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Keypoints9

1. We conduct idealized simulations of global warming using increasingly finer horizontal resolutions, with10

an ocean-biogeochemical model.11

2. Oceanic carbon-concentration and carbon-climate feedbacks are highly influenced by resolution.12

3. It primarily stems from how the overturning circulation’s mean state depends on resolution, as well as13

how it responds to global warming.14

Abstract15

Today, the ocean absorbs ~25 % of the human-induced carbon emissions. Earth System Models (ESMs) indicate16

that the absorption increases by 0.79±0.07 PgC per ppm of atmospheric CO2 increase (carbon-concentration17

feedback), but diminishes by −17.3±5.5 PgC per degree of warming (carbon-climate feedback). Due to lim-18

ited computational capacity, ESMs parameterize flows at scales smaller than their horizontal grid resolution,19

typically ~1 °. We conduct simulations of global warming using increasingly finer horizontal resolutions (from20

1 ° to 1/27 °), with an ocean-biogeochemical model, in an idealized mid-latitude double-gyre circulation. Our21

findings demonstrate that these ocean carbon cycle feedbacks are highly influenced by resolution. This sen-22

sitivity primarily stems from how the overturning circulation’s mean state depends on resolution, as well as23

how it responds to global warming. Although being a fraction of the intricate response to climate change, it24

emphasizes the significance of an accurate representation of small-scale ocean processes to better constrain the25

future ocean carbon uptake.26

Plain language summary27

Today, the ocean absorbs ~25 % of the carbon emissions caused by human activities. This carbon sink is28

primarily driven by the increase of CO2 in the atmosphere, but it is also influenced by physical changes in29

the ocean’s properties. Earth System Models (ESMs) are used to project the future of the ocean carbon sink.30

Due to limited computational capacity, ESMs need to parameterize flows occurring at scales smaller than their31

horizontal grid resolution, typically ~1 °. To address these computational limitations, we employ an ocean32

biogeochemical model in an idealized setup representing a mid-latitude double-gyre circulation. We conduct33

simulations of global warming using increasingly finer horizontal resolutions (from 1 ° to 1/27 °). Our findings34



1 INTRODUCTION

demonstrate that the ocean carbon uptake is highly influenced by resolution. This sensitivity primarily stems35

from how the overturning circulation’s mean state depends on resolution, as well as how it responds to global36

warming. Although our results capture only a fraction of the intricate oceanic response to climate change, they37

emphasize the significance of accurately representing the role of small-scale ocean processes to better constrain38

the future evolution of ocean carbon uptake.39

1 Introduction40

By absorbing 25 % of anthropogenic carbon emissions (Friedlingstein et al., 2022), the ocean plays a crucial41

role in determining the rate at which CO2 increases in the atmosphere, thus influencing the pace of climate42

change. This carbon uptake is primarily attributed to the rise in atmospheric CO2 and its impact on the partial43

pressure equilibrium of CO2 at the air-sea interface. However, this absorption is modulated by changes in44

oceanic physics, particularly the warming of surface waters and increased ocean stratification, both of which45

tend to decrease this flux (Sarmiento et al., 1998; Sarmiento and Le Quéré, 1996; Maier-Reimer et al., 1996).46

Through enhancing or reducing the ocean carbon sink, changes in the ocean carbon cycle act as a negative or47

positive feedback on the Earth’s climate, respectively. Understanding the ocean’s capacity to mitigate or amplify48

human-induced climate change is essential for projecting the future climate trajectory.49

Two metrics have been established to measure the ocean carbon sink response to increasing atmospheric CO250

and climate change: the carbon-concentration and carbon-climate feedback parameters (Katavouta and Williams,51

2021; Arora et al., 2020; Schwinger et al., 2014; Boer and Arora, 2013; Roy et al., 2011; Friedlingstein et al.,52

2006). The former quantifies the ocean carbon cycle’s response to the rise in atmospheric CO2 levels, while53

the latter measures its response to changes in the physical climate. These metrics are typically evaluated using54

Earth System Models (ESMs) and idealized climate change scenarios in which atmospheric CO2 increases at55

1 % per year (Eyring et al., 2016). Arora et al. (2020) utilized 11 ESMs from the Coupled Model Intercompar-56

ison Project Phase 6 (CMIP6) to assess the carbon-concentration feedback at 0.79± 0.07 PgCppm−1 and the57

carbon-climate feedback at −17.3±5.5 PgC°C−1.58

One significant limitation of ESMs arises from computational constraints and the use of coarse grid resolu-59

tion, which lead to an inadequate representation of transient eddies and flows of scales below 100 km (Gent60

and McWilliams, 1990). To overcome these limitations, coarse-resolution ESMs (1 ° or coarser) use sub-grid61

parameterizations, which enables capturing certain key aspects of the ocean carbon cycle. These models repro-62

duce reasonably well the global net carbon uptake over the historical period (Hauck et al., 2020; Séférian et al.,63

2020; Bronselaer et al., 2017) and replicate large-scale carbon uptake/outgassing patterns, as well as key carbon64

cycle drivers like primary production (Séférian et al., 2020), mixed layer depth (Fu et al., 2022; Séférian et al.,65

2019), and carbon subduction/obduction (Davila et al., 2022; Lévy et al., 2013; Sallée et al., 2012). Nonethe-66

less, these processes and their response to climate change are sensitive to sub-grid process representation (Brett67

et al., 2023; Couespel et al., 2021; Bahl et al., 2020; Resplandy et al., 2019; Harrison et al., 2018; Balwada et al.,68

2018; Mahadevan et al., 2011), potentially introducing biases into current estimates of carbon uptake and the69

carbon-concentration and carbon-climate feedbacks. In this study, we examine how eddy resolution influences70

the ocean’s carbon sink response to future global warming.71

Explicitly resolving eddies in ocean models is known to impact the positioning of western boundary currents72

(Chassignet and Xu, 2017; Lévy et al., 2010; Chassignet and Marshall, 2008), alter the Meridional Overturning73

Circulation’s strength (MOC, Hirschi et al., 2020; Roberts et al., 2020), and increase stratification (du Plessis74
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et al., 2017; Karleskind et al., 2011; Lévy et al., 2010; Chanut et al., 2008). These changes affect the transport75

of heat and tracers, including carbon (Swierczek et al., 2021; Uchida et al., 2020; Chen et al., 2019; Uchiyama76

et al., 2017; Lévy et al., 2012). Furthermore, eddy activity may evolve with global warming (Beech et al., 2022;77

Martínez-Moreno et al., 2021; Oliver et al., 2015), further influencing ocean circulation and carbon transport.78

Investigating these effects resulting from resolved eddies has recently started within global warming scenarios79

(Hewitt et al., 2022; Rackow et al., 2022; van Westen and Dijkstra, 2021; Chang et al., 2020), generally using80

resolutions not finer than 1/10 °, and to the best of our knowledge, not in terms of their implications for ocean81

carbon cycle feedbacks.82

This study assesses the impact of explicitly representing eddies and horizontal flows with scales ranging from83

10 km to 100 km on the response of the oceanic carbon uptake to increasing CO2 and global warming. The84

subsequent section outlines the idealized setup employed in this study, followed by the presentation of results85

and concluding with a discussion regarding the implications for climate projections using ESMs.86

2 Methods87

2.1 Models and configurations88

Ocean physics are simulated with the primitive-equation ocean model NEMO (Madec et al., 2017) coupled to89

the biogeochemical model LOBSTER (Lévy et al., 2012, 2005), in which the carbon cycle as been activated90

(Sec. S1 and Tab. S2). The domain is a closed square basin on a mid-latitude β -plan. It is 3180 km wide91

and long and 4 km deep, bounded by vertical walls and by a flat bottom with free slip boundary conditions. A92

double-gyre circulation is set up by analytical zonal forcings (wind stress, net heat flux and freshwater flux)93

which vary seasonally between winter and summer extrema. The net heat flux comprises a restoration toward a94

zonal atmospheric temperature profile and a solar radiation allowed to penetrate within the water column. CO2 is95

exchanged with the atmosphere following Wanninkhof (1992, Eq. 8) and forced with a prescribed atmospheric96

partial pressure of CO2 (pCO2).97

We use three horizontal resolutions: 106 km (1 °), 12 km (1/9 °) and 4 km (1/27 °). For each resolution, time98

steps, numerical schemes and isopycnal/horizontal diffusion are adapted (Tab. S1). For the 1 ° resolution config-99

urations, we used the Gent and McWilliams (1990, GM hereafter) eddy parameterization. This parameterization100

relies on two coefficients, an isopycnal diffusion coefficient (kiso) and a GM coefficient (kgm). For testing the101

sensitivity to the GM parameterization, we used five combinations of the isopycnal diffusion and GM coeffi-102

cients: (1) 500 m2s−1, (2) 1000 m2s−1 and (3) 2000 m2s−1 for both parameters and (4) 500 m2s−1 and (5)103

2000 m2s−1 for the isopycnal diffusion parameter but keeping the GM coefficient at 1000 m2s−1. We thus104

end up with seven different configurations: five eddy-parameterized at a coarse resolution (1 °) and two eddy-105

resolving at fine resolutions (1/9 ° and 1/27 °). In the following, results from the eddy-parameterized coarse106

resolution configurations are synthesized by showing the average ±1 standard deviation across the five different107

configurations. For the higher resolution configurations, there is no momentum nor tracer diffusion but a mini-108

mal bi-Laplacian tracer diffusion at 1/27 °. Contrary to the 1/27 ° configuration, the qualifier "eddy-permitting"109

is probably more appropriate for the 1/9 ° configuration. Nevertheless, to simplify and as the emphasis is put on110

the differences between the 1 ° resolution and the finer ones, we use the term eddy-resolving for both.111

The model and configurations are similar to the one described in Couespel et al. (2021) and were derived from112

prior studies (Resplandy et al., 2019; Lévy et al., 2012; Krémeur et al., 2009). The key elements have been113

outlined above. For further details, we refer to the aforementioned papers.114
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2.2 The different simulations and experimental design115

After a 100 years spin up at each resolution initialized with the same physical and biogeochemical state (from116

a 2000 year spin-up at coarse resolution), 4 different experiments are conducted. They are forced by different117

combinations of atmospheric temperature and atmospheric pCO2 (see Fig. 1a,b). (1) The control simulation118

(CTL) is the continuation of the spin-up, with temperature keeping a seasonal cycle and atmospheric pCO2119

staying constant. (2) In the biogeochemical simulation (BGC), atmospheric pCO2 increases by 1% every year,120

but atmospheric temperature stays constant (with a seasonal cycle). (3) In the radiative simulation (RAD),121

atmospheric temperature increases by 0.04 °C every year (with a seasonal cycle), while atmospheric pCO2122

is kept constant. (4) In the coupled simulation (COU), both atmospheric pCO2 and atmospheric temperature123

increase by 1 % and 0.04 °C every year, respectively. The term coupled (COU) is to be coherent with the naming124

used with ESMs. However, here, atmospheric temperature and atmospheric pCO2 are not radiatively coupled.125

Besides, despite the use of the term "atmospheric", there is no atmospheric model.126

Figure 1. Overview of the configurations and simulations. (a) Time series of the analytical atmospheric pCO2 [ppm] forcing for the CTL
simulation (blue line) and for the BGC and COU simulations (red line). (b) Time series of the mean analytical atmospheric temperature [°C]
forcing for the CTL and BGC simulations (blue line) and for the COU simulation (red line). Shown is the atmospheric temperature average
yearly and on the domain. (c) Barotropic circulation [Sv] over the model domain (average of the five 1 ° resolution CTL simulations).
Air-sea carbon flux [molCm2 d−1] on March, 3nr in (d) the 1 ° (kgm=1e3 and kiso=1e3), (e) the 1/9 ° and (f) the 1/27 ° CTL simulations.

The main features of the model’s solution comprise a western boundary current separating a subtropical gyre127

outgassing carbon in the south of the domain from a subpolar gyre uptaking carbon in the north (Fig. 1). A128

rather classic MOC is simulated with northward transport in the upper ocean (above ≃ 250 meters), down-129

welling in the north and then southward transport at depth. In the northernmost part of the domain (2,560-3,180130

northward km), deep convection occurs in winter with mixed layer depth reaching 1,000 meters and more. As131

resolution increases, mesoscale eddies and filamentary structures emerge in the air-sea carbon flux (Fig. 1d-f).132

Dissolved Inorganic Carbon (DIC) concentration increases with depth (Fig. 2a). With increasing resolution,133

vertical profiles are more homogeneous. The vertical gradients are weaker and DIC concentration are lower at134
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250-1,250 metres. The equilibrium states have been further described in Couespel et al. (2021).135

Figure 2. Dissolved inorganic carbon concentration (DIC, [mmolCm−3]) vertical profiles spatially averaged for the three resolutions. (a)
DIC profiles in the CTL simulation. Change in DIC between (b) the BGC and CTL simulations and (c) the COU and BGC simulations.
All profiles are averaged on the 10 last years of the simulations. The 1 ° resolution profiles shows the average of the five 1 ° configurations.
Shading indicates ±1 inter-model standard deviation.

2.3 Feedback metrics and carbon budget136

The responses of the ocean carbon cycle to 1) the increase in atmospheric pCO2 and 2) the change in ocean137

physical properties are respectively quantified by the carbon-concentration and carbon-climate feedbacks. Fol-138

lowing the traditional BGC-COU approach (Arora et al., 2020), they are defined as:139

carbon-concentration feedback: β =
∆CBGC

∆Catm
Equation 1.140

carbon-climate feedback: γ =
∆CCOU −∆CBGC

∆Tatm
Equation 2.141

∆CCOU and ∆CBGC are the cumulative changes in carbon uptake in the COU and BGC simulations relative to the142

CTL simulation, ∆Catm is the accumulation of CO2 in the atmosphere and ∆Tatm is the change in atmospheric143

temperature.144

The feedback metrics are related to CO2 uptake, its response to warming and the distribution of DIC in the145

ocean interior. Locally, the DIC budget is : −∇⃗ · (⃗u ·DIC)+L(DIC)+∂z(k ·∂zDIC)+B(DIC)+ fCO2 = ∂tDIC.146

∇⃗ · (⃗u ·DIC) is the divergence of the advective fluxes, ∂z(k ·∂zDIC) is the vertical diffusion term, L(DIC) is the147

isopycnal diffusion, B(DIC) represents the biological sources and sinks of DIC and fCO2 the air-sea CO2148

flux when at the surface. u is the total velocity and includes the bolus velocity of the GM parametrization at149

coarse resolution. Integrated on the upper ocean (surface to 250 metres depth) and along the 70 years of the150

simulations, the local DIC budget becomes:151

CO2 uptake :
∫ 70

0
⟨ fCO2⟩dt =

∫ 70

0

∮
u⃗ ·DIC dsdt Advection

−
∫ 70

0
⟨k ·∂zDIC|250m⟩dt−

∫ 70years

0
⟨L(DIC)⟩dt Diffusion

+
∫ 70

0
⟨B(DIC)⟩dt Biological sources and sinks

+ ∆⟨DIC⟩ Change in DIC stock
Equation 3.
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The bracket stands for the volume integral on the upper ocean or the horizontal integral at the surface for the152

CO2 uptake and at 250 metres depth for the vertical diffusion term. The first term on the right side is the integral153

of the advective fluxes entering/exiting the upper ocean, i.e. the vertical DIC advective flux at 250 metres depth,154

here. A similar budget is computed for the lower ocean (250 metres depth to bottom). In that case, the CO2155

uptake by the ocean term is null. These budgets have been computed at each time step of all the simulations.156

Furthermore, particularly for relating the advective transport with the MOC, the budget is also computed with157

the upper and lower ocean being divided latitudinally in 3 regions representing the subtropical gyre, the subpolar158

gyre and the convection zone (respectively 0-1,590, 1,590-2,560 and 2,560-3,180 northward km, see Sec. S2)159

The differences in the DIC distribution and budget between the BGC and CTL simulations give some insights160

about the drivers of the carbon-concentration feedback, while the differences between the COU and BGC sim-161

ulations tell us about the carbon-climate feedback. The extra carbon added to the system in response to the162

increasing atmospheric pCO2 is the anthropogenic carbon. The change between the BGC and CTL simulation163

thus show the anthropogenic DIC distribution and budget. The difference between the COU and BGC simu-164

lation include the response of the anthropogenic DIC to warming as well as the response of the natural DIC.165

To disentangle one from another, we use the RAD simulation. The differences between the RAD and CTL166

simulations reveal the response of natural DIC to warming (Fig. S2a), while the remainder reveal the response167

of anthropogenic DIC to warming (Fig. S2b).168

3 Results169

3.1 Sensitivity of ocean carbon uptake to resolution170

All along the 70 years of the COU simulation, carbon accumulates in the ocean (Fig. 3a). This accumula-171

tion is driven by the rise in atmospheric pCO2, slightly offset by the response to warming-induced changes in172

ocean circulation and biogeochemistry (Fig. 3b, c). At coarse resolution, the carbon-concentration feedback is173

0.18±0.01 molCm−2 ppm−1 while the carbon-climate feedback is −5.42±0.28 molCm−2 °C−1. As a conse-174

quence, DIC concentration increases in the BGC simulation as compared with the CTL simulation (Fig. 2b),175

and decreases in the COU simulation as compared with the BGC simulation (Fig. 2c). The strongest changes176

take place in the first 500 meters.177

With finer resolution, the ocean uptakes about 30 % more carbon (Fig. 3a). 87 % (1/9 °) and 78 % (1/27 °) of178

this extra uptake is caused by a stronger response to atmospheric pCO2 increase (Fig. 3b). The remainder is179

explained by a weaker decline in uptake because of warming (Fig. 3c). The carbon-concentration feedback180

is stronger (0.22 and 0.21 molCm−2 ppm−1 for the 1/9 ° and 1/27 ° resolution, respectively) while the carbon-181

climate feedback is weaker (−4.93 and −4.23 molCm−2 °C−1 for the 1/9 ° and 1/27 ° resolution, respectively).182

As a consequence, there is a stronger DIC concentration increase in the BGC simulation (as compared with the183

CTL simulation, Fig. 2b), notably between at the subsurface (250-1250 meters).184

3.2 Resolution-induced changes in the carbon-concentration feedback185

The carbon-concentration feedback depends on the ability of the ocean to transport anthropogenic carbon to the186

deep ocean, so that the uptake at the surface is maintained (Figs. 2b and 4a). Once in the ocean, anthropogenic187

carbon is advected northward by the upper limb of the MOC. It is then transfered downwards (through mixing188

and advection) in the high latitude part of the domain (mainly the convection zone) before being advected back189

southward. A small fraction is then advected upward back to the surface (Fig. S1). Diffusive flux participate190

in this downward flux of carbon by counteracting against the gradients (Fig. 2b). About 90 % of the diffusion191

occurs in the convection zone.192
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Figure 3. (a) Time series of the change in cumulated carbon uptake [molCm−2] COU simulations for the three resolutions. (b) Change
in cumulated carbon uptake [molCm−2] in the BGC simulations vs. atmospheric pCO2 [ppm] for the three resolution. (c) Change in
cumulated carbon uptake [molCm−2] in the COU simulations relative to the BGC simulations vs. change in atmospheric temperature [°C]
in the COU simulation. The 1 ° resolution lines shows the average of the five 1 ° configurations. Shading indicates ±1 inter-model standard
deviation.

With finer resolution, more anthropogenic carbon is transported and stored at depth (Figs. 2b and 4a)). Below193

250 metres, there is about 90 extra TmolC stored in the finer resolution (Fig. 4a), mostly in the subtropical gyre194

(Fig. S1). 97-79 extra TmolC are absorbed at the air-sea interface. This extra carbon is advected northward195

at the surface, downward in the convection zone and then southward to ultimately being accumulated in the196

sub-surface of the subtropical gyre. Advection transports more anthropogenic carbon to the sub-surface at finer197

resolution. This more vigorous advection is related to the stronger MOC (Couespel et al. (2021, Fig. A8),198

MOC increasing from 1.75 Sv at 1 ° to 3.14 Sv at 1/9 ° and 2.94 Sv at 1/27 °). The stronger advection is partially199

balanced by a weaker mixing at finer resolution, resulting in less anthropogenic carbon transported to the sub-200

surface at finer resolution. This is likely related to the weaker gradient at finer resolution (Fig. 2b).201

3.3 Resolution-induced changes in the climate-carbon feedback202

The climate change induced decrease in carbon uptake is a consequence of decreasing CO2 solubility (induced203

by warming) and of the balance between changes in DIC transport, leaving more DIC at depth, and the decline in204

DIC consumption by primary production at the surface (Fig. 4b). The major change is the decline in biological205

consumption of DIC at the surface, mirrored by a decline in organic matter remineralization at depth, resulting206

in less carbon exported to the deep ocean. It mostly happens in the subpolar gyre and the convection zone,207

which are also the areas with the stronger decline in primary production (Fig. S1 and Couespel et al., 2021) The208

second largest change is the increase in downward diffusive fluxes transporting more carbon from the surface209

to the deep ocean, mostly in the convection zone (Fig. S1). It is likely related to the shallowing of the mixed210

layer depth (Couespel et al., 2021, Fig. A9). Changes in advection have minor impact in terms of transport211

between the surface and deep oceans. However, this comes from a compensation between a strong decrease in212

upward and downward advective fluxes (Fig. S1) driven by the MOC decline (Couespel et al., 2021, Fig. A8).213

Changes in the DIC transport results from a compensation between a decline in the upward transport of natural214

DIC and the downward transport of anthropogenic DIC (Fig. S2). The decrease in upward transport of natural215

DIC, paired with the decrease in upward transport of nutrients, is the counterpart to the decrease in biological216

consumption. The two almost offset each other, although more carbon is left in the deep ocean.217

The climate change induced responses of DIC transport and biological source and sink of DIC are weaker at finer218

resolution (Fig. 4b). A weaker decrease in primary production leads to a weaker decline in DIC consumption219
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Figure 4. Differences in dissolved inorganic carbon (DIC) budgets (integrated over space and time) in the upper and lower ocean (resp.
above and below 250 meters depth) for the three resolutions (see Eq. 3). a) Differences between the BGC and CTL simulations. b)
Differences between the COU and BGC simulations. Bold numbers stand for changes in DIC stocks. Thin number for differences in CO2

uptake, physical transport (advection, diffusion) and the biological sources and sinks. The CO2 uptake arrow indicate the direction of the
flux (uptake or outgas). For advection and diffusion terms, positive values stand for a DIC transport from upper to lower ocean. The arrow
indicate the direction of the difference of the fluxes. For advection, it is a synthetic view of figure S1. The 1 ° resolution numbers are the
average of the five 1 ° configurations ±1 inter-model standard deviation.

at the surface, as well as a weaker decline in remineralization at depth. The weaker increase in the downward220

diffusive flux may be related to a weaker shallowing of the mixed layer depth (Couespel et al., 2021, Fig. A9).221

However, it should be noted that the finer resolution simulations do not include isopycnal mixing that is present222

in the coarse resolution simulations and added to the diffusive flux. Finally, advection changes result in more223

(and not less) carbon left in the deep ocean in the 1/9 ° and 1/27 ° resolution simulations. This also stems224
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from a compensation between decreases in the upward and downward advective fluxes, although the decrease is225

weaker at finer resolution (Fig. S1). This is likely related to the weaker decline in the MOC at finer resolution226

(Couespel et al., 2021, Fig. A8). As for the coarse resolution, changes in DIC transport arise from the decline227

in the upward transport of natural DIC (compensating the decline in DIC consumption) and the decline in the228

downward transport of anthropogenic DIC (Fig. S2).229

4 Discussion and conclusions230

Using a wind and buoyancy driven double-gyre model to run idealized biogeochemically coupled simulations231

of global warming, we show that ocean carbon uptake is sensitive to horizontal grid resolution. It is about 35 %232

larger at eddy resolution. Ocean carbon uptake results from the combination of direct uptake of human emitted233

CO2 (carbon-concentration feedback) as well the negative feedback induced by the carbon-cycle response to234

global warming (carbon-climate feedback). About 78–87 % of the larger carbon uptake at high resolution235

results from a stronger direct uptake of anthropogenic carbon induced by a stronger transport at depth through236

the MOC. The remainder comes from a weaker negative carbon-climate feedback, likely related to a weaker237

decline in the MOC and primary production in response to warming (Fig. 4 and Couespel et al., 2021).238

The carbon-concentration and carbon-climate feedbacks evaluated at coarse resolution in this study are in the239

range of previous estimates from ESMs. In the North Atlantic, the region most similar to our idealized setting,240

they are respectively estimated to be about 1 to 10 gCm−2 ppm−1 and −50 to −300 gCm−2 °C−1 in simulations241

run with ESMs (Katavouta and Williams, 2021, Fig. 2 and Roy et al., 2011, Fig. 10a and Fig. 11a). In this study,242

at coarse resolution, the feedbacks are respectively 2.16±0.12 gCm−2 ppm−1 and 65.04±3.36 gCm−2 °C−1.243

In ESMs, the global ocean carbon-concentration and carbon-climate feedbacks vary respectively from 0.8 to244

1.1 PgCppm−1 and from −4.4 to −12.4 PgC°C−1 (Arora et al., 2020). In this study, the coarse resolution245

feedbacks, are respectively 0.78 ± 0.04 PgCppm−1 and −23.48 ± 1.21 PgC°C−1, when multiplied by the246

global ocean area.247

In line with prior studies (Brown et al., 2021; Katavouta and Williams, 2021; Ridge and McKinley, 2020;248

Iudicone et al., 2016; Nakano et al., 2015), our results highlight the importance of having a reliable MOC249

for projecting future anthropogenic carbon uptake by the ocean. Indeed, we found that in the fine resolution250

simulation, the stronger MOC implies a stronger transport of anthropogenic carbon at depth and thus a stronger251

carbon-concentration climate feedback while a weaker MOC decline was associated with a weaker carbon-252

climate feedback. Such positive correlations between the pre-industrial MOC and the carbon-concentration253

feedback as well as between the MOC decline and the carbon-climate feedback have been identified in the254

latest ESMs (Katavouta and Williams, 2021), although not in previous generations (Roy et al., 2011). Our255

model behaviour is unusual: the finer resolution simulations have a stronger carbon-concentration feedback and256

a weaker carbon-climate feedback, while the opposite is found in ESMs projections (Arora et al., 2020). This257

is likely related to the unusual behaviour of the MOC in our simulations: the stronger MOC at finer resolution258

experiences a weaker decline, while ESMs with a stronger MOC usually project a stronger decline (Roberts259

et al., 2020; Jackson et al., 2020; Chang et al., 2020; Winton et al., 2014; Gregory et al., 2005).260

There are two areas for improvement in the MOC: its mean state and its response to global warming. Our261

results suggest that addressing the effect of sub-grid processes on the mean state only could largely correct for262

the resolution-related uncertainty in carbon uptake and induced climate feedbacks. The improved representation263

of the MOC can be achieved by several solutions that are currently being explored: finer resolution simulations264

(Yeager et al., 2021; van Westen and Dijkstra, 2021; Chang et al., 2020; Gutjahr et al., 2019; Haarsma et al.,265

2016), the implementation of improved parametrization schemes Bachman (2019); Jansen et al. (2019); Mak266

et al. (2018), or the use of statistical approaches (Barthélémy et al., 2022; Sonnewald et al., 2021; Zanna and267
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ing the formation of different water masses (Lique and Thomas, 2018; Bronselaer et al., 2016; Delworth and273

Zeng, 2008). Carbon uptake is also dependent on the biological carbon pump and the vast number of intercon-274
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2021). For example, the Southern Ocean alone accounts for 40% of the total anthropogenic carbon uptake278

(DeVries, 2014). The more realistic configurations and the more complex global warming scenario developed279

in the CMIP6 (and subsequent MIPs) framework would enable these different elements to be explored. The280

uncertainties linked to the resolution in climate models just start to be explored. The sensitivity of ocean carbon281

uptake projections to resolution raises concerns about the sensitivity of related climate change issues such as282

heat uptake and transport (Bronselaer and Zanna, 2020; Chen et al., 2019) or ocean acidification (Kwiatkowski283

et al., 2020).284
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