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Key Points: 10 

 A wind turbine module is implemented in the spectral wave model that 11 

accounts for the energy dissipation caused by the inertial forces. 12 

 High-resolution wave model is replaced by a machine learning model and 13 

implemented in the Weather Research and Forecasting model. 14 

 Consideration of turbine-induced changes in momentum flux is key to the 15 

parameterizing floating wind farms. 16 

Abstract 17 

A new scheme is developed for floating wind farm parameterization (FWFP) in the Weather 18 

Research and Forecasting (WRF) model. The impacts of the side columns of a 19 

semi-submersible floating wind turbine on waves are firstly parameterized in the spectral 20 

wave model (SWAN) where the key idea is to consider both inertial and drag forces on side 21 

columns. A machine learning model is trained using results of idealized high-resolution SWAN 22 

simulations and then implemented in the WRF to calculate the frictional velocity at the turbine 23 

site. This frictional velocity is passed to the Fitch wind farm parameterization to form the FWFP. 24 

The difference between our new scheme and the original Fitch scheme in a realistic case is 25 

investigated using a coupled atmosphere-wave model. Results indicate that the FWFP can 26 

increase total power output of wind farms by over 5% in the high wind speed stage due to 27 

significant wave height attenuation caused by large-scale floating turbines. The turbulent 28 

kinetic energy decreases within the wind farm, with the greatest drop of 0.4 m
2
s

-2
 at the top of 29 

the turbine. The impact of the new scheme can spread to the top of the atmospheric boundary 30 

layer. The proposed new scheme will help forecast wind energy and explore the potential 31 

impacts of large floating wind farms.  32 

Plain Language Summary 33 

The global offshore wind power development is moving from offshore to deeper waters, where 34 

floating offshore wind turbines have advantage over bottom fixed offshore wind turbines. 35 

However, current wind farm parameterization schemes in mesoscale models are not 36 

applicable to floating turbines. In this study, we propose a floating wind farm 37 

parameterization scheme that accounts for the attenuation of the significant wave 38 

height by floating turbines. By comparing with the original wind farm 39 

parameterization, the results indicate that the new scheme has a significant impact on 40 

the wind speed deficits as well as the turbulent kinetic energy. 41 
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1. Introduction  42 

Wind farms could have a great impact on the environment, including wind speed, 43 

turbulent kinetic energy (TKE), temperature, humidity, and other atmospheric parameters (Fitch, 44 

2015; Siedersleben et al., 2018). This impact is not suitable to be investigated with the 45 

computational fluid dynamics (CFD) models and  large-eddy simulation (LES) model due to 46 

great computational expense and feedback effects that cannot be captured by high-resolution 47 

non-meteorological microscale models alone. Engineering wake models also lack the relevant 48 

physical processes that are important for large scale wind farms or wind farm clusters with 49 

hundreds of turbines or more (Emeis, 2010). Currently, an important tool for studying wind 50 

farms is mesoscale models with a wind farm parameterization. In mesoscale models, there are 51 

two different methods to parameterize the wind farm: implicit and explicit methods. Previous 52 

results have shown that explicit methods represent the wind farm effects in a more physically 53 

consistent way and lead to more realistic results (Fitch et al., 2013; Fitch, 2015). In addition, the 54 

explicit methods have the advantage of accounting for the interaction of wind speeds with the 55 

surface below (Du et al., 2017; Vanderwende & Lundquist, 2016). The explicit methods 56 

parameterize the wind farm effect as a momentum sink on the mean flow and as a source of 57 

TKE (Abkar and Porté-Agel, 2015; Blahak et al., 2010; Fitch et al., 2012; Pan & Archer, 2018; 58 

Redfern et al., 2019; Volker et al., 2015). Most of  parameterizations are conducted in the free, 59 

open-source Weather Research and Forecasting (WRF) model, which already includes the 60 

Fitch wind farm parameterization in its release (Fitch et al., 2012). 61 

The installed capacity of offshore wind energy has been continuously increasing (Diaz et 62 

al., 2020). Unlike onshore wind farms, offshore wind farms affect the waves and thus the 63 

roughness length of the surrounding surface. Changes in the roughness length in turn affect the 64 

wind field through momentum transfer between the atmosphere and the waves, and previous 65 

studies have found that an impact of the wave field on the wind field can reach into the height of 66 

the turbine (AlSam et al., 2015; Jenkins et al., 2012; Kalvig et al., 2014; Paskyabi et al., 2014; ; 67 

Porchetta et al., 2021; Wu et al., 2020; Yang et al., 2014; Zou et al., 2018). There is a complex 68 

interaction between wind and waves. Wind turbines influence waves in two ways: 1) through a 69 

reduced wind stress as a consequence of the kinetic energy extraction by the turbines 70 

(Christensen et al., 2013) and 2) through the interaction with the wind turbine pole due to 71 

reflection, diffraction and drag dissipation. The global offshore wind power development is 72 

moving from offshore to deeper waters, where floating offshore wind turbines have advantage 73 

over bottom fixed offshore wind turbines in water depths greater than 50 m (Diaz et al., 2020; 74 

Roddier et al., 2010). Floating offshore wind turbines can have a substantial impact on waves 75 

due to floating platforms, which in turn leads to major changes in roughness length of ocean 76 

surface, requiring modifications of the current wind farm parameterization scheme used in 77 

mesoscale meteorological models. 78 

The influence of wind farm structures on waves has been investigated in only a few studies. 79 

Ponce de Leon et al. (2011) used the Simulation WAves Nearshore (SWAN) model to study 80 

the impact of an offshore wind farm on nearby waves. Since the monopile foundations included 81 

in their study could not realistically be resolved, each monopile foundation was represented as a 82 

dry point (land) in the model. They found that the simulated monopiles acted as obstacles 83 

blocking the propagation of wave energy and slightly altering the wave direction. Alari & 84 

Raudsepp (2012) found that the impact of the wind turbine on the significant wave height 85 

(SWH) was very marginal, with changes of the SWH smaller than 1% at areas shallower than 86 

10 m depth. Molen et al. (2014) conducted sensitivity experiments to study the influence of 87 

turbine spacing and size of wind farm on the SWH, and found that the SWH could be reduced 88 

by up to 9.58%. McCombs et al. (2014) evaluated the impact of an offshore wind farm on 89 

waves in Lake Ontario using a coupled wave-hydrodynamic model. In the study, the offshore 90 



manuscript submitted to Journal of Advances in Modeling Earth Systems  
 

3 
 

wind farm was simulated by applying a transmission coefficient in the wave model and adding 91 

a quadratic friction term to the momentum equations of the hydrodynamic model in the area of 92 

the proposed wind farm. The results indicated that the wave heights in coastal areas will be 93 

minimally affected with changes of SWH predicted to be less than 3%. 94 

These previous studies simulate the wind turbine in the model as a dry grid point, which 95 

has two limitations, 1) the model resolution is too high to implement for large-scale offshore 96 

wind farm scenarios, 2) it can only represent the diffraction effects, however, wave forces 97 

include drag and inertial forces (Isaacson, 1979; Morison et al., 1950). By parameterizing both 98 

the drag and inertial forces in the numerical model, the impact of the offshore wind turbine/farm 99 

on the waves can be analyzed more accurately. Previous studies also discussed the impact of 100 

bottom fixed wind turbines on waves, while the impact of floating offshore wind turbines on 101 

waves needs to be re-evaluated due to the significant structural differences between floating and 102 

bottom fixed wind turbines.  103 

In this study, a floating offshore wind farms parameterization scheme in the WRF Model 104 

is developed to represent the effect of the offshore wind farm on surface waves. In Section 2, the 105 

wave energy dissipation due to the inertial forces of waves is implemented in SWAN. The 106 

model conFigureuration and results of high-resolution idealized simulations are presented in 107 

Section 3. In Section 4, we propose a machine learning module used to fit the effect of wave 108 

inertial forcings represented in high-resolution SWAN simulations. Section 5 describes how the 109 

floating wind farm parameterization scheme is implemented in the WRF, and presents the 110 

results and the analysis of the wind speed deficit, power output, and the influence of the new 111 

scheme on the turbulent kinetic energy. The conclusion is given in Section 6. 112 

2. Parameterization of the wave inertial force in SWAN 113 

2.1 SWAN 114 

SWAN is a third-generation phase-averaged spectral wave model (Booij et al., 1999). The 115 

model propagates offshore wave conditions, input at the model boundaries as either integrated 116 

parameters or spectra, across a user defined grid of bathymetry to the region of interest. The 117 

evolution of the wave energy density spectrum in space and time is calculated by solving the 118 

action balance equation. This equation includes source terms for energy input into the model 119 

(from wind), dissipation (from white capping and shallow-water effects) and redistribution (via 120 

triad and quadruplet interactions). Shallow water and depth-limited processes including 121 

refraction, bottom friction and depth-induced breaking are accounted, and diffraction in SWAN 122 

is represented by a phase-decoupled approach (Holthuijsen et al., 2003). Further details on the 123 

physical processes in SWAN can be found in the SWAN User Manual (The SWAN steam, 124 

2023). 125 

The rate of change of the action density N at a single point is governed by the action 126 

balance equation, 127 
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where E is energy density,  is the relative radian frequency,  is propagation directions, xC128 

and yC are the propagation velocities of action density in two-dimensional geographical space,129 

C and C are the propagation velocities in spectral space, totS  is the non-conservative 130 
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source/sink term that represents all physical processes which generate, dissipate, or redistribute 131 

wave energy. 132 

In the shallow water region, seven basic processes contribute to totS : 133 

vegdsbrdsbdswdsnlnlintot SSSSSSSS ,,,,43   (3) 

where inS  denotes wave growth by the wind,  3nlS  and 4nlS  indicate nonlinear transfer of 134 

wave energy through three-wave and four-wave interactions, respectively. The wave decay due 135 

to whitecapping, bottom friction, depth-induced wave breaking and vegetation are denoted by 136 

wdsS , , bdsS , , brdsS ,  and vegdsS , , respectively.   137 

2.2 Wave damping due to the inertial forces 138 

SWAN has a function to include wave damping over a vegetation (VEG) field at variable 139 

depths. A popular method of expressing the wave dissipation due to vegetation is the cylinder 140 

approach suggested by Dalrymple et al. (1984). In this approach, energy losses are calculated as 141 

actual work carried out by the vegetation due to plant induced forces acting on the fluid, 142 

expressed in terms of a Morison type equation. Two modifications convert the VEG module 143 

into the semi-submersible floating wind turbine module. The energy dissipation in each vertical 144 

layer is calculated separately, and the total energy dissipation is equal to the sum of the 145 

dissipation across all layers up to the still water level (Figure 1). The first modification then is 146 

that the module only needs to calculate the results of Sveg,3 (the red dashed box in Figure 1) and 147 

set d (column draft depth) to a constant (d=20 m is used in this paper). 148 

 149 
 Figure 1. Layer schematization for vegetation  150 

Another important modification of the VEG module concerns the energy dissipation due 151 

to wave forces. In the VEG module, the wave force is derived from the drag force in a Morison 152 

type equation with the inertial forces neglected. Since the vegetation is assumed to be a cylinder 153 

with a small diameter, the drag force is considered to be dominant. However, for the floating 154 

offshore wind turbine, the diameter of the cylinder cannot be neglected compared to the 155 

wavelength. The wave forces become more complex and require the consideration of inertial 156 

forces. The equation for the energy dissipation due to inertial forces can be derived from the 157 

work of Morison et al. (1950). 158 
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where 
MC is the inertial force coefficient, b is the cylinder diameter. Based on Kobayashi et al. 159 

(1993), the formula for tu  / is derived as below 160 
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where   is the wave angular frequency, H is the wave height, k is the wave number, dh  161 

is the water depth, d is the draft depth (Figure 1).  162 

The equations for the other parameters are as follows, 163 
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    Substitution of Eqs. (5), (6) and (10) into Eq. (4) yields 164 
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Substitution of Eqs. (7) and (8) into Eq. (13) yields 165 
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Waves can be described by a joint distribution of wave height, period (or frequency) and 166 

direction. A Rayleigh distribution often gives a satisfactory characterization of the random 167 

variation in wave height (Mendez & Losada, 2004). The Rayleigh probability density function 168 

is related to wave height, 169 
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where )(Hp  is the Rayleigh probability density function, rmsH is the root-mean-square wave 170 

height. Substitution of Eqs. (15) and (16) into Eq. (14) and dividing by the bulk density of the 171 

fluid yields 172 
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The root-mean-square wave height and the total wave energy have such a relationship, 173 

totrms EH 82  , and substituting it into Eq. (17) yields,   174 
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Eq. (18) is the equation calculating the energy dissipation due to the inertial force. In the 175 

study, the magnitudes of the inertial force and the drag force are calculated and compared for 176 

the cylinders with diameters of 10 m and 1 m.  177 

 178 
Figure 2. Inertial forces (red solid line) and drag forces (blue solid line) for cylindrical 179 

diameters of (a) 10 m and (b) 1 m (incident wave height of 3 m, drag coefficient of 1.2, draft depth 180 
of 20 m, water depth of 80 m) 181 

The case is set with the incident SWH of 3 m, the drag coefficient of 1.2, the draft depth of 182 

20 m, and the water depth being 80 m. When the cylinder diameter is 10 m (Figure 2a), the 183 

average wavelength of the incident wave is within 1700 m, which makes the inertial force larger 184 

than the drag force. However, when the cylinder diameter is 1 m (Figure 2b), the inertial force is 185 

always smaller than the drag force. As the wavelength increases (the scale becomes smaller), 186 

the drag force becomes larger relative to the inertial force, which is consistent with the 187 

assumption of the VEG module that the inertial force could be neglected, but the inertial force 188 

can not be ignored for the side column of the floating offshore wind turbine. Thus the VEG 189 

module in SWAN is modified to include the inertial force to be applicable for the floating wind 190 

turbine.  191 

3. Idealized high-resolution simulations 192 

As shown in Section 2, the floating offshore wind turbine module is developed for SWAN, 193 

and its impact on waves is examined using high-resolution numerical experiments in this 194 

section.  195 

The rectangular domain of the idealized high-resolution experiments is shown in Figure 3, 196 

with 100×200 cells, a horizontal resolution corresponding to the column diameter of 10 m, and 197 

a water depth of 50 m. The position of the column is at the center of the computational domain. 198 

The incident SWH is 3 m, the mean wave period is 12 s, propagating from east to west, and the 199 

shape of the spectra is from the JONSWAP spectrum. Because of the small computational 200 

domain, the model uses stationary computation which converges after several time steps.  201 
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 202 
Figure 3. Experimental design of high-resolution idealized simulations (SWH=3 m, mean 203 

wave period=12 s, and depth=50 m) 204 

Two experiments are conducted, one to study the influence of the column on the waves 205 

caused only by the drag force (ExpDragS), and the other to examine the influence caused by 206 

both the drag force and the inertial force (ExpInerS). It can be noted that when the energy 207 

dissipation is caused by the drag force only, the SWH attenuation is only ~0.2 m (Figure 4a), 208 

and the "wake" phenomenon occurs in the wave field. The angle of the mean wave direction is 209 

shifted by about 1° around the column and the horizontal distribution is symmetrical along the 210 

axis y=0 (Figure 4d). The mean wave length is increased by about 10 m (Figure 4g). When the 211 

inertial forces are taken into account, the energy dissipation is larger, which makes the SWH 212 

attenuation more significant, which is about 1.4 m (Figure 4b), indicating an attenuation of 50% 213 

SWH. The mean wave direction deviation around the column is also relatively large, reaching 214 

about 5° (Figure 4e), and the mean wave length is about 24 m longer (Figure 4i) than that of 215 

ExpDragS.  216 

 217 
Figure 4. Significant wave height of (a) ExpDragS and (b) ExpInerS, (c) difference in 218 

significant wave height, (d) mean wave direction deviation of ExpDragS and (e) ExpInerS, (f) 219 
difference in mean wave direction deviation, (g) mean wave length of ExpDragS, and (h) 220 

ExpInerS, (i) difference in mean wave length  221 

4. Machine learning parameterization  222 

The results of the idealized high-resolution SWAN simulations in Section 3 show the 223 

impact of the floating offshore wind turbine’s side columns on the waves, including the SWH 224 

attenuation, symmetrical changes of mean wave direction, and an increase in the mean wave 225 

length. However, it is computationally expensive to run a ~10 m resolution SWAN model.  226 
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The use of machine learning (ML) for better parametrizing unresolved processes in 227 

mesoscale and climate models has gained much attention recently (O'Gorman & Dwyer, 2018; 228 

Gettelman et al., 2020; Seifert & Rasp, 2020). With the rise of scientific machine learning and 229 

its broad application in the geosciences, the design of parametrizations using ML algorithms has 230 

become a trend in model development. To build an appropriate model, a large amount of data is 231 

needed for training. Nevertheless, the observational data on the impact of the floating offshore 232 

wind turbine on waves are scarce. As a result, the outputs of the high-resolution SWAN 233 

simulations in Section 3 are employed to train the ML model. 234 

From the equations in Section 2, we can note that when the inertial force coefficient, drag 235 

force coefficient, and cylindrical diameter are determined, the energy dissipation caused by the 236 

wave force is only related to the water depth, incident SWH, and mean wave period (or peak 237 

period). We design a series of ideal experiments with different water depths, incident SWH, and 238 

mean wave periods. The SWH is taken from 2 m to 12 m with 1 m interval. The peak wave 239 

period is from 7 s to 12 s with an interval of 1 s, and the water depth is selected from 53 m to 98 240 

m with an interval of 5 m. This has a total number of 660 (11 × 6 × 10) experimental groups. 241 

We then use these model data to train several machine learning (regression) models with the 242 

input of incident SWH, water depth, and peak wave period, and the output of SWH after energy 243 

dissipation. These models can be classified into four main categories: linear regression models, 244 

tree models, support vector machines (SVM), and Gaussian process regression (GPR). As 245 

shown in Figure 5, the GPR model with the Matern 5/2 kernel (covariance) function is the most 246 

reasonable, with a minimum root mean square error (RMSE) of 0.0096 m (Figure 5d). The 247 

model can be coupled with CFD, LES models and mesoscale meteorological models to predict 248 

the effect of the floating offshore wind turbine side columns on waves without the need for 249 

high-resolution SWAN simulations. 250 

 251 
Figure 5. Response results of four typical regression models: (a) Stepwise linear regression (b) 252 

Fine tree (c) Medium SVM (d) Matern 5/2 Gaussian process regression 253 

5. Parameterization in a mesoscale model 254 
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5.1 Implementation of parameterization in WRF 255 

The Fitch wind-farm parametrization (Fitch et al., 2012), which has been implemented in 256 

the WRF model, is the most widely used method to simulate large wind farms. The important 257 

point in the derivation of the Fitch equation is that the rate of loss of kinetic energy in the grid 258 

cell is equal to the kinetic energy loss due to the wind turbine in the grid,  259 

t

V
VzzyxAVCyxN

ijk

ijkkkijkijkTij

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where 
ijk

V  is the horizontal wind speed, ijN is the number of turbines per square meter,   260 

is the air density, 
TC  is the thrust coefficient of a wind turbine, yx  ,  are the horizontal grid 261 

size in the zonal and meridional directions respectively, kz is the height at model level k , ijkA262 

is the cross-sectional rotor area of one wind turbine bounded by model levels k , 1k in grid 263 

cell ji, .  264 

For a semi-submersible floating wind turbine, the SWH around the turbine is considerably 265 

affected. As a result, the roughness of ocean surface nearby is also changed. The change in the 266 

kinetic energy due to changes in the momentum flux in the surface layer should be taken into 267 

account for the loss of kinetic energy in the grid cell. Therefore, in the simulation with 268 

semi-submersible floating wind turbines applied, Eq. (19) can be modified  269 
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where S is the area occupied by the floating platform. )( 22

,   uu wt  is the change in the 270 

momentum flux due to the turbine. wtu , is the frictional velocity at location of the turbine and 271 

u is the frictional velocity unaffected by the turbine. A new equation for the momentum 272 

tendency term is given as 273 
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It should be noted that Eq. (21) applies only to the heights between the bottom of the rotor 274 

area and 100 m (top of the surface layer). The momentum flux term in Eq. (21) can be omitted 275 

when 1kz  is greater than 100 meters. In addition, the new parameterization calculates the 276 

momentum tendency below the bottom of the rotor area, i.e., only the momentum flux term is 277 

retained in Eq. (21). 278 

The variables exchanged between WRF and SWAN is shown in Figure 6. WRF provides 279 

10-m surface wind (U10, V10) to SWAN, whereas SWAN returns SWH (hwave), peak wave 280 

length (lwavep), and peak wave period (pwave) to WRF. This variable exchange is 281 

implemented in the WRF model. The trained GPR model needs water depth as the input, thus 282 

we implement SWAN to provide water depth to WRF. Specifically, we incorporate the GPR 283 

model into the surface layer parameterization module of WRF. As a result, the SWH affected 284 

by the floating offshore wind turbine (hwavewt) can be calculated directly in the surface layer 285 

parameterization module to obtain the roughness length, frictional velocity, and other variables. 286 

The frictional velocity at the location of the wind turbine (ustwt) and the frictional velocity 287 
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unaffected by the turbine (ust) are input to the existing wind farm parameterization module in 288 

WRF to make the parameterization module suitable for floating offshore wind farms. 289 

 290 
Figure 6. Flow chart of floating offshore wind farms parameterization implemented in the 291 

COAWST model 292 

5.2 Model conFigureuration 293 

The new parameterization is tested in the Coupled 294 

Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system (Warner 295 

et al., 2008; Warner et al, 2010). This coupling system comprises four components, 296 

including the atmospheric model (WRF) and the spectral wave model (SWAN), which 297 

are connected by The Model Coupling Toolkit (MCT). The other components of 298 

COAWST are not activated in this study. 299 

Initial and lateral boundary conditions for the WRF model are obtained from the 300 

global forecasting system (GFS) NCEP FNL analysis data with horizontal resolution 301 

of 1°. The WRF model has a horizontal grid resolution of 8 km, with the center 302 

located at 21.98°N, 115.94°E. There are 275 × 194 grid cells in the horizontal domain 303 

(Figure 7a), 47 eta levels in the vertical direction, where 23 levels are below 1000 m 304 

and 15 levels intersect the rotor region. The vertical grid spacing at levels spanned by 305 

the wind turbine rotor is about 14 m. The major physical parameterization schemes 306 

are summarized in Table 1. The wind farm is located in the northern South China Sea 307 

at the water depths between 50 and 63 m (Figure 7b). The turbine spacing is about 1 308 

km. The thrust and power coefficients of the LEANWIND 8 MW reference turbine 309 

(LW) are presented in Figure 7c. Other main technical parameters of the LW wind 310 

turbine are shown in Table. 2 (Desmond et al., 2016).  311 

We use the same model domain and horizontal grid for SWAN as that in the 312 

WRF model. The corresponding parameterization schemes are shown in Table 1. The 313 

spectrum is discretized using 24 logarithmically-spaced frequency bins from 0.04 to 314 

1.00 Hz and 36 directional bins with 10° spacing. The boundary conditions are taken 315 

from the WaveWatch III (WW3) model (WW3DG, 2019). The nonstationary mode of 316 

SWAN is used and the effects of quadruplet nonlinear wave-wave interactions are 317 

taken into account. In this fully coupled model simulation, SWAN runs with a time 318 

step of 60 s, and the WRF model runs with a time step of 36 s. The time interval for 319 

data interchange among the models is set to 600 s. The total simulation time is 4 days 320 

(i.e., from 00 UTC on 1 January to 00 UTC on 5 January 2019), with SWAN starting 321 

from the initial steady state. A reference simulation (control run, referred as 322 

WRF-CTL) is performed without the wind farm. Another simulation (WRF-Fitch) is 323 

conducted with the Fitch wind farm parameterization. A third simulation 324 

(WRF-FWFP) is performed with the new proposed floating wind farm parameterization 325 

(FWFP).  326 
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Table.1 Major physical parameterization schemes used in COAWST. 327 

WRF 

Physics options Parameterization scheme 

Microphysics 
Single-Moment 6-class (Hong & Lim, 2006; 

Hong et al., 2006) 

Longwave Radiation 
Rapid Radiative Transfer Model (Mlawer, 

1997) 

Shortwave Radiation Dudhia (Dudhia, 1989) 

Surface Layer MYNN (Nakanishi & Niino, 2009) 

Land Surface thermal diffusion (Duhia, 1996) 

Planetary Boundary Layer 
Mellor-Yamada-Nakanishi-Niino 2.5-level 

(Nakanishi & Niino, 2009) 

Cumulus Parameterization 
Grell-Freitas ensemble (Grell & Freitas, 

2014) 

Roughness Parameterization 
CORE-Talyor-Yelland (Taylor & Yelland, 

2001) 

SWAN 

Depth-induced wave breaking 
Constant (1.0, 0.73) (Battjes & Janssen, 

1978) 

Bottom friction Madsen (0.05) (Madsen et al., 1988) 

Wind input  Komen (Komen et al., 1984) 

Whitecapping Komen (Komen et al., 1984) 

 328 
Figure 7. (a) location of wind farm (shaded area), (b) the thrust and power coefficients curves of 329 

the LW 8 MW wind turbine 330 

Table.2 Main technical parameters of the LW wind turbine. 331 

Parameters Value 

Rated power 8 MW 

Rotor diameter 164 m 

Turbine hub height 110 m 

Cut in wind speed 4 m/s 

Cut out wind speed 25 m/s 

5.3 Model validation 332 

To validate SWAN results, the simulated SWH is compared with observations of 333 

the satellite data Jason-3 (Lillibridge, 2019) (Figure 8). The model is also run for an 334 

additional 2 days for further validation. It is evident that the model generally performs 335 

well on the wave simulation for the satellite tracks (Pass 38 and Pass 88). The SWH 336 

in the model is a bit underestimated on the track Pass 12 and overestimated on the 337 

track Pass 51. Generally, the model results have a reasonable performance.  338 
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339 
 Figure 8. (a) Ground track of the Jason-3 satellite from 00 UTC on 1 January to 00 UTC on 7 340 

January in the study region. (b) Comparison of SWH between model results and Jason-3 altimeter 341 
data. 342 

5.4 Simulation results 343 

In this section, the differences in power output, wind speed deficits, and TKE 344 

between the FWFP and Fitch schemes are analyzed in a realistic case using COAWST. 345 

5.4.1 Power output and wind speed deficits 346 

As the inflow wind speed decreases, the total power output of the experiments is 347 

reduced (Figure 9). The total power output of the FWFP scheme can be increased by 348 

up to 5.68 GW compared to the Fitch scheme. The relative difference is close to 5% in 349 

the high wind speed stage and increases to a maximum of 35% as the wind speed 350 

decreases, which is also related to the wind direction. It can also be seen that the 351 

power output of the WRF-FWFP is consistently larger than that of the WRF-Fitch, 352 

and the horizontal distribution of the difference is presented in the 84 h-averaged 353 

results (Figure 9b). FWFP does not directly modify the power output equation in the 354 

Fitch scheme. It only modifies momentum tendency terms. However, it should be noted 355 

that the change of momentum tendency terms also has a considerable effect on the 356 

power output. 357 
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 358 
Figure 9. (a) Time series of total power output, inflow wind speed and relative error of total 359 

power output. (b) Power output difference is averaged over a period time from 12 UTC on 1 360 
January to 00 UTC on 5 January, and the red solid line indicates the outer boundary of the wind 361 

farm. 362 

A small change in wind direction from 12 UTC on 1 January to 18 UTC on 1 363 

January, and this period is after the spin-up of 12 h, so the following analysis is based 364 

on this period (Figure 10). The FWFP scheme reduces the momentum with a 365 

maximum value of 6.5 m/s, which is a reduction 43% at the hub height level (Figure 366 

11a). Behind the wind farm, the wind speed deficit extends a long wake. A 2 m/s 367 

(13%) deficit reaches 60 km from the downstream edge of the wind farm (20.03°N, 368 

111.19°E). Previous studies found that wakes behind offshore wind turbines and farms 369 

are expected to be much longer than behind onshore wind turbines and farms due to 370 

the smaller aerodynamic roughness length and turbulence intensity (~50 km) (Emeis 371 

et al., 2016; Lundquist et al., 2019). We find that the wind speed deficit at hub height 372 

in the WRF-Fitch case is larger than that of the WRF-FWFP (Figure 11b), which 373 

helps to explain why the power output is greater in our FWFP scheme. Eq. (21) 374 

indicates that the FWFP takes into account the fact that the frictional velocities at the 375 

turbine locations are lower at this moment. The FWFP also has a slight impact on the 376 

wind-farm wakes. 377 

Vertical profiles of wind speed deficits in WRF-FWFP case also show similar 378 

characteristics to WRF-Fitch case. The wind farm induces a maximum wind speed 379 

deficit of up to 5 m/s at the hub height, and the wind speed deficit spreads throughout 380 

the atmospheric boundary layer (ABL), including downstream of the wind farm 381 

(Figure 12a). A wind speed deficit of 1 m/s can extend up to the top of the ABL. 382 

Figure 12b shows the clear differences that occur within the wind farm, with the Fitch 383 

scheme overestimating the wind speed deficit within the ABL compared to the FWFP 384 
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scheme, which is most pronounced in the rotor area with a maximum value of 0.6 m/s. 385 

The top of the turbine to the top of the ABL and the wind-farm wakes also have an 386 

effect with values of 0.1 to 0.2 m/s. The difference between the two schemes 387 

decreases rapidly at heights above the top of the turbine (sparsity in the contours). 388 

 389 
Figure 10. Time series of wind direction at hub height within the wind farm (northerly wind 390 

direction is 0° and easterly wind direction is 90°) 391 

 392 
Figure 11. Horizontal wind speed differences at the hub height level between (a) WRF-FWFP and 393 
WRF-CTL cases and (b) WRF-Fitch and WRF-FWFP cases, averaged from 12 UTC on 1 January 394 
to 18 UTC on 1 January. The red solid line indicates the outer boundary of the wind farm, and the 395 

dashed red lines indicate a cross section analyzed further. 396 
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 397 
Figure 12. Vertical transect of the wind speed differences between (a) WRF-FWFP and WRF-CTL 398 
cases and (b) WRF-Fitch and WRF-FWFP cases, averaged from 12 UTC to 18 UTC on 1 January 399 

along the dashed red lines in Figure 11. The red solid lines indicate the rotor area. 400 

5.4.2 TKE  401 

The generation of TKE within the wind farm is largely restricted to the farm area, 402 

and decays rapidly downstream despite the advection of TKE. A maximum increase 403 

of TKE of 2.4 m
2
s

-2 
at the top of the turbine is seen within the wind farm (Figure 13a). 404 

The WRF-FWFP case produces a smaller TKE within the wind farm compared to the 405 

WRF-Fitch case, with a maximum reduction of 0.8 m
2
s

-2 
(Figure 13b). The 406 

distribution of horizontal TKE differences is highly similar to that of horizontal wind 407 

speed differences (Figure 11b), indicating that the wind shear may dominate the TKE 408 

distribution. The reduction in the TKE of 0.3 m
2
s

-2
 continues to extend more than 80 409 

km downstream near the surface (Figure 13c). However, there is little difference in 410 

between the WRF-Fitch and the WRF-FWFP in the downstream near the surface 411 

(Figure 13d), with most of differences occurring only within the wind farm. The 412 

reduction in TKE near the surface in the downstream in WFP-Fitch (Figure 13c) is 413 

due to a wind speed deficit and a corresponding reduction in wind shear in the lower 414 

levels of the wake, resulting in a decrease in shear production in TKE and the 415 

reduction in the TKE is no higher than at the top of the turbine (Fitch et al., 2012).  416 

As the wind speed deficits, the increase in TKE spreads to the top of the ABL 417 

which is above the wind farm, with a rise of 0.3 m
2
s

-2
 reaching a height of nearly 709 418 

m (Figure 14a). At the top of the turbine, the maximum increase in TKE is 2.4 m
2
s

-2
. 419 

Above the top of the turbine, the increase in TKE decreases with height, and below 420 

the top of the turbine it increases with height. The difference in TKE between the 421 

WRF-Fitch and the WRF-FWFP appears within the local wind farm and is consistent 422 

with the location of the difference in wind speeds (Figure 14b). Compared to the 423 

WRF-FWFP, WRF-Fitch overestimates the TKE generated throughout the ABL, with 424 

the TKE at the top of the wind turbine being the most overestimated (0.4 m
2
s

-2
).  425 
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 426 
Figure 13. Horizontal TKE differences at the top of the turbine between (a) WRF-FWFP and 427 

WRF-CTL cases and (b) WRF-Fitch and WRF-FWFP cases, near the surface between (c) 428 
WRF-FWFP and WRF-CTL cases and (d) WRF-Fitch and WRF-FWFP cases, averaged from 12 429 

UTC on 1 January to 18 UTC on 1 January, and the red solid line shows the outer boundary of the 430 
wind farm 431 

 432 
Figure 14. The same as in Figure 12, but for TKE 433 

The TKE budget is then examined. The TKE per unit mass, expressed as q
2
/2 in 434 

the MYNN model, is predicted by the following equation for a dry atmosphere: 435 
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dvbs PPPP
t

q


d

/2)d( 2

 (22) 

where Ps is the shear production term, Pb is the buoyancy production term, Pv is the 436 

vertical transport and pressure distribution term, and Pd is the dissipation term. The 437 

details about the equations can refer to Janji (2001). 438 

The largest source of the difference in TKE at the top of the turbine is shear 439 

generation (Figure 15a), with the TKE at 235 m still making a positive contribution to 440 

this difference through vertical transport. The other source is dissipation term, which 441 

is the major source of TKE differences in the rotor area. The variation in TKE near the 442 

surface within the wind farm is more complex, with the shear production term, the 443 

vertical transport term, and the dissipation term all being important sources, while the 444 

production of TKE by buoyancy is negligible compared with the other terms (not 445 

shown). At the location of 20.59°N, 111.57°E, the vertical shear of the wind speed is 446 

not only the largest at the top of the turbine for both WRF-Fitch and the WRF-FWFP, 447 

but the difference between the two cases is also the greatest at the top of the turbine 448 

(Figure 16). Specifically, the wind shear is 0.056 s
-1

 for WRF-Fitch and 0.0446 s
-1

 for 449 

WRF-FWFP. This result can actually be inferred from Figure 12b, which shows that 450 

although the maximum value of the difference in wind speed deficit between the two 451 

cases is in the rotor area, this difference varies slightly with height, and the height at 452 

which the variation with height is most pronounced is at the top of the turbine, 453 

followed by the bottom of the rotor area. The smaller wind shear results in the smaller 454 

TKE. 455 

 456 
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Figure 15. Vertical transect of the differences in the TKE budget components between WRF-Fitch 457 
and WRF-FWFP cases: (a) shear generation (b) vertical transport (c) dissipation, averaged from 12 458 
UTC on 1 January to 18 UTC on 1 January along the dashed red lines in Figure 11a and 11c. The 459 

red solid line indicates the rotor area. 460 

 461 
Figure 16. Profile of the vertical shear of wind speeds at the location 20.59°N, 111.57°E, averaged 462 

from 12 UTC on 1 January to 18 UTC on 1 January  463 

6. Conclusions and discussion 464 

Parameters of the column is modified in the VEG module of SWAN to include 465 

the effect of the inertial force to make it suitable for the application of the side column 466 

of a floating offshore wind turbine. At the same time, a series of idealized 467 

high-resolution SWAN simulations are conducted to investigate the dissipation of 468 

wave energy induced by the side columns of floating turbines. It is found that under 469 

certain conditions, the side columns of floating turbines can attenuate more than 50% 470 

of the significant wave height (SWH), and a wave "wake" phenomenon occurs with a 471 

recovery length of ~1 km. The mean wave direction is also affected, with a 472 

symmetrical change of about 5° around the side columns, and the mean wave length 473 

increases by more than 20 m. The idealized SWAN simulations and theoretical 474 

analyses show that the attenuation of the SWH becomes smaller with the increase of 475 

the water depth and is enhanced with the increase of the peak wave period. A total of 476 

660 groups of experiments consisting of different incident SWHs, water depths, and  477 

peak wave periods are conducted, and the results of these idealized simulations are 478 

used to train a Gaussian process regression (GPR) model with the Matern 5/2 kernel. 479 

This model can predict the attenuated SWH due to the side columns of the floating 480 

turbine with a given water depth, peak wave period, and incident SWH. 481 

The GPR model is implemented in the WRF and the Fitch wind farm 482 

parameterization scheme is modified to form a floating wind farm parameterization 483 

scheme (FWFP). The FWFP modifies the equations for the momentum tendency term 484 

because floating structures affect SWH, then the momentum tendency term must also 485 

account for changes in surface layer momentum fluxes due to changes in SWH. The 486 

difference of the results between the original Fitch scheme and our new FWFP 487 

scheme is analyzed in a realistic simulation using a coupled atmosphere-wave model. 488 
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Compared with the Fitch scheme, the FWFP scheme increases the total power output 489 

with a maximum increase of ~5.68 GW. The relative difference is close to 5% in the 490 

high wind speed stage. This is due to the fact that the FWFP scheme takes into 491 

account the change in roughness of ocean surface, the Fitch scheme overestimates the 492 

wind speed deficit within the wind farm. The impacts spread to the atmospheric 493 

boundary layer (ABL) and the wakes, but are most pronounced in in the rotor area, 494 

which can be up to 0.6 m/s, suggesting a 15 to 24% reduction in wind speed deficits. 495 

The impact of the FWFP on the turbulent kinetic energy (TKE) near the surface in the 496 

downstream of the wind farm is marginal, and it mainly influences the TKE within the 497 

wind farm (including the ABL). The Fitch scheme overestimates the TKE generation 498 

compared to the FWFP scheme, with the maximum value of 0.4 m
2
s

-2
 overestimated 499 

at the top of the turbine. Because the FWFP diminishes the vertical wind shear at the 500 

top of the turbine, which in turn reduces the TKE generated. 501 

Note that a decrease in SWH does not necessarily increase the wind speed in 502 

surface layer. In this study, we chose the roughness length parameterization scheme 503 

proposed by Taylor & Yelland. (2001), which is a complex iterative computational 504 

method where the frictional velocity and roughness length are dependent on each 505 

other. The FWFP scheme is only applicable to semi-submersible floating wind 506 

turbines because the wind turbine occupying a larger area can induce a significant 507 

change in roughness length. In contrast to most sites onshore, the roughness length of 508 

the surface offshore is not static, but changes dynamically with sea state. In order to 509 

better evaluate the power output of offshore wind farms and their impacts on the 510 

environment, it is necessary to improve the offshore wind farms parameterization. 511 

Data availability statement 512 

The NCEP FNL analysis can be download for free at website https://rda.ucar.ed513 

u/datasets/ds083.0/ (NECP, 1999) [Dataset], WW3 can be download at https://w514 

ww.ncei.noaa.gov/thredds-ocean/catalog/ncep/nww3/catalog.html (WW3DG, 2019),515 

 and Jason-3 can be obtained from https://www.ncei.noaa.gov/products/jason-sate516 

llite-products (Lillibridge, 2019). COAWST is freely available online (https://git517 

hub.com/DOI-USGS/COAWST) (Warner et al., 2010).  518 
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