis plans to a common target product. Green Processing and Synthesis . 2019;8(1):787-801.
24. Chen B, Li C, Dai H, Song L. Retro*: Learning Retrosynthetic Planning with Neural Guided A* Search. 2020:arXiv:2006.15820.
25. Genheden S, Thakkar A, Chadimová V, Reymond J-L, Engkvist O, Bjerrum E. AiZynthFinder: a fast, robust and flexible open-source software for retrosynthetic planning. Journal of Cheminformatics . 2020;12(1).
26. Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE. Neural Message Passing for Quantum Chemistry. 2017:arXiv:1704.01212.
27. Schütt KT, Sauceda HE, Kindermans PJ, Tkatchenko A, Müller KR. SchNet - A deep learning architecture for molecules and materials.The Journal of chemical physics . Jun 28 2018;148(24):241722.
28. Yang J, Liu Z, Xiao S, et al. GraphFormers: GNN-nested Transformers for Representation Learning on Textual Graph. 2021:arXiv:2105.02605.
29. Shui Z, Karypis G. Heterogeneous Molecular Graph Neural Networks for Predicting Molecule Properties. presented at: 2020 IEEE International Conference on Data Mining (ICDM); 2020;
30. Li Y, Zhang L, Liu Z. Multi-Objective De Novo Drug Design with Conditional Graph Generative Model. 2018:arXiv:1801.07299.
31. Li Y, Vinyals O, Dyer C, Pascanu R, Battaglia P. Learning Deep Generative Models of Graphs. 2018:arXiv:1803.03324.
32. You J, Liu B, Ying R, Pande V, Leskovec J. Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation. 2018:arXiv:1806.02473.
33. Pinheiro GA, Da Silva JLF, Quiles MG. SMICLR: Contrastive Learning on Multiple Molecular Representations for Semisupervised and Unsupervised Representation Learning. Journal of Chemical Information and Modeling . 2022;62(17):3948-3960.
34. Wang Y, Wang J, Cao Z, Barati Farimani A. Molecular contrastive learning of representations via graph neural networks. Nature Machine Intelligence . 2022/03/01 2022;4(3):279-287.
35. Li S, Zhou J, Xu T, Dou D, Xiong H. GeomGCL: Geometric Graph Contrastive Learning for Molecular Property Prediction. 2021:arXiv:2109.11730.
36. Sun M, Xing J, Wang H, Chen B, Zhou J. MoCL: Data-driven Molecular Fingerprint via Knowledge-aware Contrastive Learning from Molecular Graph. presented at: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining; 2021;
37. Fang Y, Zhang Q, Yang H, et al. Molecular Contrastive Learning with Chemical Element Knowledge Graph. 2021:arXiv:2112.00544.
38. Kwon Y, Lee D, Choi Y-S, Kang S. Uncertainty-aware prediction of chemical reaction yields with graph neural networks. Journal of Cheminformatics . 2022;14(1).
39. Kearnes SM, Maser MR, Wleklinski M, et al. The Open Reaction Database. Journal of the American Chemical Society . 2021;143(45):18820-18826.
40. Vaucher AC, Zipoli F, Geluykens J, Nair VH, Schwaller P, Laino T. Automated extraction of chemical synthesis actions from experimental procedures. Nature Communications . 2020;11(1).
41. Landrum G. Rdkit: Open-source chemoinformatics and machine learning. . Accessed August 19, 2023.http://rdkit.org
42. Chen T, Kornblith S, Norouzi M, Hinton G. A Simple Framework for Contrastive Learning of Visual Representations. 2020:arXiv:2002.05709.
43. Hu W, Liu B, Gomes J, et al. Strategies for Pre-training Graph Neural Networks. 2019:arXiv:1905.12265.
44. Deep graph library.https://www.dgl.ai. Accessed August 19, 2023.
45. Zhang W, Sheng Z, Yin Z, et al. Model Degradation Hinders Deep Graph Neural Networks. presented at: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining; 2022;
46. Lin T-Y, Goyal P, Girshick R, He K, Dollár P. Focal Loss for Dense Object Detection. 2017:arXiv:1708.02002.
47. Ruder S. An overview of gradient descent optimization algorithms. 2016:arXiv:1609.04747.
48. McInnes L, Healy J, Melville J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. 2018:arXiv:1802.03426.
49. Yanqiong G. Study on Synthesis of Paracetamolum. JOURNAL OF GUANGDONG UNIVERSITY OF TECHNOLOGY . 1997;
50. Si-Yi LI, You-Zhi L, Qiao-Ling Z, Mei B. Review on preparation methods of p-aminophenol. Fine and Specialty Chemicals . 2011;
51. Kumar AV, Kiritkumar SD, Kantibhai PR, Rajendrakumar PB, Mansukhlal TN, Rameshchandra UA. PROCESS FOR PREPARING CLOBAZAM USING NOVEL INTERMEDIATES. 2016.
52. Fang Y, Du Y. A method for the preparation of clobazam. 2017.
53. Zhou H, Peng C, Liu Q, Zhang Z, Liao Z. A method for the industrial production of clobazam. 2021.