References
Agrawal, A. A. (2020). A scale‐dependent framework for trade‐offs, syndromes, and specialization in organismal biology. Ecology , 101(2), e02924.
Agrawal, A.A., Hastings, A.P., Johnson, M.T.J., Maron, J.L. & Salminen, J.P. (2012). Insect herbivores drive real-time ecological and evolutionary change in plant populations. Science , 338, 113–116.
Agrawal, A.A., Kotanen, P.M., Mitchell, C.E., Power, A.G., Godsoe, W. & Klironomos, J. (2005).   Enemy release? An experiment with congeneric plant pairs and diverse above‐and belowground enemies. Ecology, 86 (11), 2979-2989.
Aldorfová, A., Knobová, P. & Münzbergová, Z. (2020). Plant–soil feedback contributes to predicting plant invasiveness of 68 alien plant species differing in invasive status. Oikos , 129, 1257–1270.
Allen, W.J., Meyerson, L.A., Cummings, D., Anderson, J., Bhattarai, G.P. & Cronin, J.T. (2017). Biogeography of a plant invasion: drivers of latitudinal variation in enemy release. Global Ecology and Biogeography , 26, 435–446.
Beaulieu, C., Lavoie, C. & Proulx, R. (2019). Bookkeeping of insect herbivory trends in herbarium specimens of purple loosestrife (Lythrum salicaria ). Philosophical Transactions of the Royal Society B: Biological Sciences , 374, 20170398.
Bezemer, T.M., Harvey, J.A. & Cronin, J.T. (2014). Response of native insect communities to invasive plants. Annu Rev Entomol , 59, 119–141.
Blossey, B. & Notzold, R. (1995). Evolution of Increased Competitive Ability in Invasive Nonindigenous Plants: A Hypothesis. Journal of Ecology , 83, 887–889.
Blumenthal, D., Mitchell, C. E., Pyšek, P., & Jarošík, V. (2009). Synergy between pathogen release and resource availability in plant invasion. Proceedings of the National Academy of Sciences106 (19), 7899-7904.
Blumenthal, D.M. (2006). Interactions between resource availability and enemy release in plant invasion. Ecol Lett, 9 (7), 887-895.
Bossdorf, O., Auge, H., Lafuma, L., Rogers, W.E., Siemann, E. & Prati, D. (2005). Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia , 144, 1–11.
Buckley, Y. M., & Catford, J. (2016). Does the biogeographic origin of species matter? Ecological effects of native and non‐native species and the use of origin to guide management. Journal of Ecology , 104(1), 4-17.
Cadotte, M.W., Davies, T.J., & Peres‐Neto, P.R. (2017). Why phylogenies do not always predict ecological differences. Ecol Monogr, 87 (4), 535-551.
Cappuccino, N. & Carpenter, D. (2005). Invasive exotic plants suffer less herbivory than non-invasive exotic plants. Biol Lett ,1 (4), 435-438.
Carroll, S.P., Loye, J.E., Dingle, H., Mathieson, M., Famula, T.R. & Zalucki, M.P. (2005). And the beak shall inherit - Evolution in response to invasion. Ecol Lett , 8, 944–951.
Castells, E., Morante, M., Blanco-Moreno, J.M., Sans, F.X., Vilatersana, R. & Blasco-Moreno, A. (2013). Reduced seed predation after invasion supports enemy release in a broad biogeographical survey.Oecologia , 173, 1397–1409.
Catford, J.A., Jansson, R. & Nilsson, C. (2009). Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Distrib, 15 (1), 22-40.
Catford, J. A., Bode, M., & Tilman, D. (2018). Introduced species that overcome life history tradeoffs can cause native extinctions. Nat Comm , 9(1), 2131.
Catford, J.A., Smith, A.L., Wragg, P.D., Clark, A.T., Kosmala, M., Cavender-Bares, J., et al. (2019). Traits linked with species invasiveness and community invasibility vary with time, stage and indicator of invasion in a long-term grassland experiment. Ecol Lett, 22 (4), 593-604.
Catford, J.A., Wilson, J.R.U., Pyšek, P., Hulme, P.E. & Duncan, R.P. (2022). Addressing context dependence in ecology. Trends Ecol Evol , 37, 158–170.
Chauvin, K.M.M., Asner, G.P., Martin, R.E., Kress, W.J., Wright, S.J. & Field, C.B. (2018). Decoupled dimensions of leaf economic and anti-herbivore defense strategies in a tropical canopy tree community.Oecologia , 186, 765–782.
Chiuffo, M.C., Moyano, J., Policelli, N., Torres, A., Vitali, A., Nuñez, M.A., et al. (2022). Importance of invasion mechanisms varies with abiotic context and plant invader growth form. Journal of Ecology, 110 (8), 1957-1969.
Chun, Y.J., van Kleunen, M. & Dawson, W. (2010). The role of enemy release, tolerance and resistance in plant invasions: Linking damage to performance. Ecol Lett , 13, 937–946.
Cipollini, D., Walters, D. & Voelckel, C. (2014). Costs of resistance in plants: from theory to evidence. Annual Plant Reviews , 47, 263–308.
Clewley, G.D., Eschen, R., Shaw, R.H. & Wright, D.J. (2012). The effectiveness of classical biological control of invasive plants.Journal of Applied Ecology , 49, 1287–1295.
Colautti, R.I., Ricciardi, A., Grigorovich, I.A. & MacIsaac, H.J. (2004). Is invasion success explained by the enemy release hypothesis?Ecol Lett, 7 (8), 721-733.
Connolly, B.M., Pearson, D.E. & Mack, A.R.N. (2014). Granivory of invasive, naturalized, and native plants in communities differentially susceptible to invasion. Ecology, 95 (7), 1759-1769.
Coverdale, T.C. & Agrawal, A.A. (2022). Experimental insect suppression causes loss of induced, but not constitutive, resistance inSolanum carolinense . Ecology, 103 (11), e3786.
Davidson, T.M., Smith, C.M. & Torchin, M.E. (2022). Introduced mangroves escape damage from marine and terrestrial enemies.Ecology,103 (3), e3604.
Dewalt, S.J., Denslow, J.S. & Ickes, K. (2004). Natural‐enemy release facilitates habitat expansion of the invasive tropical shrubClidemia hirtaEcology85 (2), 471-483.
Díaz, J. G., de la Riva, E. G., Martín-Forés, I., & Vilà, M. (2023). Which features at home make a plant prone to become invasive?.NeoBiota , 86, 1-20.
Doncaster, C.P. & Spake, R. (2018). Correction for bias in meta-analysis of little-replicated studies. Methods Ecol Evol , 9, 634–644.
Ebeling, A., Strauss, A.T., Adler, P.B., Arnillas, C.A., Barrio, I.C., Biederman, L.A., et al. (2021). Nutrient enrichment increases invertebrate herbivory and pathogen damage in grasslands. Journal of Ecology, 110 (2), 327-339.
Ebeling, S.K., Hensen, I. & Auge, H. (2008). The invasive shrubBuddleja davidii performs better in its introduced range.Divers Distrib , 14, 225–233.
Endara, M.J. & Coley, P.D. (2011). The resource availability hypothesis revisited: A meta-analysis. Funct Ecol , 25, 389–398.
Enders, M., Havemann, F., Ruland, F., Bernard-Verdier, M., Catford, J.A., Gómez-Aparicio, L., et al. (2020). A conceptual map of invasion biology: Integrating hypotheses into a consensus network.Global Ecology and Biogeography , 29, 978–991.
Enders, M., Hütt, M.-T. & Jeschke, J.M. (2018). Drawing a map of invasion biology based on a network of hypotheses. Ecosphere , 9, e02146.
Evans, H.C. (2008). The endophyte-enemy release hypothesis: implications for classical biological control and plant invasions. In Proceedings of the XII International Symposium on Biological Control of Weeds, La Grande Motte, France, 22-27 April, 2007  (pp. 20-25). Wallingford UK: CAB International.
Fan, S., Yu, H., Dong, X., Wang, L., Chen, X., Yu, D., et al.(2016). Invasive plant Alternanthera philoxeroides suffers more severe herbivory pressure than native competitors in recipient communities.Sci Rep , 6, 1-11.
Felker-Quinn, E., Schweitzer, J.A. & Bailey, J.K. (2013). Meta-analysis reveals evolution in invasive plant species but little support for Evolution of Increased Competitive Ability (EICA). Ecol Evol , 3, 739–751.
Fridley, J. D., & Sax, D. F. (2014). The imbalance of nature: revisiting a Darwinian framework for invasion biology. Global Ecol Biogeog , 23(11), 1157-1166.
Gallien, L., Carboni, M. & Münkemüller, T. (2014). Identifying the signal of environmental filtering and competition in invasion patterns - a contest of approaches from community ecology. Methods Ecol Evol , 5, 1002–1011.
García, M.B. & Ehrlén, J. (2002). Reproductive effort and herbivory timing in a perennial herb: Fitness components at the individual and population levels. Am J Bot , 89, 1295–1302.
Geppert, C., Boscutti, F., la Bella, G., de Marchi, V., Corcos, D., Filippi, A., et al. (2021). Contrasting response of native and non-native plants to disturbance and herbivory in mountain environments.J Biogeogr , 48, 1594–1605.
Gioria, M., Hulme, P. E., Richardson, D. M., & Pyšek, P. (2023). Why are invasive plants successful?. Annual Review of Plant Biology , 74, 635-670.
González-Browne, C., Murúa, M.M., Navarro, L. & Medel, R. (2016). Does plant origin influence the fitness impact of flower damage? A meta-analysis. PLoS One , 11, e0146437.
Goodall, J., Witkowski, E.T.F., McConnachie, A.J. & Keen, C. (2012). Altered growth, population structure and realised niche of the weedCampuloclinium macrocephalum (Asteraceae) after exposure to the naturalised rust Puccinia eupatorii (Pucciniaceae). Biol Invasions , 14, 1947–1962.
Gsell, A.S., Biere, A., de Boer, W., de Bruijn, I., Eichhorn, G., Frenken, T., et al. (2023). Environmental refuges from disease in host‐parasite interactions under global change. Ecology, e4001.
Gundale, M.J. & Kardol, P. (2021). Multi-dimensionality as a path forward in plant-soil feedback research. Journal of Ecology, 109 (10), 3446-3465.
Gurevitch, J., Fox, G.A., Wardle, G.M., Inderjit & Taub, D. (2011). Emergent insights from the synthesis of conceptual frameworks for biological invasions. Ecol Lett , 14 (4), 407-418.
Hahn, P.G., Keefover-Ring, K., Nguyen, L.M.N. & Maron, J.L. (2021). Intraspecific correlations between growth and defence vary with resource availability and differ within and among populations. Funct Ecol ,35 (11), 2387-2396.
Halliday, F.W., Jalo, M. & Laine, A.-L. (2021). The effect of host community functional traits on plant disease risk varies along an elevational gradient. eLife, 10, 67340.
Harvey, K.J., Nipperess, D.A., Britton, D.R. & Hughes, L. (2013). Does time since introduction influence enemy release of an invasive weed?Oecologia , 173, 493–506.
Hawkes, C.V. (2007). Are invaders moving targets? The generality and persistence of advantages in size, reproduction, and enemy release in invasive plant species with time since introduction. American Naturalist , 170, 832–843.
Heckman, R.W., Halliday, F.W. & Mitchell, C.E. (2019). A growth–defense trade-off is general across native and exotic grasses.Oecologia , 191, 609–620.
Heger, T. & Jeschke, J.M. (2014). The enemy release hypothesis as a hierarchy of hypotheses. Oikos , 123, 741–750.
Heimpel, G.E. & Mills, N.J. (2017). Biological control.Cambridge University Press, Cambridge.
Hinman, E.D., Fridley, J.D. & Parry, D. (2019). Plant defense against generalist herbivores in the forest understory: a phylogenetic comparison of native and invasive species. Biol Invasions , 21, 1269–1281.
Hite, J.L., Pfenning-Butterworth, A. & Auld, S.K.J.R. (2023). Commentary: Infectious disease — the ecological theater and the evolutionary play. Evol Ecol, 37, 1-11.
Honor, R. & Colautti, R.I. (2020). EICA 2.0: a general model of enemy release and defence in plant and animal invasions. In. In: Plant Invasions: The Role of Biotic Interactions (eds. Traveset, A. & Richardson, D.M.). CABI, pp. 192–207.
Howe, G. A., & Jander, G. (2008). Plant immunity to insect herbivores.Annu. Rev. Plant Biol., 59, 41-66.
Inderjit, Cadotte, M.W. & Colautti, R.I. (2005). The ecology of biological invasions: past, present and future. In: Invasive Plants: Ecological and Agricultural Aspects (ed. Inderjit). Basel, pp. 19–44.
Iqbal, M.F., Feng, Y.L., Feng, W.W., Liu, M.C. & Lu, X.R. (2021). Ecological impacts of the invasive plant Xanthium strumarium and the impacts of three aboveground herbivores on the invader. Ecol Indic , 131, 108140.
Ivison, K., Speed, J.D.M., Prestø, T. & Dawson, W. (2023). Testing enemy release of non‐native plants across time and space using herbarium specimens in Norway. Journal of Ecology, 111 (2), 300-313.
Jeschke, J., Gómez Aparicio, L., Haider, S., Heger, T., Lortie, C., Pyšek, P., et al. (2012). Support for major hypotheses in invasion biology is uneven and declining. NeoBiota , 14, 1–20.
Jeschke, J.M. (2014). General hypotheses in invasion ecology.Divers Distrib, 20 (11), 1229-1234.
Jeschke, J.M. & Heger, T. (2018). Invasion Biology: Hypotheses and Evidence . CABI.
Johnston, A. S., Boyd, R. J., Watson, J. W., Paul, A., Evans, L. C., Gardner, E. L., & Boult, V. L. (2019). Predicting population responses to environmental change from individual-level mechanisms: towards a standardized mechanistic approach. Proceedings of the Royal Society B, 286(1913), 20191916.
Joshi, J. & Vrieling, K. (2005). The enemy release and EICA hypothesis revisited: Incorporating the fundamental difference between specialist and generalist herbivores. Ecol Lett , 8, 704–714.
Kambo, D. & Kotanen, P.M. (2014). Latitudinal trends in herbivory and performance of an invasive species, common burdock (Arctium minus).Biol Invasions , 16, 101–112.
Keane, R.M. & Crawley, M.J. (2002). Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol , 17, 164–170.
van Kleunen, M., Dawson, W., Schlaepfer, D., Jeschke, J.M. & Fischer, M. (2010a). Are invaders different? A conceptual framework of comparative approaches for assessing determinants of invasiveness.Ecol Lett , 13, 947–958.
van Kleunen, M. & Fischer, M. (2009). Release from foliar and floral fungal pathogen species does not explain the geographic spread of naturalized North American plants in Europe. Journal of Ecology , 97, 385–392.
van Kleunen, M., Weber, E. & Fischer, M. (2010b). A meta-analysis of trait differences between invasive and non-invasive plant species.Ecol Lett, 13 (2), 235-245.
Koricheva, J. & Gurevitch, J. (2014). Uses and misuses of meta-analysis in plant ecology. Journal of Ecology, 102 (4), 828-844.
Lau, J.A. & Schultheis, E.H. (2015). When two invasion hypotheses are better than one. New Phytologist , 205, 958–960.
Levine, J.M., Adler, P.B. & Yelenik, S.G. (2004). A meta-analysis of biotic resistance to exotic plant invasions. Ecol Lett, 7 (10), 975-989.
Lind, E.M., Borer, E., Seabloom, E., Adler, P., Bakker, J.D., Blumenthal, D.M., et al. (2013). Life-history constraints in grassland plant species: A growth-defence trade-off is the norm.Ecol Lett , 16, 513–521.
Liu, H., & Stiling, P. (2006). Testing the enemy release hypothesis: a review and meta-analysis. Biol Invasions , 8, 1535-1545.
Liu, Y., Zheng, Y., Jahn, L. v. & Burns, J.H. (2023). Invaders responded more positively to soil biota than native or noninvasive introduced species, consistent with enemy escape. Biol Invasions, 25 (2), 351-364.
Livingstone, S.W., Smith, S.M., Bourchier, R.S., Ryan, K., Roberto, A. & Cadotte, M.W. (2020). An experimental application of Hypena opulenta as a biocontrol agent for the invasive vine Vincetoxicum rossicum . Ecological Solutions and Evidence , 1, e12022.
Lu, X., Siemann, E., Shao, X., Wei, H. & Ding, J. (2013). Climate warming affects biological invasions by shifting interactions of plants and herbivores. Glob Chang Biol , 19, 2339–2347.
Lucero, J.E., Arab, N.M., Meyer, S.T., Pal, R.W., Fletcher, R.A., Nagy, D.U., … & Weisser, W.W. (2020). Escape from natural enemies depends on the enemies, the invader, and competition. Ecol Evol , 10(19), 10818-10828.
Medina-Villar, S., Vázquez de Aldana, B.R., Herrero Méndez, A., Pérez-Corona, M.E. & Gianoli, E. (2021). The green thorns of Ulex europaeus play both defensive and photosynthetic roles: consequences for predictions of the enemy release hypothesis. Biol Invasions,24, 385-398.
Meijer, K., Schilthuizen, M., Beukeboom, L. & Smit, C. (2016). A review and meta-analysis of the enemy release hypothesis in plant-herbivorous insect systems. PeerJ , 4 , e2778.
Mitchell, C.E., Agrawal, A.A., Bever, J.D., Gilbert, G.S., Hufbauer, R.A., Klironomos, J.N., … & Vazquez, D.P. (2006). Biotic interactions and plant invasions. Ecol Lett , 9(6), 726-740.
Mitchell, C.E., Blumenthal, D., Jarošík, V., Puckett, E.E. & Pyšek, P. (2010). Controls on pathogen species richness in plants’ introduced and native ranges: Roles of residence time, range size and host traits.Ecol Lett , 13, 1525–1535.
Mitchell, C.E. & Power, A.O. (2003). Release of invasive plants from fungal and viral pathogens. Nature , 421, 625–627.
Mlynarek, J.J., Moffat, C.E., Edwards, S., Einfeldt, A.L., Heustis, A., Johns, R., et al. (2017). Enemy escape: A general phenomenon in a fragmented literature? Facets , 2, 1015–1044.
Morrison, W.E. & Hay, M.E. (2011). Herbivore preference for native vs. exotic plants: Generalist herbivores from multiple continents prefer exotic plants that are evolutionarily naïve. PLoS One , 6, e17227.
Morrow, C.J., Jaeger, S.J. & Lindroth, R.L. (2022). Intraspecific variation in plant economic traits predicts trembling aspen resistance to a generalist insect herbivore. Oecologia, 199 (1), 119-128.
Müller-Schärer, H., Schaffner, U. & Steinger, T. (2004). Evolution in invasive plants: Implications for biological control. Trends Ecol Evol , 19, 417–422.
Novotony V, Miller S E, Cizek L, Leps J, Janda M, Basset Y, et al. (2003). Colonising aliens: caterpillars (Lepidoptera) feeding onPiper aduncum and P. umbellatum in rainforests of Papua New Guinea. Ecol Entomol , 28, 704–716.
Ojha, M., Naidu, D.G.T. & Bagchi, S. (2022). Meta‐analysis of induced anti‐herbivore defence traits in plants from 647 manipulative experiments with natural and simulated herbivory. Journal of Ecology , 110 (4), 799-816.
Parker, I.M. & Gilbert, G.S. (2007). When there is no escape: the effects of natural enemies on native, invasive, and noninvasive plants. Ecology88 (5), 1210-1224.
Pinto‐Ledezma, J. N., Villalobos, F., Reich, P. B., Catford, J. A., Larkin, D. J., & Cavender‐Bares, J. (2020). Testing Darwin’s naturalization conundrum based on taxonomic, phylogenetic, and functional dimensions of vascular plants. Ecological Monographs , 90(4), e01420.
Prior, K.M., Powell, T.H.Q., Joseph, A.L. & Hellmann, J.J. (2015). Insights from community ecology into the role of enemy release in causing invasion success: the importance of native enemy effects.Biol Invasions , 17, 1283–1297.
Ramula, S., Knight, T.M., Burns, J.H. & Buckley, Y.M. (2008). General guidelines for invasive plant management based on comparative demography of invasive and native plant populations. Journal of Applied Ecology , 45, 1124–1133.
Reinhart, K. O., Packer, A., Van der Putten, W. H., & Clay, K. (2003). Plant–soil biota interactions and spatial distribution of black cherry in its native and invasive ranges. Ecol Lett , 6(12), 1046-1050.
Ricciardi, A. & Ward, J.M. (2006). Comment on “Opposing effects of native and exotic herbivores on plant invasions”. Science,313 (5785), 298-298.
Rotter, M.C. & Holeski, L.M. (2018). A meta-analysis of the evolution of increased competitive ability hypothesis: genetic-based trait variation and herbivory resistance trade-offs. Biol Invasions , 20, 2647–2660.
Sarabeev, V., Balbuena, J. A., Desdevises, Y., & Morand, S. (2022). Host-parasite relationships in invasive species: macroecological framework. Biol Invasions , 24(9), 2649-2664.
Schultheis, E.H., Berardi, A.E., Lau, J.A. & Kellogg, W.K. (2015). No release for the wicked: enemy release is dynamic and not associated with invasiveness. Ecology96 (9), 2446-2457.
Schulz, A.N., Lucardi, R.D. & Marsico, T.D. (2019). Successful invasions and failed biocontrol: The role of antagonistic species interactions. Bioscience , 69, 711–724.
Smith L & et al. (2020). Global gene flow releases invasive plants from environmental constraints on genetic diversity. Proceedings of the National Academy of Sciences , 117, 4218–4227.
Spake, R., Bowler, D.E., Callaghan, C.T., Blowes, S.A., Doncaster, C.P., Antão, L.H., et al. (2023). Understanding ‘it depends’ in ecology: a guide to hypothesising, visualising and interpreting statistical interactions. Biological Reviews, 1-20.
Spake, R., O’Dea, R.E., Nakagawa, S., Doncaster, C.P., Ryo, M., Callaghan, C.T., et al. (2022). Improving quantitative synthesis to achieve generality in ecology. Nat Ecol Evol, 6, 1818-1828.
te Beest, M., Stevens, N., Olff, H., & Van Der Putten, W.H. (2009). Plant–soil feedback induces shifts in biomass allocation in the invasive plant Chromolaena odorata . J Ecol , 97(6), 1281-1290.
Tilman, D. (2011). Diversification, biotic interchange, and the universal trade-off hypothesis. Am Nat , 178(3), 355-371.
Torchin, M.E., Lafferty, K.D., Dobson, A.P., McKenzie, V.J. & Kuris, A.M. (2003). Introduced species and their missing parasites.Nature , 421, 628–630.
Turcotte, M.M., Thomsen, C.J.M., Broadhead, G.T., Fine, P.V.A., Godfrey, R.M., Lamarre, G.P.A., et al. (2014). Percentage leaf herbivory across vascular plant species. Ecological Archives E095‐065. Ecology95 (3), 788-788.
de Vries, J., Evers, J.B., Dicke, M. & Poelman, E.H. (2019). Ecological interactions shape the adaptive value of plant defence: Herbivore attack versus competition for light. Funct Ecol , 33, 129–138.
Walsh, G.C., Sosa, A.J., Mc Kay, F., Maestro, M., Hill, M., Hinz, H.L.,et al. (2023). Is Biological Control of Weeds Conservation’s Blind Spot? Q Rev Biol , 98, 1–28.
Warren, R.J. & Bradford, M.A. (2021). Non-native Microstegium vimineum populations collapse with fungal leaf spot disease outbreak. Plant Ecol , 222, 107–117.
Wolfe, L.M., Elzinga, J.A. & Biere, A. (2004). Increased susceptibility to enemies following introduction in the invasive plant Silene latifolia. Ecol Lett , 7, 813–820.
Xu, M., Mu, X., Zhang, S., Dick, J.T.A., Zhu, B., Gu, D., et al.(2021). A global analysis of enemy release and its variation with latitude. Global Ecology and Biogeography , 30, 277–288.
Zhang, D.Y., & Jiang, X.H. (2006). Interactive effects of habitat productivity and herbivore pressure on the evolution of anti-herbivore defense in invasive plant populations. Journal of Theoretical Biology , 242(4), 935-940.
Zhang, Z., Pan, X., Blumenthal, D., van Kleunen, M., Liu, M. & Li, B. (2018). Contrasting effects of specialist and generalist herbivores on resistance evolution in invasive plants. Ecology , 99, 866–875.