SfM Volume for Exotic Annual Grass Biomass and Fine Fuels

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Funding

Funding: this work is supported by the National Institute of Food and Agriculture, US Department of Agriculture [2019-68008-29914].

Permission to Reproduce Materials from Other Sources

None/not applicable.

Data Availability Statement

Data and code is available for reviewers at https://drive.google.com/drive/folders/1TnYQKFnTyV3aBjx9bWQavYnS7JqHlv2e?usp=sharing and will be published via DOI through Boise State University ScholarWorks preceding publication of manuscript.
References
Ahlstrom, A., Raupach, M.R., Schurgers, G., Smith, B., Arneth, A., Jung, M., Reichstein, M., Canadell, J.G., Friedlingstein, P., Jain, A.K., Kato, E., Poulter, B., Sitch, S., Stocker, B.D., Viovy, N., Wang, Y.P., Wiltshire, A., Zaehle, S., Zeng, N., 2015. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science (80-. ). 348, 895–899. https://doi.org/10.1126/science.aaa1668
Anderson, K.E., Glenn, N.F., Spaete, L.P. et al. Methodological considerations of terrestrial laser scanning for vegetation monitoring in the sagebrush steppe. Environ Monit Assess 189, 578 (2017). https://doi.org/10.1007/s10661-017-6300-0
Anderson, K.E., Glenn, N.F., Spaete, L.P., Shinneman, D.J., Pilliod, D.S., Arkle, R.S., McIlroy, S.K., Derryberry, D.R., 2018. Estimating vegetation biomass and cover across large plots in shrub and grass dominated drylands using terrestrial lidar and machine learning. Ecol. Indic. 84, 793–802. https://doi.org/10.1016/j.ecolind.2017.09.034
Arispe, S.A., Johnson, D.D., Wollstein, K.L., Hulet, A., Jensen, K.S., Schultz, B.W., Sprinkle, J.E., McDaniel, M.F., Ryan, T., Mackenzie, M., Cunningham, S., 2022. Strategic Partnerships to Leverage Small Wins for Fine Fuels Management. Rangel. Ecol. Manag. 85, 66–75. https://doi.org/10.1016/j.rama.2022.09.004
Bradley, B.A., Curtis, C.A., Fusco, E.J., Abatzoglou, J.T., Balch, J.K., Dadashi, S., Tuanmu, M.N., 2018. Cheatgrass (Bromus tectorum) distribution in the intermountain Western United States and its relationship to fire frequency, seasonality, and ignitions. Biol. Invasions 20, 1493–1506. https://doi.org/10.1007/s10530-017-1641-8
Bradley, B.A., Houghton, R.A., Mustard, J.F., Hamburg, S.P., 2006. Invasive grass reduces aboveground carbon stocks in shrublands of the Western US. Glob. Chang. Biol. 12, 1815–1822. https://doi.org/10.1111/j.1365-2486.2006.01232.x
Calders, K., Newnham, G., Burt, A., Murphy, S., Raumonen, P., Herold, M., Culvenor, D., Avitabile, V., Disney, M., Armston, J., Kaasalainen, M., 2015. Nondestructive estimates of above‐ground biomass using terrestrial laser scanning. Methods Ecol Evol 6, 198–208. https://doi.org/10.1111/2041-210X.12301
Chambers, J.C., Bradley, B.A., Brown, C.S., D’Antonio, C., Germino, M.J., Grace, J.B., Hardegree, S.P., Miller, R.F., Pyke, D.A., 2014. Resilience to stress and disturbance, and resistance to Bromus tectorum L. invasion in cold desert shrublands of western North America. Ecosystems 17, 360–375. https://doi.org/10.1007/s10021-013-9725-5
Clark, Patrick & Hardegree, Stuart & Moffet, Corey & Pierson, Frederick. (2008). Point Sampling to Stratify Biomass Variability in Sagebrush Steppe Vegetation. Rangeland Ecology & Management. 61. 10.2111/07-147.1.
Cooper, S.D., Roy, D.P., Schaaf, C.B., Paynter, I., 2017. Examination of the potential of terrestrial laser scanning and structure-from-motion photogrammetry for rapid nondestructive field measurement of grass biomass. Remote Sens. 9. https://doi.org/10.3390/rs9060531
Cunliffe, A.M., Brazier, R.E., Anderson, K., 2016. Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetry. Remote Sensing of Environment 183, 129–143. https://doi.org/10.1016/j.rse.2016.05.019
Cunliffe, A.M., Anderson, K., Boschetti, F., Brazier, R.E., Graham, H.A., Myers-Smith, I.H., Astor, T., Boer, M.M., Calvo, L.G., Clark, P.E., Cramer, M.D., Encinas-Lara, M.S., Escarzaga, S.M., Fernández-Guisuraga, J.M., Fisher, A.G., Gdulová, K., Gillespie, B.M., Griebel, A., Hanan, N.P., Hanggito, M.S., Haselberger, S., Havrilla, C.A., Heilman, P., Ji, W., Karl, J.W., Kirchhoff, M., Kraushaar, S., Lyons, M.B., Marzolff, I., Mauritz, M.E., McIntire, C.D., Metzen, D., Méndez-Barroso, L.A., Power, S.C., Prošek, J., Sanz-Ablanedo, E., Sauer, K.J., Schulze-Brüninghoff, D., Šímová, P., Sitch, S., Smit, J.L., Steele, C.M., Suárez-Seoane, S., Vargas, S.A., Villarreal, M., Visser, F., Wachendorf, M., Wirnsberger, H., Wojcikiewicz, R., 2022. Global application of an unoccupied aerial vehicle photogrammetry protocol for predicting aboveground biomass in non-forest ecosystems. Remote Sens. Ecol. Conserv. 8, 57–71. https://doi.org/10.1002/rse2.228
Evans, R.A. and J.A. Young, Plant Litter and Establishment of Alien Annual Weed Species in Rangeland Communities. Weed Science, 1970. 18(6): p. 697-703.
Fern, R.R., Foxley, E.A., Bruno, A., Morrison, M.L., 2018. Suitability of NDVI and OSAVI as estimators of green biomass and coverage in a semi-arid rangeland. Ecol. Indic. 94, 16–21. https://doi.org/10.1016/j.ecolind.2018.06.029
Fernández-Guisuraga, J.M., Calvo, L., Fernandes, P.M., Hulet, A., Perryman, B., Schultz, B., Jensen, K.S., Enterkine, J., Boyd, C.S., Davies, K.W., Johnson, D.D., Wollstein, K., Price, W.J., Arispe, S.A., 2022. Estimates of fine fuel litter biomass in the northern Great Basin reveal increases during short fire-free intervals associated with invasive annual grasses. Sci. Total Environ. 160634. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.160634
Gillan, J.K., McClaran, M.P., Swetnam, T.L., Heilman, P., 2019. Estimating forage utilization with drone-based photogrammetric point clouds. Rangel. Ecol. Manag. 72, 575–585. https://doi.org/10.1016/j.rama.2019.02.009
Houghton, R.A., Hall, F., Goetz, S.J., 2009. Importance of biomass in the global carbon cycle. J. Geophys. Res. Biogeosciences 114, 1–13. https://doi.org/10.1029/2009JG000935
Huang, C., Marsh, S.E., McClaran, M.P., Archer, S.R., 2007. POSTFIRE STAND STRUCTURE IN A SEMIARID SAVANNA: CROSS-SCALE CHALLENGES ESTIMATING BIOMASS. Ecological Applications 17, 1899–1910. https://doi.org/10.1890/06-1968.1
Knapp, P.A., 1996. Cheatgrass (Bromus tectorum L) dominance in the great basin desert. History, persistence, and influences to human activities. Glob. Environ. Chang. 6, 37–52. https://doi.org/10.1016/0959-3780(95)00112-3
Kröhnert, M., Anderson, R., Bumberger, J., Dietrich, P., Harpole, W.S., Maas, H.G., 2018. Watching grass grow - A pilot study on the suitability of photogrammetric techniques for quantifying change in Aboveground Biomass in Grassland experiments. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch. 42, 539–542. https://doi.org/10.5194/isprs-archives-XLII-2-539-2018
Miller, J., Morgenroth, J., Gomez, C., 2015. 3D modelling of individual trees using a handheld camera: Accuracy of height, diameter and volume estimates. Urban For. Urban Green. 14, 932–940. https://doi.org/10.1016/j.ufug.2015.09.001
Näsi, R., Viljanen, N., Kaivosoja, J., Alhonoja, K., Hakala, T., Markelin, L., Honkavaara, E., 2018. Estimating Biomass and Nitrogen Amount of Barley and Grass Using UAV and Aircraft Based Spectral and Photogrammetric 3D Features. Remote Sensing 10, 1082. https://doi.org/10.3390/rs10071082
Navarro, A., Young, M., Allan, B., Carnell, P., Macreadie, P., Ierodiaconou, D., 2020. The application of Unmanned Aerial Vehicles (UAVs) to estimate above-ground biomass of mangrove ecosystems. Remote Sensing of Environment 242, 111747. https://doi.org/10.1016/j.rse.2020.111747
Olsoy, P.J., Shipley, L.A., Rachlow, J.L., Forbey, J.S., Glenn, N.F., Burgess, M.A., Thornton, D.H., 2018. Unmanned aerial systems measure structural habitat features for wildlife across multiple scales. Methods Ecol. Evol. 9, 594–604. https://doi.org/10.1111/2041-210X.12919
Ota, T., Ogawa, M., Shimizu, K., Kajisa, T., Mizoue, N., Yoshida, S., Takao, G., Hirata, Y., Furuya, N., Sano, T., Sokh, H., Ma, V., Ito, E., Toriyama, J., Monda, Y., Saito, H., Kiyono, Y., Chann, S., Ket, N., 2015. Aboveground Biomass Estimation Using Structure from Motion Approach with Aerial Photographs in a Seasonal Tropical Forest. Forests 6, 3882–3898. https://doi.org/10.3390/f6113882
Pingel, T.J., Clarke, K.C., McBride, W.A., 2013. An improved simple morphological filter for the terrain classification of airborne LIDAR data. ISPRS J. Photogramm. Remote Sens. 77, 21–30. https://doi.org/10.1016/j.isprsjprs.2012.12.002
Rusu, R.B., Blodow, N., Marton, Z.C., Beetz, M., 2008. Aligning point cloud views using persistent feature histograms. 2008 IEEE/RSJ Int. Conf. Intell. Robot. Syst. IROS 3384–3391. https://doi.org/10.1109/IROS.2008.4650967
Salamí, E., Barrado, C., Pastor, E., 2014. UAV flight experiments applied to the remote sensing of vegetated areas. Remote Sens. 6, 11051–11081. https://doi.org/10.3390/rs61111051
Schulze-Brüninghoff, D., Wachendorf, M. and Astor, T. (2021), Remote sensing data fusion as a tool for biomass prediction in extensive grasslands invaded by L. polyphyllus. Remote Sens Ecol Conserv, 7: 198-213. https://doi.org/10.1002/rse2.182
Taugourdeau, S., Diedhiou, A., Fassinou, C., Bossoukpe, M., Diatta, O., N’Goran, A., Auderbert, A., Ndiaye, O., Diouf, A.A., Tagesson, T., Fensholt, R., Faye, E., 2022. Estimating herbaceous aboveground biomass in Sahelian rangelands using Structure from Motion data collected on the ground and by UAV. Ecology and Evolution 12. https://doi.org/10.1002/ece3.8867
Viljanen, N., Honkavaara, E., Näsi, R., Hakala, T., Niemeläinen, O., Kaivosoja, J., 2018. A Novel Machine Learning Method for Estimating Biomass of Grass Swards Using a Photogrammetric Canopy Height Model, Images and Vegetation Indices Captured by a Drone. Agriculture 8, 70. https://doi.org/10.3390/agriculture8050070
Wallace, L., Hillman, S., Reinke, K., Hally, B., 2017. Non‐destructive estimation of above‐ground surface and near‐surface biomass using 3D terrestrial remote sensing techniques. Methods Ecol. Evol. 8, 1607–1616. https://doi.org/10.1111/2041-210X.12759
Wijesingha, J., Moeckel, T., Hensgen, F., Wachendorf, M., 2019. Evaluation of 3D point cloud-based models for the prediction of grassland biomass. Int. J. Appl. Earth Obs. Geoinf. 78, 352–359. https://doi.org/10.1016/j.jag.2018.10.006
Xu, K., Su, Y., Liu, J., Hu, T., Jin, S., Ma, Q., Zhai, Q., Wang, R., Zhang, J., Li, Y., Liu, H., Guo, Q., 2020. Estimation of degraded grassland aboveground biomass using machine learning methods from terrestrial laser scanning data. Ecological Indicators 108, 105747. https://doi.org/10.1016/j.ecolind.2019.105747
Zahawi, R.A., Dandois, J.P., Holl, K.D., Nadwodny, D., Reid, J.L., Ellis, E.C., 2015. Using lightweight unmanned aerial vehicles to monitor tropical forest recovery. Biological Conservation 186, 287–295. https://doi.org/10.1016/j.biocon.2015.03.031
Zhang, H., Sun, Y., Chang, L., Qin, Yu, Chen, J., Qin, Yan, Du, J., Yi, S., Wang, Y., 2018. Estimation of Grassland Canopy Height and Aboveground Biomass at the Quadrat Scale Using Unmanned Aerial Vehicle. Remote Sensing 10, 851. https://doi.org/10.3390/rs10060851