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Figure 1. Fraction of mass that arrives at the bottom of the euphotic zone at 200 m (from

the exit depth of 100 m), starting with initial surface sinking speed of w = 1500 m d−1. Top

row: solutions with an exponential decay rate kexp(T ). Bottom row: solutions with a linear

decay rate klin(T ). Left column: solutions for January ocean temperatures. Right column:

solutions for June ocean temperatures. Note the different color scales for exponential (top row)

and linear (bottom row) decay rates.
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Figure 2. Same as Figure 1 but for a fraction of mass that arrives at the bottom of the twi-

light zone at 1000 m (from the exit depth of 100 m), starting with initial surface sinking speed of

w = 1500 m d−1. Dotted regions indicate areas where less than 10−4 of surface mass reached the

depth of 1000 m.

Figure 3. Same as Figure 1 but for the fraction of mass that arrives at the bottom of the

ocean (from the exit depth of 100 m), starting with initial surface sinking speed of w = 1500 m

d−1. Dotted regions indicate areas where less than 10−4 of surface mass reached ocean floor.
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Figure 4. Fraction of mass that arrives at the bottom of the euphotic zone at 200 m (from

the exit depth of 100 m), starting with initial surface sinking speed of w = 500 m d−1. Top row:

solutions with an exponential decay rate kexp(T ). Bottom row: solutions with a linear decay

rate klin(T ). Left column: solutions for January ocean temperatures. Right column: solutions

for June ocean temperatures. Note the different color scales for exponential (top row) and linear

(bottom row) decay rates.

Figure 5. Same as Figure 4 but for a fraction of mass that arrives at the bottom of the twi-

light zone at 1000 m (from the exit depth of 100 m), starting with initial surface sinking speed of

w = 500 m d−1. Dotted regions indicate areas where less than 10−4 of surface mass reached the

depth of 1000 m.
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Figure 6. Same as Figure 4 but for the fraction of mass that arrives at the bottom of the

ocean (from the exit depth of 100 m), starting with initial surface sinking speed of w = 500 m

d−1. Dotted regions indicate areas where less than 10−4 of surface mass reached ocean floor.

Figure 7. Fraction of mass that arrives to the ocean floor (from the exit depth of 1000 m),

starting with initial surface sinking speed of w = 500 m d−1. Top row: solutions with an ex-

ponential decay rate kexp(T ). Bottom row: solutions with a linear decay rate klin(T ). Left

column: solutions for January ocean temperatures. Right column: solutions for June ocean

temperatures. Note the different color scales for exponential (top row) and linear (bottom row)

decay rates.
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Figure 8. Same as Figure 7 but for the fraction of mass that arrives at the bottom of the

ocean with initial surface sinking speed of w = 1000 m d−1. Dotted regions indicate areas where

less than 10−4 of surface mass reached ocean floor.

Figure 9. Same as Figure 7 but for the fraction of mass that arrives at the bottom of the

ocean with initial surface sinking speed of w = 1500 m d−1. Dotted regions indicate areas where

less than 10−4 of surface mass reached ocean floor.
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