

Search-Based Planning and Reinforcement

Learning for Autonomous Systems and Robotics

Than D. Le 1, 2

1 University of Bordeaux, France; than.ld@ieee.org
2 Ton Duc Thang University;

Abstract: In this chapter, we address the competent Autonomous Vehicles should have the ability to

analyze the structure and unstructured environments and then to localize itself relative to

surrounding things, where GPS, RFID or other similar means cannot give enough information about

the location. Reliable SLAM is the most basic prerequisite for any further artificial intelligent tasks of

an autonomous mobile robots. The goal of this paper is to simulate a SLAM process on the advanced

software development. The model represents the system itself, whereas the simulation represents the

operation of the system over time. And the software architecture will help us to focus our work to

realize our wish with least trivial work. It is an open-source meta-operating system, which provides

us tremendous tools for robotics related problems.

Specifically, we address the advanced vehicles should have the ability to analyze the structured and

unstructured environment based on solving the search-based planning and then we move to discuss

interested in reinforcement learning-based model to optimal trajectory in order to apply to

autonomous systems.

Keywords: SLAM, Probabilistics Robotics, Kalman Filter, Extended Kalman Filter, Modelling,

Simulation, Search-based Planning, Reinforcement Learning, Monte Corlo, Q-Learning;

1. Introduction

In past work, Deep learning [19] and (Deep) reinforcement learning [16], [22] included DeepMind

and Deep Q-Learning mechanism [18] in 2014, AlphaGo won the champion in the game of Go [21] in

2016 and also OpenAI and PPO occurred 2017 [20] are currently resolutions in applied artificial

intelligence for vehicle and autonomous systems. Basically, deep learning is the best model for data

representation and reinforcement learning is a modern approach to solving the decision-making.

Before moving forward to modern approaches. there are essential to represent the basic things to

making the intelligent autonomous systems that can be enabled to solve basic level based on

simultaneous localization and mapping (SLAM) based on interacting the unknown environment.

Currently, the state-of-the-art in research-based planning and replanning [17] for autonomous and

mobile systems. Moreover, motion planning [1], [3], [8] will be explored the probabilistic problems

capturing from the Figure 1.1 and Figure 1.2

Figure 1.1: Modelling and Simulation: A sample for Vehicle Mobility

Figure 1.2: System Architecture of Search-Based Planning and Reinforcement Learning in

Advanced Vehicle Mobility

On paper, the next section will be described the path planning based on representing the search-

based planning to find the shortest path in heuristical representation. Next section, it will be covered

the uncertainty problems by using the SLAM concepts. Then next, we will introduce the

reinforcement learning for generating the trajectory path in maze environment. Finally, it concluded

with some experiments in both simulations and real-world.

2. Path Planning

In this section, we will explore the path finding algorithms are to study compares some popular

algorithms: Dijkstra’s Algorithm, Best-First-Search and The A* Algorithm. Initially, the controlling

functions are written in both Python and C++ language. Through doing this, we learned more about

the language, being able to write a publisher and subscriber nodes, understand how operating

systems works like ROS as an open source software, how to develop software without reinventing

the wheel. At the end, we successfully write a navigation app that implements A* Shortest Path

Finding Algorithms to make the Vehicle or autonomous robots walking to the 2D path generated by

software developments. The source code are well-commented, the packages are well-organized and

are uploaded to bitbucket, making it easier for other contributors to continue the project for

universities or organizer. Firstly, we can define the theory concepts below.

2.1. Dijkstra’s Algorithm and Best-First-Search

A common example of a graph-based path finding algorithm is Dijkstra’s algorithm such as Figure

2.1. Dijkstra’s algorithm is a shortest path finding algorithm conceived by computer scientist Edsger

W. Dijkstra in 1956. It works by visiting a set of open nodes in the graph starting with the starting

node. It then repeatedly examines the closest node with the lowest distance cost that have not been

examined, adding it to the set of closed node (nodes that have been examined). It expands outwards

from the starting point until it reaches the goal. If there are no negative edge node (node with the

negative distance cost), Dijkstra’s algorithm is guaranteed to find a shortest path from the starting

point to the goal, since the lowest distance nodes are examined first. In the following map, the star is

the starting point, the ”X” is the goal, the white path is the calculated path and the blue and area

inside it is the areas Dijkstra’s algorithm have scanned.

Figure 2.1: LEFT: Path finding using Dijkstra’s algorithm; RIGHT: Greedy Best-first search

algorithm

The Greedy Best-first search is a search algorithm which explores a map of nodes by expanding the

most promising node chosen based on Evaluation Function 𝑓(𝑛). Different from Dijkstra’s algorithm,

which selects the node closest to the starting point, Greedy Best-first search algorithms selects the

node closest to the goal. By using the priority queue ordering, Greedy best-first search algorithms

tends to focus on paths that lead directly to the goal.

Figure 2.2: Path finding using

Amazing, according to the pictures, Dijkstra’s algorithm is outclassed completely by Greedy Best-

first search algorithms. However, Greedy Best-First Search is not guaranteed to find a shortest path.

Let’s see what happens in a more complex map.

Dijkstra’s algorithm still have to scan a large amount of nodes, but it found the shortest path:

On the other hand, Greedy Best-First-Search algorithm works much more faster Figure **[LEFT], but

the path it generated is much longer:

Figure 2.3: Path Finding Problem using the Dsitristra

The problem is that Greedy Best-First-Search is “greedy” and it keeps trying to move towards the

goal even if it’s a longer path, and Dijkstra’s algorithm takes too much time and resource to find the

path. So can we combine the best of both algorithms? In order to solve this question, In 1968, AI

researcher Nils Nilsson developed a new path finding Algorithms - A* (A Star Algorithms). The

algorithms combines Greedy Best-First-Search and Dijkstra's algorithm. Although A* is built on top

of the heuristic, and the heuristic itself does not give you a guarantee, A* can guarantee a shortest

path

2.1. A* Shortest Path Finding Algorithm

A* Shortest Path Finding Algorithm Peter Hart was first described by Nils Nilsson and

Bertram Raphael of Stanford Research Institute (now SRI International) in 1968. It is an

extension of Edsger Dijkstra’s 1959 algorithm. Since then, it has become the leading

pathfinding algorithm. A* Algorithm is widely used in map navigation and graph traversal,

the process of plotting an efficiently traversable path between multiple nodes.

A* is a best-first search algorithms, meaning that it will choose the path considered as the

best solution (least distance traveler, shortest time, etc.) by searching among all possible

paths to the target.

As we have mentioned before, Dijkstra’s Algorithm is accuracy to find the shortest path, but

it wastes time exploring in directions that aren’t promising while Greedy Best First Search

explores in promising directions but it may return the longer path result. The A* algorithm

calculates both the actual distance from the start and the estimated distance to the goal so it

can guarantee to find shortest path while taking much less time Dijkstra’s Algorithm.

First, let’s define the cost function:

𝑓(𝑛) = 𝑔(𝑛) + ℎ(ℎ) (1)

With 𝑓 is the cost of a node. The lower the 𝑓, the better the node. The 𝑔 is the cost it took to

get to the node, for example: the length of the road which we passed by from the start. ℎ is

the heuristic score function, the tentative cost to reach the goal from that node. The accuracy

of your path depends on how ”good” is your h. Very rarely (if ever) is your ℎ perfect.

Enough for theory, let’s see what A* Algorithms method can do.

Figure: Comparison of Path finding using 3 different algorithms: Left - Dijkstra’s

Algorithm; Center - Greedy Best-First Search; Right - A* Search

From the figure above Figure , we can clearly see that A* algorithms finds a path as good as what

Dijkstra’s algorithm found while took less time to scan the node. (scan a smaller number of nodes).

Let’s consider how algorithms work. First, we create an open list and closed list. The open node list

start with the start node and contains all nodes that have not yet been checked. The closed node list

stores all node that have been visited.(moved from the open node list). The algorithm works by

maintaining these two lists. The core loop of the algorithm selects a node from the open list with the

lowest estimated cost (f) to reach the goal. If one of the selected node is the goal, the search will be

stopped. Else, it calculate the node cost then push all the valid direction nodes (8 nodes around the

current node) into the open list. Then the checked node is moved to the closed node list.The process

repeats until the path is generated.

3. Uncertainty Representation using Kalman Filter Landmark Based SLAM

This chapter provides us the first insight of SLAM. The Kalman filter and theory of SLAM topic will

be quickly covered before a more practical explanation at the last section of the chapter can tell basic

things. The aim of the chapter is to introduce Kalman filter to the reader for ease of further SLAM

understanding in the future.

3.1. Principle of Kalman filter

In the 1950s, Rudolf Emil Kalman published the famous article about the recursive approach to the

discrete data linear filtering. The article was "A new Approach to Linear Filtering and Prediction

Problems". From that time to now, with the dramatic development of digital calculation, Kalman

filter has become a popular research topic, and has been applied in various areas, such as automatic

electronics, robotics, radar technology, and so on.

The Kalman filter was originally designed to collect and incorporate data from sensors in adaptive

way. Once system of equations and sensors statistic data is known and deterministic, the filter will

give optimal estimation after filtering errors and noises. There are many ways to optimize the data

based on some particular criteria, but the Kalman filter seem to be the best in linear Gaussian

estimation when it can incorporate all data given to it.

In short, Kalman filter is a mathematical system of equations which describe a method for effectively

recursive estimation of states such that the average of all variances and covariances of state variables

becomes minimized. Kalman filter is very optimal for estimation of states in the past, the present, and

the future, even if the accuracy of robotic models is not guaranteed. Kalman filter is of our interest

under the assumption that the system is linear and the noise is Gaussian. There are two phase in the

filter: prediction and update. At first, Kalman filter predicts an 𝑛 dimensional predecessor state vector

denoted by 𝑥′𝑡
 at time step 𝑡 through the stochastic differential equation,

𝑥′𝑡 = 𝐴𝑡𝑥𝑡−1 + 𝐵𝑡𝑢𝑡 + 𝑤𝑡
 (38)

, where 𝐴𝑡
 is the state transition matrix at time step t, B is the optional control input matrix at time

step 𝑡 that can affect 𝑥𝑡
 , and 𝑤𝑡 ∼ 𝑁(0, 𝑅𝑡) indicates the additive white Gaussian noise (AWGN)

of the transition. Next, the filter calculate the predecessor covariance matrix 𝑃′𝑡
 as follows,

𝑃′𝑡 = 𝐴𝑡𝑃𝑡−1𝐴𝑡
𝑇 + 𝑅𝑡

 (39)

, where 𝑅𝑡
 is the variance matrix of the transition noise 𝑤𝑡

 at time step 𝑡. Then, the filter enters the

second phase called correction or update, where the posterior state vector 𝑥𝑡
 and the posterior

covariance matrix 𝑃𝑡
 are improved from the correspondent predecessor ones by the expressions

below,

𝑥𝑡 = 𝑥′𝑡 + 𝐾𝑡(𝑧𝑡 − 𝐻𝑡𝑥′𝑡) (40)

𝑃𝑡 = (𝐼 − 𝐾𝑡𝐻𝑡)𝑃′𝑡
 (41)

, where 𝐻𝑡
 is the Jacobian matrix from measurement model 𝑧𝑡 = 𝐻𝑡𝑥′𝑡 + 𝑣𝑡

 at time step 𝑡

𝑣𝑡 ∼ 𝑁(0, 𝑄𝑡) is the random measurement noise variable (AWGN), 𝑄𝑡
 is the measurement noise

variance matrix, I is the identity matrix, and K t is called Kalman gain at time step 𝑡,

and computed by,

𝐾𝑡 = 𝑃′𝑡𝐻𝑡
𝑇(𝐻𝑡𝑃′𝑡𝐻𝑡

𝑇 + 𝑄𝑡)−1 (42)

If, at time step t, the observation error covariance R t decreases, the actual observation 𝑧𝑡
 is treated

to be better than the prediction 𝐻𝑡𝑥′𝑡
. On the other hand, a smaller prior error covariance 𝑃′𝑡

 leads

to a less important actual measurement 𝑧𝑡
 and weights the predecessor prediction 𝑥′𝑡

 more. The

prediction phase and the correction phase of the Kalman filter are performed sequentially.

To summarize, at every time step 𝑡, the belief 𝑝(𝑥𝑡 ∨ 𝑢𝑡, 𝑥𝑡−1) of the robot is represented by the

mean 𝜇𝑡
 and the covariance 𝑃𝑡

, and the basic Kalman filter algorithm is:

(a) 𝜇′𝑡 = 𝐴𝑡𝜇𝑡−1 + 𝐵𝑡𝑢𝑡
(b) 𝑃′𝑡 = 𝐴𝑡𝑃𝑡−1𝐴𝑡

𝑇 + 𝑅𝑡
(c) 𝐾𝑡 = 𝑃′𝑡𝐻𝑡

𝑇(𝐻𝑡𝑃′𝑡𝐻𝑡
𝑇 + 𝑄𝑡)−1

(d) 𝜇𝑡 = 𝜇′𝑡 + 𝐾𝑡(𝑧𝑡 − 𝐻𝑡𝜇′𝑡)
(e) 𝑃𝑡 = (𝐼 − 𝐾𝑡𝐻𝑡)𝑃′𝑡
(f) Obtain 𝑏𝑒𝑙(𝑥𝑡)as normal distribution expression with mean 𝜇𝑡 and variance 𝑃𝑡

The mathematical derivation as well as other knowledge on Kalman filter can be found at [5, 6, 7]

3.2. General landmark based SLAM

The SLAM problem can be various in categories and algorithms, but , in regards with landmark based

method, the SLAM problem typically consists of following parts: landmark extraction, data

association, state estimation, state update and landmark update. Again, for each part, there are many

ways to solve. This section is written according to [9], which gives a very potentially practical

approach to the SLAM process.

In general speaking, landmarks are features which can easily be re-observed and distinguished from

the environment. These are used by the robot to find out where it is as the same way human does.

As well as state variable, landmarks cannot directly sensed but we have to reliably extract them from

the robot measurement data. There are two popular landmark extraction algorithms when most of

robots uses a laser scanner.

Firstly, the spike landmark extraction uses extreme changes to find landmarks. They are designed to

find values in the range of a laser scan where the distances to two values differ by more than a certain

amount, for example, 0.5 meters.

Secondly, the random sampling consensus (RANSAC) is a method to extract lines from a laser scan.

Once this is done, RANSAC checks how many laser readings lie close to this best fit line. If the number

is above some threshold which is manually set by us, the robot can believe that it have seen a line.

The code implementing RANSAC can be found at [11].

Figure 3: (a)

(b)

The problem of data association is that of matching observed landmarks from different (laser) scans with each

other. If the robot fails to re-observe and match landmarks, there are many problems like getting lost, building

a wrong map, confused navigation, and so on. People have defined a data-association policy that deals with

these issues. We assume that a database is set up to store landmarks the robot has seen. The database is usually

initially empty. Then, there is a rule that not until the robot has seen a landmark N times (manually setting), the

robot don’t actually consider the landmark worthwhile to be used.

This will prevent the case where we extract a bad landmark, which is not easy to distinguish, re-observe and

match again. This technique is called the nearest-neighbor approach as it rely on correlation between the nearest

landmarks in the database.

With the landmark based, we need to improve some concepts from the previous probabilistic framework in

previous session. We define mi to describe a vector that represents the location of the ith landmark whose true

location is assumed time invariant. Also, the set of all landmarks will be denoted as

𝑚 = 𝑚1, 𝑚2, . . . , 𝑚𝑛
 (43)

The SLAM algorithm is now implemented in a standard two-step recursive (sequential) prediction and

correction phases:

Prediction
𝑝(𝑥𝑡, 𝑚 ∨ 𝑥0, 𝑧0:𝑡−1, 𝑢0:𝑡

) = ∫ 𝑝(𝑥𝑡 ∨ 𝑥𝑡−1, 𝑢𝑡)𝑝(𝑥𝑡−1, 𝑚 ∨

𝑧0:𝑡−1, 𝑢0:𝑡−1)𝑑𝑥𝑡 − 1

Measurement update
𝑝(𝑥𝑡, 𝑚 ∨ 𝑥0, 𝑧0:𝑡, 𝑢0:𝑡

) =
𝑝(𝑧𝑡∨𝑥𝑡,𝑚)𝑝(𝑥𝑡,𝑚∨𝑧0:𝑡−1,𝑢0:𝑡,𝑥0)

𝑝(𝑧𝑡∨𝑧0:𝑡−1,𝑢0:𝑡
)

Unfortunately, most of environment where the robot is situated are chaotic, such that system of models are non-

linear and non-Gaussian as well. In this case, the systems need to be linearized first before we can use the

Kalman filter, which is the reason why the extended Kalman filter (EKF) appears.

As soon as the landmark extraction and the data association is ready, the SLAM process can be considered as

three steps, which we have already known from previous chapters,

1. Predict the current state estimate using the odometric data

2. Update the predicted state from re-observing landmarks

3. Add new landmarks to the current state

More detail solution can be read over at [3, 12-15].

3.3. From the view of simulation

Now, we have a set of general ideas that SLAM may work. There are some simulation of our interest

topic: EKF Landmark based SLAM, which was done by Jai. All related material can be found at [16].

The Figure 4a shows us a 2D projection map, where shapes with black solid line represents obstacles.

Small blue crosses represents landmarks, and for some reasons, we assumes these landmarks can be

re-observed through obstacles. It’s a fact that radio frequency identification (RFID) landmarks can be

used to make this possible. The thin line with circle markers is the path that robot will take, which

represent for control actions given to the robot at every time step.

We can have a look at the Figure 4b when the simulation starts. At every same time step, the red

triangle describes the robot with regards to it concurrently building map, and the blue triangle points

out the true shapes and locations that the robot is taking in the real-life map. Here, at first, the robot

seems to be consistent of where it is, so the blue triangle and the red triangle are about to overlap

each other. The set of red crosses represents for the point clouds resulted from sensor data extraction,

which can be used to build a map. Overall, the robot’s pose and the landmarks’ position have

correspondent small red surrounded random ellipses, which indicate randomized Gaussian noises

for two dimensional random variable of the coordinate.

In the Figure 4c, when the robot has made a significant SLAM, the state vector x and other parameter

of Kalman filter are enlarged together with the data of new landmarks. At this point, the weak

computer, where the simulation may run on, can cause more uncertainty, because of the problem

between calculation time and real time requirement. Because of more uncertainty, which means the

robot lacks of information in the right time to compute exactly everything, the map become confused

as in the Figure.4d. In the Figure 4c, the red triangle, which is the robot’s location inside its mind,

becomes a little far from its true position, the blue triangle. Also, everything inside its current maps

is shifted in a similar way as well. This is very good thing, cause it tell us the strong correlation

between landmarks and landmarks, landmarks and point clouds, point clouds and point clouds,

which is the solution for the robot to correct from localization and mapping failure due to odometry

data and real time problem.

Figure 4: Visualization of the EKF landmark based SLAM

The last two Figure 4f and Figure 4e show us the results of our simulation. Due to the probabilistic

framework, the results every time are slightly different, which is one of interest characteristic.

However, after everything, these results prove us one of very promising SLAM approaches.

The next two pages are statistic graphical representation of parameters overall the SLAM simulation.

As it can be seen from the Figure 5 together with the Figure 6, there is a place where the position error

becomes relatively high, which is relevant to the strange red orbit in the Figure 4e. This error in

position due to sensor scan is the reason why everything is shifted in the Figure 4c. At this point, the

error in angular orientation is also showed as high peaks.

Personally, we think these error is taken place in the left-bottom corner along the settled path of the

robot. Suitable explanation may be because this place has only 4 available landmarks in the 180

degrees front of the robot, and the left-bottom corner is the first corner from the start of the simulation

when the robot still has not sufficient data to become enough consistent for a good turning. One of

evidence supporting for this explanation is the overshoot of standard deviation in y direction in the

Figure 6, in combination with the path of the robot, where the left-bottom corner is the first corner in

its way, which suddenly changes the robot’s y coordinate while the state vector x is still naive for this

skilled estimation We can also see, after the first failure, even though everything is shifted but all the

relative mapping results are good enough for preventing this kind of error from occurring at the

following corners

Figure 5: A statistic graph of estimation after simulation process

Modelling and Visualization

GMapping is a highly efficient Rao-Blackwellized particle fler to gradually build grid maps from

laser scanner data. GMapping is probably most used SLAM algorithm, which is currently the

standard algorithm on the PR2. Further information can be found at [2]. Here in ROS, we have

slam_gmapping package which contains a wrapper around gmapping, providing us with SLAM

capabilities

4. Reinforcement Learning concepts in Search-based Planning

In this session, we explore the reinforcement learning based on the agent can be able to maximize the

total of reward. In Figure 4.1 shows the cumulative reward according to each step and can be able to

formalize by equation:

Figure 4.1: [16, 22] Reinforcement Problem: Defining the interaction between the agent and Maze

Environments.

From maze environments the autonomous vehicles or robotics receive the initial state: 𝑆0,

and it can also take the action 𝐴0. In order to transition from one state to to other states, the

agent can move to other state 𝑆1, and one reward will be received according to this state: 𝑅1.

Or it generally can be written by

𝐺𝑡 = ∑𝑇
𝑘=0 𝑅𝑡+𝑘+1

 (4.2)

There is essentially to discount the rewards called gramma 𝛾, and it belong distance: 0 and

1as the conditions, or shortly (0 ≤ 𝛾 < 1)

 For short-term rewards if there is the grammar 𝛾is small, then discount will be big

 For long-term rewards if there is the grammar 𝛾is large, then the discount will be

small.

So we can rewritten the formalization from (4.2)

𝐺𝑡 = ∑∞
𝑘=0 𝛾𝑘𝑅𝑡+𝑘+1 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3+. .. (4.3)

 where 𝛾 ∈.

There are currently two kinds of tasks representing in reinforcement learning problems,

involved episode which is created the lists of states 𝑆𝑡, actions 𝐴𝑡, rewards 𝑅𝑡, new states

𝑆𝑡+1, and usually it started initial point and ended point is a terminal state, and continuous

tasks, which are no existing the terminal state.

There are currently two methods for learning, called Monte Carlo and Temporal Difference

Learning accordingly by representing the two equations below:

𝑉𝜋(𝑠𝑡) ← 𝑉𝜋(𝑠𝑡) + 𝛼(𝐺𝑡 − 𝑉𝜋(𝑠𝑡)) (4.4)

𝑉𝜋(𝑠) ← ∑ 𝑇(𝑠, 𝜋(𝑠), 𝑠′)[𝑅(𝑠, 𝑎, 𝑠′) + 𝛾(𝑉𝜋(𝑠′))]𝑠′ (4.5)

Where 𝛼is a learning rate, 𝑉(𝑆𝑡)is the previous estimation, 𝑅𝑡+1is the next of reward, and

basically the Temporal Difference function is defined by the part: 𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1). One of

most challenges in reinforcement learning is trying to balance between the exploration and

exploitation (trade-off). While exploitation is expect to maximize the totals of rewards, the

exploration is to discover more information about environments. Usually, we use the full

knowledge which is the dynamic programing as the methods for solving the optimal policy

or optimal value functions using bellman optimality equations, it is formalized by:

𝑉𝜋(𝑠𝑡) ← 𝔼𝜋(𝑅𝑡+1 + 𝛾𝑉𝜋(𝑠𝑡+1)) (4.6)

Accordingly, there exists two model approaches for reinforcement learning that lists in Table

1.1 below illustrated the involving models model-based and model-free learning

Model-based and Model-free

Learning action models by using the transition probabilities. For instance, it is

usually to use the dynamic programming for solving approximate problems.

On the other hand, model-free can learn directly action models without

confident to extract model of action. By the way, Q-learning is used to solve

the model-free learning [17]

For datasets, while model-based learning often require to have larger data for

training, model-free learning needs less data set

For example, Greedy Adaptive Dynamic Programing is used to learn the

optimal policy without evaluate the policy fixing.

Table 1.1: Model-based learning and Model-free learning

There are three approaches for solving the reinforcement learning

Value Iteration: In the reinforcement learning contexts, the value iteration is to return the

maximum expecting from agent at each state.

𝑣𝜋(𝑠) = 𝐸𝜋[𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3+. . . ∨ 𝑆𝑡 = 𝑠] (4.7)

Figure 4.2: a) initial maze environment and b) generation directions for maze environments

In figure 4.2, we implemented the sampling example bug algorimth [24] by using the markov

decision processing for maze environments (20x20) extended from [24] [9]. It shows the

optimized path from optimal policy.

5. Reinforcement Learning concepts in Search-based Planning

5.1. General landmark based SLAM

There are three approaches for solving the reinforcement learning

Value Iteration: In the reinforcement learning contexts, the value iteration is to return the maximum

expecting from agent at each state.

There are currently studied based on research-based planning and replanning at [17] applying to

autonomous system and robotics. In this experiences, we tried two experiences not only in

simulation but also executed in real-time environments.

Let’s consider experiments in Figure 5.1. In the Left side, it illustrated the initial point with

regardless 8-nearest points as representing on [17]. Next one,

Figure 5.1: Simulation Path-Planning: [LEFT] - Start to explore the nearest all of nodes from initial

point. [CENTER] - It is continue to extract the maze environments based on representing the goal

which is determined at beginning and until attached the first cell of the obstacle. [RIGHT] -

Figure 5.2: Real-Time Autonomous System and Robotics in A* Algorithm: [LEFT] - Initial Position.

[CENTER] - Trajectory Generation from Structure Maze Environments. [RIGHT] - Reached the

Final Position.

5.2. SLAM-based on Unstructured Environments

In this experience, we show the concepts using gmapping implemented in ROS (Figure 5.3). The

system architecture can be mapped the real-time environments using reference [2]. For motion

control, we refer to standard wheel encoder systems[8] [3], [12].

Figure 5.3: SLAM-based on uncertainty environments applied to Vehicle Mobility.

5.3. General landmark based SLAM

As previous section, we choose the Q-learning as the option of solving the reinforcement learning.

Algorithm 3 is described the Q-Learning which can be able to apply autonomous system. For more

detail, please refer this work [16] which was integrated the reinforcement learning.

In Figure 5.4

Figure 5.4:

6. Conclusions

In summary, we understand the principles of linear and nonlinear problem in probabilistic

approaches based on using Kalman Filter and Extended Kalman Filter respectively as facing the

uncertainty problems. We also show the modeling by representing the xml format and demo the

visualization for autonomous systems. It also illustrated how to deal with uncertainty representation,

which is the most important thing in challenge of self-driving vehicles in advanced technologies. At

the same time we explore the search-based planning based on understanding the backtracking of

trajectory generation in not only A* algorithms but also D* with Reset, and both applied to shortest

path planning. The sample implementation of reinforcement learning was selected to optimization

of state-of-the-art dealing the path planning in advanced autonomous vehicles.

In the future, we integrated the deep reinforcement learning for solving the decision-making and

deep learning approach to solve the localization and mapping in order to increasing the

performance..

References

1. Bens, K. and von Puttkamer, VIEWEG+TEUBNER. E. (2009). Autonomous Land Vehicles.

2. Claessens, R., Mueller, Y., and Schnieders, B. (2013). Graph-based simultaneous localization and

mapping on the turtlebot platform.

3. Fox, D., Thrun, S., and Burgard, W. (2005). Probabilistic Robotics. The MIT Press.

4. of Alabama in Huntsville, T. U. (2009). Probability. [online] http://www.math.uah.edu/stat/prob

/Probability.html. Accessed on June 18th, 2015.

5. Chen, G., editor (2003). Approximate Kalman Filter. World Scientific.

6. K.Chui, C. and Chen, G. (2001). Kalman Filtering with Real-Time Applications. Springer.

7. SiMon, D. (June 2001). Kalman filtering. Embedded Systems Programming.

8. Khiem N. Doan, An T. Le, Than D. Le, Nauth Peter. Swarm Robots Communication and Cooperation

in Motion Planning. In: Dan Zhang ,Bin Wei, editors.Mechatronics and Robotics Engineering for Advanced and

Intelligent Manufacturing. Springer, Cham; 2016.p.191-205.DOI:htps:/ doi.org/10.107/978-3-319-3581-0_15

9. Søren Riisgaard , Morten Rufus Blas . SLAM for Dummies. The dummies (2011).

10. A. T .Le, M. Q. Bui,T. D. Le and N. Peter, ‘D* Life with Reset:Improved Version of * Lite for Complex

Environment’ In:FirstIE International Conference Robotic Computing(IRC); Taichung, Taiwan .IEEE; 2017

.p.160-163 .DOI: 10.1109/IRC.2017.52

11. Souza, C. (2010). Random sample consensus (ransac) in c sharp. Blog. [online]

http://crsouza.com/2010/06/random-sample-consensus-ransac-in-c/. Accessed on July 2rd, 2015.

12. Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L., and Thrun, S. (2005).

Principles of Robot Motion-Theory, Algorithms, and Implementation. The MIT Press

13. Hoi V. Nguyen, Than D. Le, Dung D. Huynh, Peter Nauth, Forward kinematics of a human-arm system

and inverse kinematics using vector calculus, 14th International Conference on Control, Automation, Robotics

and Vision, IEEE Xplore, 2016. DOI: 10.1109 /ICARCV.2016.7838641

14. Durrant-Whyte, H. and Bailey, T. (2008). Simultaneous localisation and mapping (slam): Part ii state of

the art

15. Durrant-Whyte, H., Fellow, IEEE, and Bailey, T. (2008). Simultaneous localisation and mapping (slam):

Part i the essential algorithms

16. Than D. Le ; An T. Le ; Duy T. Nguyen, Model-based Q-learning for humanoid robots, 18th

International Conference on Advanced Robotics (ICAR), IEEE Xplore, 2017. DOI: 10.1109/ICAR.2017.8023674

17. An T. Le and Than D. Le ‘Search-Based Planning and Replanning in Robotics and Autonomous

Systems’, Book: Advanced Path Planning for Mobile Entities, Rastislav Róka, IntechOpen, DOI:

10.5772/intechopen.71663

18. Volodymyr Mnih and Koray Kavukcuoglu and David Silver and Andrei A. Rusu and Joel Veness and

Marc G. Bellemare and Alex Graves and Martin A. Riedmiller and Andreas Fidjeland and Georg Ostrovski and

Stig Petersen and Charles Beattie and Amir Sadik and Ioannis Antonoglou and Helen King and Dharshan

http://www.math.uah.edu/stat/prob

Kumaran and Daan Wierstra and Shane Legg and Demis Hassabis, ‘Human-level control through deep

reinforcement learning’ Nature, pages: 529-533, 2015. DOI:10.1038/nature14236

19. Than D Le, Dang T Huynh, Huy V Pham, ‘Efficient Human-Robot Interaction using Deep Learning

with Mask R-CNN: Detection, Recognition, Tracking and Segmentation’, ICARCV 2018: 162-167.

20. John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov, ‘Proximal Policy

Optimization Algorithms’, arXiv, 2017.

21. David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,

Thomas Hubert, L Robert Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy P. Lillicrap, Fan Hui,

Laurent Sifre, George van den Driessche, Thore Graepel, Demis Hassabis, ‘Mastering the game of Go without

human knowledge ’, Nature, 2017. DOI:10.1038/nature24270

22. Richard S. Sutton and Andrew G. Barto, ‘Reinforcement Learning: An Introduction‘, Second Edition,

MIT Press, Cambridge, MA, 2018.

23. Quan H Nguyen, Trinh NP Tran, Dung D Huynh, An T Le, Than D Le, ‘Real-Time Localization and

Tracking System with Multiple-Angle Views for Human Robot Interaction’, The First IEEE International

Conference on Robotic Computing (IRC), IEEE Xplore, 2017.

24. TD Le, DT Bui, VH Pham, Encoded Communication based on Sonar and Ultrasonic Sensor in Motion Planning,

IEEE SENSORS 2018.

