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Key Points:

 Explainable AI methods neural network behaviors learned to extract information from 
input data in a physically plausible way.

 The neural networks learned different behaviors at arid and non-arid sites, without aridity
information in the training data.

 Linear decompositions of the neural networks uncovered how such models learn to 
regionalize.
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Abstract

Machine learning (ML) based models have demonstrated very strong predictive capabilities for 
hydrologic modeling, but are often criticized for being black-boxes. In this paper we use a 
technique from the field of explainable AI (XAI), called layerwise relevance propagation (LRP) 
to “open the black box”. Specifically we train a deep neural network on data from a set of 
hydroclimatically diverse FluxNet sites to predict turbulent heat fluxes, and then use the LRP 
technique to analyze what it learned. We show that the neural network learns physically 
plausible relationships, including different ways of partitioning the turbulent heat fluxes 
according to moisture or energy limiting characteristics of the sites. That is, the neural network 
learns different behaviors at arid and non-arid sites. We also develop and demonstrate a novel 
technique that uses the output of the LRP analysis to explore how the neural network learned to 
regionalize between sites. We find that the neural network primarily learned behaviors that 
differed between evergreen forested sites and all other vegetation classes. Our analysis shows 
that even simple neural networks can extract physically-plausible relationships and that by using 
XAI methods we can learn new information from the ML-based methods.

Plain Language Summary

Machine learning (ML) techniques have been shown to make very good predictions for 
hydrology, but it is difficult to understand why they make good predictions, when they might 
fail, or what they have learned. A new field of techniques known as explainable artificial 
intelligence (or XAI) attempts to make ML models more understandable and tractable. We use 
these techniques to analyze an ML model of evaporation and conductive heat transfer. We find 
that the ML model learns relationships which agree with physical understanding. Further, we 
show that they are able to distinguish between arid and non-arid sites, even though they are not 
provided with this classification up front. Finally, we show how to use XAI to examine how the 
ML model learned intersite behavior. In doing so, we find that the ML model learns different 
behaviors at evergreen forest sites than all other site types.

1 Introduction

The hydrologic sciences have a long history of using a wide variety of modeling philosophies
(Baartman et al., 2020; Blöschl & Sivapalan, 1995; Kampf & Burges, 2007b). The framing of 
machine learning (ML) methods versus more process-based (PB) methods often pits “predictive 
performance” versus “explainability” (Lipton, 2017). With the recent surge in interest in using 
ML methods for hydrologic modeling as well as continuing advances in both process-based and 
data-driven models this debate continues. In this paper we hint that data-driven models may be 
used to refine theoretical underpinnings and improve hydrologic understanding. Specifically, we 
focus on a class of ML based models from the field of deep learning (DL), which generally are 
considered models with multiple hidden layers. We build on previous work that showed that DL 
parameterizations can be used directly in process-based models to represent individual processes,
and improve their predictions. In this study, we show how our DL parameterizations identify 
physically relevant predictor variables in a way that coincides with physical understanding and 
intuition while maintaining better predictive capabilities than existing process-based models. 
Additionally, we show how we can use explainable artificial intelligence (XAI) techniques to 
gain process insights that can guide the construction of robust and transferable models, and hint 
at important processes across a range of hydrometeorologic conditions.
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Toms et al. (2020) pointed out that it is common for studies using DL in geosciences to focus
exclusively on model output. Any interpretation of the models is done in an ad hoc fashion to 
ensure that the transformations from inputs to outputs are physically plausible. However, it is 
increasingly clear that DL techniques can be used as tools for interpretation as well as for 
predictive purposes (Barnes et al., 2020; Dobrescu et al., 2019; McGovern et al., 2019; Chen et 
al., 2020). This flipping of perspectives may allow for greater insight into what DL models are 
learning, and may allow for scientific understanding that will continue to advance hydrologic 
theory.

While the use of XAI methods is relatively new in the geosciences, a large number of 
techniques have been developed with differing goals and domains of application. Barredo Arrieta
et al. (2020) provide an overview and taxonomy of these methods. They distinguish six modes of
providing “post-hoc” explanations (that is, following training of the model) which are popular in 
the ML literature. These modes are visualization, local explanations, feature relevance ranking, 
explanations by example, text explanations, and model simplification. The technique we use 
here, Layerwise Relevance Propagation (LRP) (Bach et al., 2015), fits into several of these 
categories, namely “visualization”, “local explanations”, and “feature relevance”. It has recently 
been shown that a large number of XAI techniques bridge these categories and have similar 
general properties. Particularly it has been shown that gradient and saliency maps (Simonyan et 
al., 2014), relevance/attribution based methods (such as LRP), local explanations (LIME, Ribeiro
et al., 2016) are all facets of the more general framework of Shapley Additive Explanations
(Lundberg & Lee, 2017).

In Bennett & Nijssen (2020), we took the “traditional” ML approach and focused on 
predictive performance to train a DL parameterization for the prediction of turbulent heat fluxes. 
We then embedded this DL parameterization directly into a process-based hydrologic model 
(PBHM). We demonstrated that DL-based models that are trained out-of-sample are able to 
outperform locally-calibrated PBHMs at the half hourly timescale. We also showed that the DL 
parameterization was more accurate at representing the diurnal phase lag between shortwave 
radiation and latent heat. Further, we showed that providing the DL parameterization with 
updated soil moisture information from the PBHM on a per timestep basis enabled it to learn 
behavior that improved the long-term water balance compared to either the standalone PBHM or 
standalone DL parameterization. Our experiments hinted that the improvements in performance 
were due to the DL model’s ability to find physical relationships between input and output that 
had not been encoded explicitly in the physics-based models and that a synergy between PBHM 
and DL-based process parameterizations could provide ways to improve both modeling 
philosophies.

In this paper we take the perspective of Toms et al. (2020), by considering interpretability as 
our main objective. We continue to build on our methods of coupling physics-based and DL 
models for the simulation of turbulent heat fluxes. First, we explore whether the DL model 
learned physically plausible relationships and show that it was able to learn relationships which 
fit our physical understanding of how turbulent heat fluxes are generated. We show that the 
network also learned a connection between latent and sensible heat, particularly by learning 
different process relations between energy and moisture limited sites. The network learned that 
soil moisture limitations can be used to predict the partitioning between latent and sensible heat, 
though this constraint was not encoded into the network a priori, nor was any information about 
the long term aridity of each site.
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We also show how the LRP method can be used to understand what the network has learned 
between sites. Transfer of hydrologic understanding between sites, whether in the context of 
prediction at ungauged sites or parameter regionalization, remains one of the fundamental 
problems in hydrology (Blöschl et al., 2019; Hrachowitz et al., 2013). DL may offer a way 
forward in making predictions in ungauged basins (Kratzert et al., 2019). It has been suggested 
that data-driven models are more accurate out-of-sample because data-driven models (including 
DL) are able to extract more information from the given datasets than is currently extracted by 
PBHMs (Best et al., 2015; Loritz et al., 2018; Nearing, et al., 2020). To explore whether this is 
the case in our model we also explore how our DL parameterization learns to generalize across 
sites. In Bennett & Nijssen (2020), we found that the out-of-sample simulations from the DL 
models performed better than the in-sample, calibrated PBHM. This indicated that the DL 
parameterizations were able to learn some generalized method of predicting turbulent heat fluxes
that was not captured in the physics encoded by the PBHM and subsequent calibrations. We 
show how the LRP technique can be extended by using it to develop linear approximations of the
neural network at each site. We use these linear approximations to analyze how the neural 
network generalized between locations. We find that the neural network primarily learns 
different behaviors at evergreen forested sites than at all other site types. Based on our analysis 
we believe that this new technique that uses LRP decompositions is a very promising analysis 
tool for understanding how to extract understanding from DL models.

2 Materials and Methods

2.1 Data and study sites

As in Bennett & Nijssen (2020), we analyzed 60 FluxNet sites (Pastorello et al., 2020) where
data quality was robust enough and with a sufficient record length for a PBHM to be run. We 
required at least 3 years of half hourly data with at most 15% of the entire record missing. 
Missing data was gap-filled by the FluxNet teams with ERA-interim data that has been bias-
corrected and downscaled. This resulted in 509 site-years worth of half hourly data.  Figure 1 
shows the locations and vegetation types of each of the sites.
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Figure 1 A map of the FluxNet sites used in the analysis, coded by IGBP land cover 

classification.

2.2 Coupled deep learning parameterization

To predict turbulent heat fluxes we use a deep dense neural network, also known as a 
multilayer perceptron architecture or a deep feedforward network (Goodfellow et al., 2016). We 
chose this network to be consistent with Bennett & Nijssen (2020). It was originally chosen so 
that we could embed the neural network into the SUMMA hydrologic model (Clark et al., 
2015a). This coupling allowed us to use model-derived states as input to the neural network, both
during training and during execution of the coupled model. The use of SUMMA as our PBHM 
allowed us to maintain the mass and energy balances while exploiting the flexibility and 
predictive capabilities of neural networks. Coupling the DL parameterization into SUMMA was 
facilitated by the Fortran-Keras-Bridge (FKB) (Ott et al., 2020), which allows neural networks 
which are trained via the Keras python package (Chollet et al., 2015) to be executed by Fortran-
based models (such as SUMMA). Currently FKB only allows for densely connected networks, 
which is the reason for our architectural choice. Future developments may allow for more 
complex network architectures, which may improve both predictive capabilities as well as 
interpretability. Compared to the network which was used in Bennett & Nijssen (2020), the 
network that we train here is much smaller. By reducing the size of the network we can more 
easily disentangle the impact of the input variables on the predicted turbulent heat fluxes.

We trained a 2 layer neural network with each layer consisting of 28 nodes with hyperbolic 
tangent activations. At each layer we incorporate dropout regularization (with dropout rate of 
0.1). We used the mean squared error between predicted and observed heat fluxes at a half-
hourly interval as our loss function. The neural network was optimized using the Adam method, 
which automatically tunes the learning rate and has been shown to work well in many settings 
(Kingma & Ba, 2017). Training is stopped when the loss on the validation data has not been 
reduced for at least 5 training epochs to further reduce the possibility of overfitting. 

The neural network we trained takes air temperature, relative humidity, shortwave radiation, 
soil moisture content, leaf area index (LAI) multiplied by the height of the vegetation canopy, 
and International Geosphere-Biosphere Programme (IGBP) land cover class (Loveland et al., 
2000) as inputs. The network predicts latent and sensible heat fluxes. The soil moisture content is
computed as the depth-average soil moisture of the top four (out of a total of 8) soil layers as 
computed by SUMMA. It is scaled between the moisture content at wilting point (0) and the 
moisture content at saturation (1) before it is used as an input to the neural network. Both the 
saturation and wilting points are site-specific values whose values were determined as described 
in Bennett & Nijssen (2020). We used only the top four soil layers because it represented a good 
compromise between the total transpirable water and the surface layer moisture, which were used
in Bennett & Nijssen (2020). We decided to include only a single input related to soil moisture to
facilitate interpretation. Each input represents a single timestep at the half-hourly timescale and 
does not include any other temporal information. We refer to this neural network configuration 
as NNLRP throughout the remainder of this paper.

2.3 Layerwise relevance propagation

We use the layerwise relevance propagation (LRP) technique to interpret the system learned 
by NNLRP. The use of LRP in the geosciences is relatively new, though a good overview of the 
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method within that context can be found in Toms et al. (2020). Bach et al. (2015) and Montavon 
et al. (2017) explain the original method in greater detail. For clarity we provide a high level 
description of the LRP algorithm.

Intuitively, LRP works by taking advantage of the ability to backpropagate information from 
the outputs to the inputs of a neural network. Following training, neural networks can be used to 
make predictions using the forward pass. LRP uses the predictions made during the forward pass,
along with a “rule” for partitioning relevance between neurons to backpropagate a relevance 
score from outputs to inputs for each prediction that is made. Relevance scores are computed for 
each prediction, meaning we obtain timeseries of relevances for each input variable with respect 
to both latent and sensible heat outputs.

 A number of functional relationships, referred to as rules, can be used to compute and 
backpropagate relevance, each with different purposes, interpretations, and theoretical properties.
For a review of some of the most commonly used rules see Samek et al. (2019). Mamalakis et al.
(2021) compared several of these rules and found that the “Z rule” for propagating relevance was
best suited for applications in the geosciences. In this study we use the Epsilon rule (Equation 1),
which is the same as the Z rule, but is more numerically robust when the denominator inside of 
the sum is small. The Epsilon rule propagates relevance according to the rule:

R j=∑
k

a jw jk

ϵ+∑
j

a jw jk

R k

1
where the j , k  subscripts denote the index of the nodes in the network, a j is the output of the jth

node from the forward (predictive) pass, w jk is the weight of the connection between the jthand

k th nodes, and Rkis the relevance computed for the k th node. ϵ  is a tunable parameter which is 
introduced to “absorb” some of the relevance when the sum of all of the contributions of the 

weights to the relevance in the denominator is small (∑
j

a jw jkin the denominator of Equation 1).

For all relevance scores reported in this study we use ϵ=0.001. A schematic and example of how
the relevance scores are calculated is shown in figure 2.
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Figure 2. Schematic of the relevance score calculation. A simplified network architecture with 2 
layers, each of 2 nodes, is shown in panel a, with the node where j=0 outlined in red. Panel b 
shows the calculation of the relevance score the j=0 node in panel a. 

The relevance score is approximately proportional to the derivative of the flux with respect to
an input variable. We demonstrate this in figure S2 of the supporting information. Considering 
this interpretation of the relevance score as a sensitivity shows that a variable can be considered a
“producer” of the flux when the relevance score is positive, and an “inhibitor” of the flux when 
the score is negative. 

2.4 Using LRP to disentangle site similarity

One of the surprising findings of Bennett & Nijssen (2020) was that the DL based 
approaches outperformed the process-based model at sites where the DL models were not 
trained. This indicated that the neural network learned inter-site generalizations that were not 
encoded in the PBHM. We extended our use of LRP to better understand of how the NN learned 
to generalize between sites. We did this by shifting the perspective of what the relevance scores 
represent. 

Relevance scores derived from LRP are proportional to local sensitivities from model inputs 
to outputs and the method can be grounded in the theory of Taylor expansions (Montavon et al., 
2017). The set of all relevance scores for a particular site can be seen as a decomposition of what
the neural network learned about that site. We used this decomposition into a set of local 
sensitivities of the inputs and flux responses of the outputs to build a linear model for each site. 
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Figure 3. A schematic of how we build site-specific linear decompositions of NNLRP from the 
relevance timeseries. We first use LRP to produce timeseries of relevance scores for each of the 
input variables to NNLRP. These timeseries are then fit via linear regression against the 
turbulent heat fluxes that NNLRP produces as output. The resulting weights of the linear 
regression, shown in the schematic as a0 through a3 are site specific regression coefficients, 
though the system is larger in reality. See section 2.2 for descriptions of the inputs to NNLRP.

This perspective is similar to the Sparse Identification of Nonlinear Dynamics (SINDy) 
method, which has proven successful in discovering the governing equations of dynamical 
systems from data (Brunton et al., 2016). However, the approach and goal of our regression 
analysis differ slightly from those of SINDy. In our approach we do not require the promotion of 
sparsity that SINDy uses, since we have already allowed the neural networks to determine 
feature importance. Additionally, we do not use this regression approach to build an explanatory 
model which can be used separate from the neural network, but rather to understand how the 
neural network learned from different sites. For clarity, this linear model is not usable without 
the neural network because the independent variables are derived from the trained neural 
network.

We built these linear models by performing a multivariate linear regression at each site where
the predictor variables are the set of relevance scores for each of the neural network inputs and 
the target variable is a turbulent heat flux (Figure 3). We found that this linearized model can 
almost exactly reproduce the relationship between the relevance scores and heat fluxes. This is 
shown in figure S3 of the supporting information.
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Our key insight is that the relevance scores are conditional on the weights and biases of the 
trained neural network, which accounts for the entire training dataset across sites. By fitting a 
regression at one site and applying it to another we quantified the inter-site learning by the neural
network. This allowed us to build graphs of site interactions which yield insight into the nature 
of variability of turbulent heat fluxes across sites.

3 Results

3.1 Performance of the NNLRP model

Before determining what the neural network learned, it is important to ensure that the neural 
network performed adequately. We measured the performance of the new network against those 
used in Bennett & Nijssen (2020). Figure 4 shows the results of calculating the Kling-Gupta 
Efficiency (KGE) score for each site at the half-hourly timestep against the observations across 
the entire simulation record. The SA (or standalone) simulations are the benchmark simulations 
that use the process-equations for turbulent heat fluxes in SUMMA. The SA simulations were 
calibrated in-sample (i.e., using local observations of the turbulent heat fluxes). The NN2W (or 
neural-network-2-way) is the coupled model in Bennett & Nijssen (2020). NN2W is a neural 
network run directly in SUMMA that predicts turbulent heat fluxes for each half-hourly model 
interval based on both SUMMA inputs as well as dynamically-updated SUMMA soil moisture. 
Bennett & Nijssen (2020) demonstrated good performance for NN2W coupled into SUMMA. It 
was trained out of sample, meaning that the performance metrics were calculated for sites which 
the network was not trained on. In contrast, NNLRP was trained on the entire dataset and was 
thus was evaluated in-sample. This choice was motivated because we are not interested in using 
NNLRP to make predictions, but rather, we want to understand what NNRLP has learned during 
training.

It is unsurprising that NNLRP did not match the performance of NN2W, because we reduced
the network to aid interpretability. The network was reduced from approximately 13,000 
parameters (NN2W) to roughly 1000 parameters (NNLRP). We also reduced the number of input
features. However, it is promising that NNLRP obtained performance which continued to exceed
that of SA. NNLRP performance relative to NN2W showed a greater decline for sensible heat 
than for latent heat. During our design of NNLRP we considered including additional variables 
that were included in the training of NN2W but we were unable to improve performance for 
sensible heat without adding more neurons or layers and thus increasing model capacity. In the 
interest of maintaining a simple network that would allow for robust interpretations of the LRP 
method, we opted to trade model simplicity for loss in model performance for sensible heat.
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Figure 4. A comparison of the KGE performance of the neural network used in our analysis 
(NNLRP) against the SA and NN2W models reported in Bennett & Nijssen (2020). KGE scores 
were calculated based on observations of the half-hourly turbulent heat fluxes at the FluxNet 
sites.

3.2 Layerwise relevance propagation in the predictive model

We computed the relevance of each of the input variables to the neural networks at each site. 
We computed timeseries of relevance scores for each of the input variables to gain an intuitive 
understanding of the relevance scores. Figures 5 and 6 show these timeseries for both an energy 
limited (CH-Fru, figure 5) and moisture limited (US-Whs, figure 6) site. CH-Fru is a grasslands 
site near the base of the Swiss Alps. US-Whs is a semi-arid shrubland located in the Chihuahuan 
desert of the southwestern United States. To simplify the timeseries we show the average daily 
daytime values. We chose to illustrate the timeseries during the daytime because the turbulent 
heat fluxes are largest during this time. We omitted the timeseries of LAI and vegetation 
relevance for simplicity.

At CH-Fru, we see large (in absolute value) relevance scores for latent heat from the air 
temperature and shortwave radiation (Figure 5). The importance of shortwave radiation and 
temperature is unsurprising and fits with physical understanding of the drivers of latent heat, 
namely available energy and atmospheric demand. Relative humidity also shows some 
importance in the prediction of latent heat, though less than air temperature or shortwave 
radiation. Soil moisture shows the smallest relevance scores for both latent and sensible heat, 
which is unsurprising since CH-Fru is not moisture limited. However, we do note the strong 
(negative) correlation between the latent heat relevance timeseries for humidity and soil 
moisture. We will investigate this behavior later in this section. Similarly, there appears to be a 
negative correlation between the temperature relevance timeseries for latent and sensible heat. 
These negative correlations hint that the network learned strategies for partitioning between heat 
fluxes, which is surprising. The NNLRP network was not constrained to conserve energy, which 
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means that it learned this partitioning directly from covariances in the training data. We will see 
that this partitioning behavior is also present in the relevance from soil moisture states.

Figure 5 Timeseries for meteorological conditions and LRP-derived relevance values at CH-Fru.
Subplots a-d show the observed forcings used as input to the neural network, while subplots e-h 
show the relevance timeseries for latent (blue) and sensible (orange) heat with respect to each of 
the input variables. Subplots i and j show the observed and simulated heat fluxes.

At US-Whs (Figure 6), we see some similar relationships. Air temperature is most relevant 
for latent heat, while shortwave radiation is most relevant for sensible heat. We will show that 
these and other relationships are quite stable across locations. Again, we see the strong negative 
correlation between latent and sensible heat relevances from temperature, indicating that the 
neural network uses temperature as a variable to partition energy between the heat fluxes. Unlike
at CH-Fru, we see a large spike in the magnitudes of relevance from soil moisture to both latent 
and sensible heat. This spike in relevance corresponds to the soil moisture increase in figure 6d 
and indicates that the network learned when the site was moisture limited.  
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Figure 6. Timeseries for meteorological conditions and LRP-derived relevance values US-Whs.
We show the average (normalized) relevance scores of all of the model inputs in Figure 7, to 

provide a broader understanding of what the network finds important across sites. Sites were 
sorted in ascending order of aridity, defined as the long-term total potential evapotranspiration 
(PET) divided by the long-term total precipitation. PET is calculated according to the Hargreaves
formula (Hargreaves & Allen, 2003). The grey vertical dashed line shows the threshold for PET/
P of 1. The general ranking of relevance scores for both latent (Figure 7a) and sensible heat 
(Figure 7b) is stable across sites, particularly the primary importance of air temperature for latent
heat and shortwave radiation for sensible heat. 

It seems that NNLRP uses vegetation types to partition the latent and sensible heat fluxes 
differently in different ecosystems. The need to include vegetation types to maintain 
performance (as discussed in section 3.1) indicates that the other inputs were not sufficient to 
distinguish between different vegetation types, and therefore site-specific behaviors of turbulent 
heat fluxes. The importance of vegetation type as a static feature shows that finding better input 
variables that are able to predict site-specific properties should improve the performance and 
generality of neural networks to predict turbulent heat fluxes. We will return to this in section 
3.3.

Figure 7a indicates that the network learned to use air temperature, relative humidity, 
shortwave radiation, and surface soil moisture to “produce” latent heat fluxes and vegetation type
and relative humidity “inhibit” latent heat fluxes. Generally the positive relevance scores are 
much larger than the negative relevance scores, indicating that the network is more sensitive to 
changes that increase the predicted latent heat than changes that decrease it. On the other hand, 
only shortwave and relative humidity have consistently positive relevance scores for sensible 
heat fluxes (figure 7b). Air temperature, soil moisture, LAI, and vegetation type have 
consistently negative relevance scores. 

The apportionment of relevance across sites for sensible heat (Figure 7b) shows more 
variation than that of latent heat (Figure 7a). This is largely due to the contributions of relative 
humidity and vegetation types. Because a vegetation type is site-specific and static through time, 
it is hard to disentangle it from the other variables which are temporally varying. We will 
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analyze the site-specific behavior further in section 3.3. An interesting feature of Figure 7 is that 
the relevance of relative humidity to latent heat tends to be negative for PET/P<1, and positive 
when PET/P>1. Similarly, the relevance of relative humidity to sensible heat is often a 
considerable fraction of the positive relevance when PET/P<1 and is greatly diminished when 
PET/P>1. This indicates that the network learned different relationships for these two regimes 
(energy-limited versus moisture-limited).

Figure 7. Average fraction of relevance by input variable. Panel a shows the relevance 
breakdown for latent heat, while panel b shows the breakdown for sensible heat. Sites are sorted 
by increasing PET/P. The dashed line shows the threshold of PET/P = 1, with energy-limited 
sites to the left and moisture-limited sites to the right.

Figure 6 shows breakdowns which are site specific, but we can also compare individual 
components across sites. For instance, the strength of the correspondence between tradeoffs in 
relevance between latent and sensible heats is controlled by whether a site is energy limited. We 
show two examples of this in Figure 8. In Figure 8a we compute the correlation between the soil 
moisture relevance timeseries to latent and sensible heat. For energy-limited sites (PET/P < 1), 
the correlation varies considerably. Moisture-limited sites (PET/P > 1) show consistently high 
negative correlations between the same soil moisture relevance timeseries. This high correlation 
indicates that the network identified when moisture contents are a primary control on the 
partitioning of energy between latent and sensible heat.
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Figure 8. NNLRP exhibits different behavior in energy and moisture limited sites. Panel a shows
the correlation between the relevance between latent and sensible heat with respect to soil 
moisture, indicating NNLRP learned to partition between turbulent heat fluxes based on soil 
moisture availability. Panel b shows the correlation between the relevance from soil moisture to 
latent heat and the relevance from relative humidity and latent heat, indicating that NNLRP 
learned different physical relationships at sites of varying aridity (PET/P).

Another tradeoff that the network learned was the relationship between soil moisture and 
relative humidity, as previously discussed. To show this, we performed a similar analysis as in 
Figure 8b, but instead computed the correlation between the relevance of soil moisture to latent 
heat and the relevance of relative humidity to latent heat as shown in Figure 8a. As PET/P 
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increases this correlation goes from strongly negative to moderately positive, indicating that the 
neural network learned specific behaviors based on the covariance of these two variables. 

At energy limited sites (PET/P << 1) when humidity is a strong control on evaporation (high 
relevance from humidity to latent heat) the atmospheric demand for more moisture would be 
low. If atmospheric demand is low, then it does not matter how much moisture is in the soil, 
resulting in low relevance from soil moisture to latent heat. On the other hand at arid sites (PET/
P >> 1) when there is enough soil moisture to evaporate, which coincides with higher amounts of
relative humidity. The relationships between the relevance timeseries at different sites hint at 
how NNLRP was able to learn about long-term behaviors from the short-term input data based 
on the covariances presented in the data. This indicates that NNLRP was able to learn some 
physical relationships which we did not encode or provide as input.

3.3 Using LRP to decompose inter-site predictions

Thus far, we have only discussed general properties of NNLRP. As we outlined in section 2.4
we can use the relevance score to develop a linear model for each site. This linearized 
approximation reproduces the neural network output to a high degree of accuracy. We 
demonstrate this by fitting a linear model that uses the relevance scores as inputs to determine 
the turbulent heat fluxes at the half-hourly time scale. We then compared this fit to the full 
timeseries of turbulent heat fluxes simulated by the neural network. We found that the linear 
models were able to achieve KGE values larger than 0.95 on average, confirming our hypothesis 
that the relevance decomposition provides good explanatory power of the time series of turbulent
heat fluxes at each site. A figure showing the KGE values (evaluated against the output of 
NNLRP at the half-hourly interval) for each site is shown in Figure S2 in the supporting 
information.

We used these linear approximations to quantify the similarity of representations learned by 
NNRLP by clustering the regression coefficients using agglomorative clustering (Day & 
Edelsbrunner, 1984), resulting in the dendrogram shown in Figure 9. The hierarchical clustering 
in figure 9 shows two main groupings. The green cluster is comprised of all of the evergreen 
needleleaf forest sites, and a single evergreen broadleaf site (AU-Wac). The purple cluster 
contains all other sites. We examined the regression coefficients between the two clusters and 
found that the main difference between the two groups was the coefficient for the vegetation 
type. This clustering indicates that NNLRP learned specific behaviors for the evergreen forested 
sites and non-evergreen-forested sites. Further, based on the height of the green cluster in Figure 
9 NNLRP learned a more diverse set of behaviors for the green cluster than for the purple 
cluster. This also indicates that the sites in the green cluster are more unique than those in the 
purple cluster.
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Figure 9. Dendrogram of site clusters based on the regression coefficients based on the 
methodology described in section 2.4. The height between each branch represents the distance 
between successive clusters. The purple and green clusters were selected because they were the 
“level” of clustering with the greatest distance between them. 

The success of the linear model that maps relevance to heat flux can then be used to 
investigate how well the neural network takes information from one site and applies it to another.
To do so, we fit a linear model at  a “source” site, then applied it to a “target” site. We then 
calculated the KGE between the output of the linear model and the output of the neural network 
at the target site and call this the inter-site “explainability score”. We computed this 
explainability score for all site pairs, resulting in a matrix of scores, which can be thought of as a 
weighted-directed graph. We also pruned connections that do not provide good predictions, with 
a lower bound for making predictions that achieve a KGE score of at least 90% of that which 
NNLRP scored. To ensure that record-length did not affect the scores, we used the same number 
of data points to compute each regression, equal to the number of timesteps (randomly sampled) 
at the site with the shortest record (at site CA-TPD, where nT  = 57552 half-hour timesteps). The 
full heatmaps of these inter-site explainability scores are shown in Figure S3 of the supporting 
information.

We aggregated these weighted-directed graphs to analyze which sites are difficult to predict 
and which sites are good predictors.We then performed two analyses. First, we examined for 
each site how well its locally-trained linear model performed at all other sites. Second, we 
examined for each site how well all remotely-trained models (models trained at other sites) 
performed locally. That is, in the first analysis we examined the performance when we used each
site as a fixed “source” model for all other sites, and in the second analysis we examined the 
performance of each site as a “target”. We used the modified KGE (denoted KGEm) score, 
which is a normalized version of the KGE (Mathevet et al., 2006), and is calculated as
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KGEm=
KGE

2−KGE
2

We show the results of these analyses in Figure 10. The x-axis shows the site performance 
when its linear model was used as a predictor (source) and the y-axis shows the performance 
when a site is predicted using the linear models trained at other sites (target). The grey dashed 
lines at KGEm≅−0.17 represent the benchmark value when the model output is compared 
against the mean of the NNLRP model output (Knoben et al., 2019). This divides each panel of 
Figure 10 into four quadrants. Sites in the lower left quadrant were both bad predictors and were 
not predicted well by any other sites. None of our sites fell into this quadrant indicating that 
NNLRP always learned at least some generalizable behaviors. Sites which fell in the lower right 
quadrant were good predictors, but not able to be predicted. Only 2 sites fell within this quadrant 
in Figure 10a, NL-Hor and DE-Gri. We will speculate in section 4 as to why these sites fall in 
this quadrant. Sites in the upper left quadrant sites were bad at predicting other sites but able to 
be predicted well. This quadrant is entirely dominated by the evergreen needleaf and broadleaf 
forested sites, which form their own cluster that slightly crosses over to the upper right quadrant. 
These sites all showed much greater variability in their performance as a predictor, seen by the 
long right-ward tails in the interquartile range of Figure 10a. Finally, sites in the upper right 
quadrant of Figure 10a are sites which were both good at predicting other sites as well as at being
predicted by other sites. These sites tended to have greater variability in their performance when 
being predicted by linear models from other sites, seen by the long downward tails in the 
interquartile range of Figure 10a. We see that, outside of the evergreen needle and broadleaf sites
and the two outliers in the bottom right quadrant, the remainder of sites are tightly clustered into 
this quadrant. Based on this analysis we conclude that NNLRP learned a wide range of 
generalizable behaviors between sites, with some specific differences between evergreen needle 
and broadleaf sites and other land cover types.

Figure 10. Scatter of site performance counts when using a linear model from one site applied at 
another. The x-axis shows the modified KGE when the linear model of a site is used to predict 
all other sties. The y-axis shows the modified KGE with linear models of all other sites are used 
to predict a single site. Dots show the median value across all sites, and the lines show the 
interquartile ranges. Dashed lines show the the threshold value of KGEm≅−0.17. Points above 
these thresholds indicate that they performed better than simply using the mean of the NNLRP 
output for that site. Panel a shows the results for the entire dataset. Panels b and c show the 
results when you restrict the analysis to only a single cluster from the clustering in figure 9.

17

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464
465

466

467

468

469

470

471

472



manuscript submitted to Water Resources Research

In panels b and c of Figure 10 we separated the analysis into the two clusters found by the 
clustering in Figure 9. In both cases, separating the clusters reduces the long tails in the 
interquartile ranges. The majority of the sites in Figure 10b still fall into the upper-left quadrant, 
though the two outliers from before are still present, as well as two evergreen broadleaf sites (IT-
Cpz and FR-Pue) which fall slightly into the upper left quadrant. In Figure 9 both of these sites 
are the most unique within the purple cluster, where they form the first branch of the purple 
cluster. In Figure 10c we see a large change in the performance of the green cluster from Figure 
9. All sites fall entirely within the upper right quadrant, meaning they are all able to predict and 
be predicted reliably by each other. This, along with the clustering from Figure 9, shows that 
NNLRP learned two specific sets of behavior between the two clusters.

4 Discussion

Our LRP-based analysis of a neural network for simulating latent and sensible heat fluxes 
identified relationships between inputs and outputs that generally agree with physical 
understanding and hydrologic theory. Further, we showed that the network uncovered constraints
and learned how to partition turbulent heat fluxes in a physically plausible way. For instance, 
NNLRP predicted that at arid sites the importance of soil moisture to latent heat should be 
inversely proportional to the importance of soil moisture for sensible heat. NNLRP was able to 
learn these partitionings only by looking at half-hourly data, with no explicit temporal memory, 
or estimates of PET or precipitation as inputs. This hints that neural networks are able to extract 
and learn about longer term site characteristics that are somehow implicitly encoded in the input 
data.

While LRP analysis does not provide us with (parsimonious) symbolic relationships between 
inputs and outputs, it does indicate that neural networks may be capable of learning physical 
behavior even when they are not specifically guided to do so. Building models which directly 
encode constraints or promote known relationships may allow us to build networks that are more
realistic and/or easier to extract scientific knowledge from.

Even though we say that the neural network learned physically plausible relationships, much 
work remains to be done to adequately constrain deep-learning based models of physical 
processes. Sampling a full range of one variable while holding all other inputs constant is an easy
way to screen for model sensitivity and can expose ways in which DL models fail (or make 
incorrect inferences) (Szegedy et al., 2014). Though catastrophic failure modes in DL models 
have been observed in other applications (Huang et al., 2017; Nguyen et al., 2015), the results 
from our analyses show that the NNLRP configuration does not “blow up” when pushed to the 
edges of the data distributions on which it was trained (as shown in Figure S1 of the supporting 
information). We believe that this is because our dataset covers the phase space well and is 
generally well constrained. DL-based solutions to problems which incorporate much higher 
dimensional data with more inputs or with spatio-temporal awareness seem to be more likely to 
produce catastrophic failure modes.

To our knowledge, the use of LRP relevance decompositions to build linear models to 
compare inter-site relationships is a new technique. This approach allowed us to look at which 
sites the DL model was able to use for predictions of the other sites. We found that NNLRP 
learned different behaviors between the evergreen needleleaf sites and sites with all other IGBP 
classifications. We showed how these linear decompositions of relevance demonstrated that 
these two clusters not only had different regressions, but were much better at within-cluster than 
between-cluster prediction, both as source and target sites. We found that the largest difference 
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between the regression coefficients of these two clusters was for the vegetation classification. 
We tried excluding vegetation type when we trained the NNLRP, but were unable to get good 
performance without it. It seems that NNLRP was able to learn a number of physically realistic 
behaviors, but still needed to use the simple static vegetation classification to learn site-specific 
behaviors. Inclusion of more physically meaningful quantities, such as stomatal or soil 
resistances, in the training data may allow neural networks to learn even more physically realistic
behaviors, without the need for a static land use classifier. Inclusion of such terms might allow 
for better estimation and separation of transpiration and evaporation, which may improve the 
ability for neural networks to generalize even further.

This type of approach might also be used to make recommendations for where future 
observations might be made or to better understand and categorize land-atmosphere interactions. 
For instance, we found that DE-Gri and NL-Hor, while good at predicting other sites, were 
difficult to predict given a linear model from another site. There may be several reasons for this 
behavior. If these sites exhibit a very diverse set of behaviors they would be able to be good 
predictors but not be easily predicted by sites which are less diverse. It may also be that these 
sites are subject to active water management, which may make them difficult to model. 

It is important to make the distinction that our results are based on the simplest neural 
network available, a feedforward network. Both convolutional and recurrent neural networks 
(CNNs and RNNs, respectively) have been used to great effect in hydrology and can aid 
interpretation when implemented carefully. For instance, the hidden states of RNNs can be 
viewed as proxies for stateful quantities such as snowpack (Hoedt et al., 2021; Jiang et al., 2020; 
Kratzert et al., 2018) while CNNs can distill spatial relationships (Castelluccio et al., 2015; Geng
et al., 2015). LRP has been more successfully applied to CNNs than to densely connected 
networks, due to their reduced dimensionality and preservation of local structures (Samek et al., 
2019). LRP can also be applied to RNNs, though the methodology is not as well-developed as 
for convolutional networks (Arras et al., 2017, 2019). Future applications of such methods in 
conjunction with more advanced XAI methods will likely be able to uncover physical 
relationships in higher fidelity than previous methods.

5 Conclusions

The use of XAI methods can help interpret how neural networks make their predictions. In 
this study we have shown how a particular technique, LRP, can be used to understand a neural 
network for predicting turbulent heat fluxes. LRP decomposes each individual prediction that the
neural network makes into a set of relevance scores, which explain how important each input 
feature was to that prediction. This can be done for all predictions, producing timeseries of 
relevance scores. We showed that the overall importance of variables to each latent and sensible 
heat follow physical intuition. For latent heat we found that air temperature and shortwave 
radiation were both drivers of latent heat production across sites. For sensible heat the shortwave 
radiation was the main driver, while air temperature was used to partition between latent and 
sensible heat. Further, at many sites the relative humidity was an important factor for predicting 
sensible heat.

We also showed that NNLRP learned partitioning behaviors. At arid sites NNLRP learned to 
use soil moisture as a strong indicator for the partitioning between latent and sensible heat. 
NNLRP also learned different behaviors for using relative humidity at moisture and energy 
limited sites. This indicates that neural networks can automatically discover and encode 
information about physical processes that it has not been told about, purely from data. While we 
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still lack methods to directly translate these discoveries into a new theory, it does indicate the 
possibility that we may be able to do so in the future. Improvements in XAI methods and 
improving the types of ML models which we use for scientific applications will further the goal 
of developing new theory from ML based models.

Alongside improvements to the XAI and ML methods, we also argue that it is important to 
continue to design experiments to address questions that cannot be investigated with 
straightforward applications of other methods. We used the LRP decomposition to compare what
NNLRP learned between sites. Our new analysis based on these decompositions provided a way 
to cluster the sites and identified sites that were unique, as well as “indicator” sites which 
provide good predictions for large numbers of other sites. XAI methods offer ways in which we 
can learn from the trained networks, rather than just being able to make predictions. Training 
networks with architectures which promote interpretability and continuing to develop ways to 
extract information from them looks to be a promising way to learn from large datasets.
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