SfM Volume for Exotic Annual Grass Biomass and Fine Fuels
Conflicts of Interest
The authors declare that they have no conflicts of interest.
Funding
Funding: this work is supported by the National Institute of Food and
Agriculture, US Department of Agriculture [2019-68008-29914].
Permission to Reproduce Materials from Other
Sources
None/not applicable.
Data Availability
Statement
Data and code is available for reviewers at
https://drive.google.com/drive/folders/1TnYQKFnTyV3aBjx9bWQavYnS7JqHlv2e?usp=sharing
and will be published via DOI through Boise State University
ScholarWorks preceding publication of manuscript.
References
Ahlstrom, A., Raupach, M.R., Schurgers, G., Smith, B., Arneth, A., Jung,
M., Reichstein, M., Canadell, J.G., Friedlingstein, P., Jain, A.K.,
Kato, E., Poulter, B., Sitch, S., Stocker, B.D., Viovy, N., Wang, Y.P.,
Wiltshire, A., Zaehle, S., Zeng, N., 2015. The dominant role of
semi-arid ecosystems in the trend and variability of the land CO2 sink.
Science (80-. ). 348, 895–899. https://doi.org/10.1126/science.aaa1668
Anderson, K.E., Glenn, N.F., Spaete, L.P. et al. Methodological
considerations of terrestrial laser scanning for vegetation monitoring
in the sagebrush steppe. Environ Monit Assess 189, 578 (2017).
https://doi.org/10.1007/s10661-017-6300-0
Anderson, K.E., Glenn, N.F., Spaete, L.P., Shinneman, D.J., Pilliod,
D.S., Arkle, R.S., McIlroy, S.K., Derryberry, D.R., 2018. Estimating
vegetation biomass and cover across large plots in shrub and grass
dominated drylands using terrestrial lidar and machine learning. Ecol.
Indic. 84, 793–802. https://doi.org/10.1016/j.ecolind.2017.09.034
Arispe, S.A., Johnson, D.D., Wollstein, K.L., Hulet, A., Jensen, K.S.,
Schultz, B.W., Sprinkle, J.E., McDaniel, M.F., Ryan, T., Mackenzie, M.,
Cunningham, S., 2022. Strategic Partnerships to Leverage Small Wins for
Fine Fuels Management. Rangel. Ecol. Manag. 85, 66–75.
https://doi.org/10.1016/j.rama.2022.09.004
Bradley, B.A., Curtis, C.A., Fusco, E.J., Abatzoglou, J.T., Balch, J.K.,
Dadashi, S., Tuanmu, M.N., 2018. Cheatgrass (Bromus tectorum)
distribution in the intermountain Western United States and its
relationship to fire frequency, seasonality, and ignitions. Biol.
Invasions 20, 1493–1506.
https://doi.org/10.1007/s10530-017-1641-8
Bradley, B.A., Houghton, R.A., Mustard, J.F., Hamburg, S.P., 2006.
Invasive grass reduces aboveground carbon stocks in shrublands of the
Western US. Glob. Chang. Biol. 12, 1815–1822.
https://doi.org/10.1111/j.1365-2486.2006.01232.x
Calders, K., Newnham, G., Burt, A., Murphy, S., Raumonen, P., Herold,
M., Culvenor, D., Avitabile, V., Disney, M., Armston, J., Kaasalainen,
M., 2015. Nondestructive estimates of above‐ground biomass using
terrestrial laser scanning. Methods Ecol Evol 6, 198–208.
https://doi.org/10.1111/2041-210X.12301
Chambers, J.C., Bradley, B.A., Brown, C.S., D’Antonio, C., Germino,
M.J., Grace, J.B., Hardegree, S.P., Miller, R.F., Pyke, D.A., 2014.
Resilience to stress and disturbance, and resistance to Bromus tectorum
L. invasion in cold desert shrublands of western North America.
Ecosystems 17, 360–375. https://doi.org/10.1007/s10021-013-9725-5
Clark, Patrick & Hardegree, Stuart & Moffet, Corey & Pierson,
Frederick. (2008). Point Sampling to Stratify Biomass Variability in
Sagebrush Steppe Vegetation. Rangeland Ecology & Management. 61.
10.2111/07-147.1.
Cooper, S.D., Roy, D.P., Schaaf, C.B., Paynter, I., 2017. Examination of
the potential of terrestrial laser scanning and structure-from-motion
photogrammetry for rapid nondestructive field measurement of grass
biomass. Remote Sens. 9. https://doi.org/10.3390/rs9060531
Cunliffe, A.M., Brazier, R.E., Anderson, K., 2016. Ultra-fine grain
landscape-scale quantification of dryland vegetation structure with
drone-acquired structure-from-motion photogrammetry. Remote Sensing of
Environment 183, 129–143.
https://doi.org/10.1016/j.rse.2016.05.019
Cunliffe, A.M., Anderson, K., Boschetti, F., Brazier, R.E., Graham,
H.A., Myers-Smith, I.H., Astor, T., Boer, M.M., Calvo, L.G., Clark,
P.E., Cramer, M.D., Encinas-Lara, M.S., Escarzaga, S.M.,
Fernández-Guisuraga, J.M., Fisher, A.G., Gdulová, K., Gillespie, B.M.,
Griebel, A., Hanan, N.P., Hanggito, M.S., Haselberger, S., Havrilla,
C.A., Heilman, P., Ji, W., Karl, J.W., Kirchhoff, M., Kraushaar, S.,
Lyons, M.B., Marzolff, I., Mauritz, M.E., McIntire, C.D., Metzen, D.,
Méndez-Barroso, L.A., Power, S.C., Prošek, J., Sanz-Ablanedo, E., Sauer,
K.J., Schulze-Brüninghoff, D., Šímová, P., Sitch, S., Smit, J.L.,
Steele, C.M., Suárez-Seoane, S., Vargas, S.A., Villarreal, M., Visser,
F., Wachendorf, M., Wirnsberger, H., Wojcikiewicz, R., 2022. Global
application of an unoccupied aerial vehicle photogrammetry protocol for
predicting aboveground biomass in non-forest ecosystems. Remote Sens.
Ecol. Conserv. 8, 57–71. https://doi.org/10.1002/rse2.228
Evans, R.A. and J.A. Young, Plant Litter and Establishment of Alien
Annual Weed Species in Rangeland Communities. Weed Science, 1970. 18(6):
p. 697-703.
Fern, R.R., Foxley, E.A., Bruno, A., Morrison, M.L., 2018. Suitability
of NDVI and OSAVI as estimators of green biomass and coverage in a
semi-arid rangeland. Ecol. Indic. 94, 16–21.
https://doi.org/10.1016/j.ecolind.2018.06.029
Fernández-Guisuraga, J.M., Calvo, L., Fernandes, P.M., Hulet, A.,
Perryman, B., Schultz, B., Jensen, K.S., Enterkine, J., Boyd, C.S.,
Davies, K.W., Johnson, D.D., Wollstein, K., Price, W.J., Arispe, S.A.,
2022. Estimates of fine fuel litter biomass in the northern Great Basin
reveal increases during short fire-free intervals associated with
invasive annual grasses. Sci. Total Environ. 160634.
https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.160634
Gillan, J.K., McClaran, M.P., Swetnam, T.L., Heilman, P., 2019.
Estimating forage utilization with drone-based photogrammetric point
clouds. Rangel. Ecol. Manag. 72, 575–585.
https://doi.org/10.1016/j.rama.2019.02.009
Houghton, R.A., Hall, F., Goetz, S.J., 2009. Importance of biomass in
the global carbon cycle. J. Geophys. Res. Biogeosciences 114, 1–13.
https://doi.org/10.1029/2009JG000935
Huang, C., Marsh, S.E., McClaran, M.P., Archer, S.R., 2007. POSTFIRE
STAND STRUCTURE IN A SEMIARID SAVANNA: CROSS-SCALE CHALLENGES ESTIMATING
BIOMASS. Ecological Applications 17, 1899–1910.
https://doi.org/10.1890/06-1968.1
Knapp, P.A., 1996. Cheatgrass (Bromus tectorum L) dominance in the great
basin desert. History, persistence, and influences to human activities.
Glob. Environ. Chang. 6, 37–52.
https://doi.org/10.1016/0959-3780(95)00112-3
Kröhnert, M., Anderson, R., Bumberger, J., Dietrich, P., Harpole, W.S.,
Maas, H.G., 2018. Watching grass grow - A pilot study on the suitability
of photogrammetric techniques for quantifying change in Aboveground
Biomass in Grassland experiments. Int. Arch. Photogramm. Remote Sens.
Spat. Inf. Sci. - ISPRS Arch. 42, 539–542.
https://doi.org/10.5194/isprs-archives-XLII-2-539-2018
Miller, J., Morgenroth, J., Gomez, C., 2015. 3D modelling of individual
trees using a handheld camera: Accuracy of height, diameter and volume
estimates. Urban For. Urban Green. 14, 932–940.
https://doi.org/10.1016/j.ufug.2015.09.001
Näsi, R., Viljanen, N., Kaivosoja, J., Alhonoja, K., Hakala, T.,
Markelin, L., Honkavaara, E., 2018. Estimating Biomass and Nitrogen
Amount of Barley and Grass Using UAV and Aircraft Based Spectral and
Photogrammetric 3D Features. Remote Sensing 10, 1082.
https://doi.org/10.3390/rs10071082
Navarro, A., Young, M., Allan, B., Carnell, P., Macreadie, P.,
Ierodiaconou, D., 2020. The application of Unmanned Aerial Vehicles
(UAVs) to estimate above-ground biomass of mangrove ecosystems. Remote
Sensing of Environment 242, 111747.
https://doi.org/10.1016/j.rse.2020.111747
Olsoy, P.J., Shipley, L.A., Rachlow, J.L., Forbey, J.S., Glenn, N.F.,
Burgess, M.A., Thornton, D.H., 2018. Unmanned aerial systems measure
structural habitat features for wildlife across multiple scales. Methods
Ecol. Evol. 9, 594–604. https://doi.org/10.1111/2041-210X.12919
Ota, T., Ogawa, M., Shimizu, K., Kajisa, T., Mizoue, N., Yoshida, S.,
Takao, G., Hirata, Y., Furuya, N., Sano, T., Sokh, H., Ma, V., Ito, E.,
Toriyama, J., Monda, Y., Saito, H., Kiyono, Y., Chann, S., Ket, N.,
2015. Aboveground Biomass Estimation Using Structure from Motion
Approach with Aerial Photographs in a Seasonal Tropical Forest. Forests
6, 3882–3898. https://doi.org/10.3390/f6113882
Pingel, T.J., Clarke, K.C., McBride, W.A., 2013. An improved simple
morphological filter for the terrain classification of airborne LIDAR
data. ISPRS J. Photogramm. Remote Sens. 77, 21–30.
https://doi.org/10.1016/j.isprsjprs.2012.12.002
Rusu, R.B., Blodow, N., Marton, Z.C., Beetz, M., 2008. Aligning point
cloud views using persistent feature histograms. 2008 IEEE/RSJ Int.
Conf. Intell. Robot. Syst. IROS 3384–3391.
https://doi.org/10.1109/IROS.2008.4650967
Salamí, E., Barrado, C., Pastor, E., 2014. UAV flight experiments
applied to the remote sensing of vegetated areas. Remote Sens. 6,
11051–11081. https://doi.org/10.3390/rs61111051
Schulze-Brüninghoff, D., Wachendorf, M. and Astor, T. (2021), Remote
sensing data fusion as a tool for biomass prediction in extensive
grasslands invaded by L. polyphyllus. Remote Sens Ecol Conserv, 7:
198-213. https://doi.org/10.1002/rse2.182
Taugourdeau, S., Diedhiou, A., Fassinou, C., Bossoukpe, M., Diatta, O.,
N’Goran, A., Auderbert, A., Ndiaye, O., Diouf, A.A., Tagesson, T.,
Fensholt, R., Faye, E., 2022. Estimating herbaceous aboveground biomass
in Sahelian rangelands using Structure from Motion data collected on the
ground and by UAV. Ecology and Evolution 12.
https://doi.org/10.1002/ece3.8867
Viljanen, N., Honkavaara, E., Näsi, R., Hakala, T., Niemeläinen, O.,
Kaivosoja, J., 2018. A Novel Machine Learning Method for Estimating
Biomass of Grass Swards Using a Photogrammetric Canopy Height Model,
Images and Vegetation Indices Captured by a Drone. Agriculture 8, 70.
https://doi.org/10.3390/agriculture8050070
Wallace, L., Hillman, S., Reinke, K., Hally, B., 2017. Non‐destructive
estimation of above‐ground surface and near‐surface biomass using 3D
terrestrial remote sensing techniques. Methods Ecol. Evol. 8,
1607–1616. https://doi.org/10.1111/2041-210X.12759
Wijesingha, J., Moeckel, T., Hensgen, F., Wachendorf, M., 2019.
Evaluation of 3D point cloud-based models for the prediction of
grassland biomass. Int. J. Appl. Earth Obs. Geoinf. 78, 352–359.
https://doi.org/10.1016/j.jag.2018.10.006
Xu, K., Su, Y., Liu, J., Hu, T., Jin, S., Ma, Q., Zhai, Q., Wang, R.,
Zhang, J., Li, Y., Liu, H., Guo, Q., 2020. Estimation of degraded
grassland aboveground biomass using machine learning methods from
terrestrial laser scanning data. Ecological Indicators 108, 105747.
https://doi.org/10.1016/j.ecolind.2019.105747
Zahawi, R.A., Dandois, J.P., Holl, K.D., Nadwodny, D., Reid, J.L.,
Ellis, E.C., 2015. Using lightweight unmanned aerial vehicles to monitor
tropical forest recovery. Biological Conservation 186, 287–295.
https://doi.org/10.1016/j.biocon.2015.03.031
Zhang, H., Sun, Y., Chang, L., Qin, Yu, Chen, J., Qin, Yan, Du, J., Yi,
S., Wang, Y., 2018. Estimation of Grassland Canopy Height and
Aboveground Biomass at the Quadrat Scale Using Unmanned Aerial Vehicle.
Remote Sensing 10, 851. https://doi.org/10.3390/rs10060851