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Introduction  

We expand on the methodological decisions made for our study. We also provide brief 

descriptions on the conceptual underpinnings of the supervised models used for our 

study. In addition, we include the results of the unsupervised clustering algorithms we 

tested (K-means and DBSCAN) as our study was limited to supervised models in scope. 

Univariate analytics on the simple shape features per secondary pore types is provided 

as well. 
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Text S1. 

Pre-processing of the Images 

Denoising 

The kernel size of the non-local means filter was automatically estimated using the 

approach of Immerkaer (1996), with the smoothness factor maintained at a value of one 

for all images to limit over-smoothing of edges. 

 

Sharpening 

A standard unsharp mask radius of 1 with a mask value of 0.7 was applied for all 

images, using the built-in unsharp mask filter within Fiji. The pre-processed images after 

both denoising and sharpening are included in the dataset attached to this study. 

 

Segmentation 

To increase the connectivity of the microfractures, a more aggressive form of 

segmentation was pursued. The segmentation protocol implemented was performed in 

two phases. The first phase was manual thresholding of the blue epoxy impregnated 

pixels in the HSB (Hue, Saturation, Brightness) color space. The blue hue corresponding 

to the epoxy was delineated within 120 to 180, with the saturation unaltered. The lower 

threshold for brightness was decreased to accommodate all the blue epoxy, with values 

ranging from 30 to 255. The quality of the segmentation was evaluated visually in real 

time and parameters tuned accordingly. The second phase involved thresholding in the 

CIELAB color space. CIELAB color space is a device-independent method to objectively 

classify colors, where L stands for lightness, A for the continuum from red to green, and 

B for the continuum from blue to yellow (Mlynarczuk et al., 2013). Since the 

microfractures were filled with blue epoxy, the B channel was especially sensitive. The 

image was first converted from RGB to LAB color space using a Fiji built-in tool. The B 

channel was extracted and a simple contrast enhancement was needed to binarize the 

image. Both segmentation steps were performed independently. The post-processing 

pipeline was conducted on both the HSB and LAB binary masks in parallel, as shown in 

Fig. 2a. 

 

Combining the Processed HSB and CIELAB Binary Masks 

The post-processed binary masks from both color spaces were then added together 

using the Image Calculator tool in Fiji. The combination of both segmentations did not 

offer a significant boost in terms of pore connectivity as in both cases the segmentation 

results were similar, with the HSB binary mask offering visibly better results. Instead, the 

greatest effect was observed in microfractures as several individual microfractures which 

were disjointed from HSB thresholding displayed improved continuity in the composite 

image (Fig. S2). The microporous matrix zones and microporous grains were segmented 

as macropores as a byproduct of the aggressive segmentation. Additionally, the large 

quantities of these zones rendered manual masking impracticable. For this study, they 
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were approximated as pores, which is not entirely unreasonable for grain molds and 

small patches of blue haze in terms of shape. However, larger microporous patches are 

among the major artifacts present in the data. Moreover, the thin sections used herein 

were not purposed for digital image analysis and as such contain damage of different 

forms such as pen markings and microsampling scratches amongst others. However, due 

to their limited quantities these scene artifacts were removed using manual masking.  

 

Feature Extraction 

Labelling of the binary masks was performed in Python using the ‘Connected 

components’ function with 8-connect from the OpenCV library. The ‘regionprops’ 

function from the sci-kit image library was used to extract size and shape features of 

each object (Table 1). Two associated features metrics that require special mention are 

the major and minor axes of the best-fitting ellipse. These axes were fit using the 

normalized second central moments of the object, which is a region-based approach. 

Region-based approaches are generally more robust than contour-based approaches as 

the area of the object is less sensitive to noise (Mulchrone and Choudhury, 2004; Neal 

and Russ, 2012). The ‘regionprops’ features are mostly related to object size. This 

required supplementing with shape features engineered from these size metrics. Feature 

engineering was performed in the R programming language based on derivations laid 

out in Neal and Russ (2012) and Weger (2006). Engineered features were selected based 

on their popularity in the geological community (Anselmetti et al., 1998; Weger, 2006; 

Weger et al., 2009; Norbisrath et al., 2015; Abedini et al., 2018; Borazjani et al., 2016; 

Ghiasi-Freez et al., 2012; Mollajan et al., 2016; Sharifi et al., 2022; Wang et al., 2022). 

 

Clustering Algorithms 

The objective of clustering algorithms is to group similar datapoints into discrete 

clusters. Two independent clustering algorithms: k-means and DBSCAN, were utilized to 

check for the presence of natural clusters in the feature space, ideally corresponding to 

microfractures and pores. The clustering algorithms were applied directly on the data. 

Hierarchical clustering was ignored for this study on conceptual and practical grounds. 

Conceptually, the objects do not necessarily follow a hierarchy, so this form of clustering 

is not appropriate. From a practical perspective, hierarchical clustering is also 

computationally expensive for large datasets such as the one in this study. 

 

K-means Clustering 

K-means was chosen as it is one of the most widely used clustering algorithms 

(James et al., 2021). As K-means is distance-based, it uses distance mapping to measure 

the distances between each of the ‘n’ datapoints to each other within the feature space. 

It then attempts to minimize the total inter-cluster distance of all clusters (James et al., 

2021). The number of clusters K = 2 was selected since this study is a binary classification 

problem. K-Means clustering was implemented using the ‘kmeans’ function from the 

‘stats’ library with euclidean distance mapping. The resultant clustering was visualized via 

PCA, as the feature space exceeded three dimensions, with the boundary of the clusters 

defined via their convex hull (Fig. S4a). It can be observed in Fig. S4a that the k-means 
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algorithm essentially bisected the point cloud, which typically indicates a lack of natural 

clusters (Thrun, 2018; Thrun, 2021). 

 

DBSCAN Clustering 

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) was first 

proposed by Ester et al. (1996). The most significant advantages of this method 

compared to K-means are that it is not necessary to predefine the number of clusters 

and is significantly more robust to the presence of outliers (Schubert et al., 2017). 

DBSCAN attempts to classify the densest clusters with lower density collections of points 

potentially classed as outliers. This method contains two definable parameters: the 

cluster radius (epsilon), and the minimum number of points each cluster should contain 

to be considered a viable group (cluster density). Any point with the number of 

neighbors greater than the minimum points is considered a core point. Any point that 

does not have the threshold minimum points but is part of another core point 

neighborhood is designated a border point. If a point is neither core nor border, it is 

considered an outlier. For this study, the epsilon value (ε = 0.4) was determined by 

identifying the elbow of a 5-NN plot. The DBSCAN results in Fig. S4b show a single 

dense cluster with a few outliers, which supports the lack of natural clusters within the 

feature space. 

 

Supervised ML 

This section furnishes details on the conceptual underpinnings of each of the 

supervised ML models used in this study. Further details on each model can be found in 

Kuhn (2013) and James et al. (2021). The tested models can be broadly classified into two 

categories: linear and non-linear. Linear models generate linear decision boundaries in 

high-dimensional feature space, whereas non-linear models create non-linear decision 

boundaries, such as polynomial, radial, and more complex non-parametric curves. 

 

Linear Models 

Multiple Logistic regression (MLR) is designed for binary classification problems 

(Kuhn, 2013; James et al., 2021), where ‘multiple’ refers to the features used to train the 

model. Is based upon the concept of the logistic function, where the probability of 

classifying datapoints into the two classes resembles an S-shaped curve from 0 to 1. The 

logistic function is fit using maximum likelihood estimation. A major benefit of MLR is 

that it does not contain any tuning parameters, as the maximum likelihood estimate of 

the logistic function will provide the best possible model. 

Linear Discriminant Analysis (LDA) and MLR only differ in their fitting procedure: 

whilst MLR uses maximum likelihood estimation for finding the best fitting model, LDA 

utilizes the Bayes’ theorem. LDA assumes that the datapoints of each class belong to a 

Gaussian distribution, with all classes sharing a common covariance matrix. It is 

important to note that MLR does not require that the datapoints be drawn from 

multivariate Gaussian distributions and can potentially outperform LDA if the 

assumptions are unmet (James et al., 2021). 
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Non-Linear Models 

Quadratic Discriminant Analysis (QDA) is similar to LDA in that it assumes the 

datapoints have been drawn from multivariate Gaussian distributions with the exception 

that each of the classes is considered to have its own covariance matrix. This difference 

results in a quadratic decision boundary. The greater flexibility in shape means that QDA 

has lower bias compared to LDA, although this typically comes at a cost of higher 

variance (James et al., 2021). Like MLR and LDA, QDA does not possess any tuning 

parameters. 

 

Naive-Bayes, just like LDA, and QDA, is part of a family of models based on the 

Bayes’ theorem. The ‘Naive’ refers to the classifier’s assumption that each of the input 

features are uncorrelated to each other, which in this study and most other cases, is a 

flawed assumption. The Naive-Bayes implementation used in this study has three tunable 

parameters: namely the Laplace correction, distribution type, and the bandwidth 

adjustment. 

 

K-nearest neighbors (KNN) is one of the simplest models commonly deployed for 

classification (Murphy, 2022). KNN classifies a datapoint as belonging to a certain class 

based on the classes of the datapoints closest to it. Thus, it does not depend on the 

underlying distributions of the classes, and is therefore non-parametric (James et al., 

2021). The only tuning parameter for KNN is the number of neighbours (K) to each 

datapoint. The number of neighbors has to be odd to ensure a tiebreaker in the case of 

binary classification. Choosing the optimum K is non-trivial. If the number of neighbors 

chosen is too low, then there is a greater chance of. Conversely, if the number of 

neighbors is too high then decision boundaries are too general, potentially leading to 

underfitting. 

 

Random Forest (RF) is an ensemble method that is based on aggregating the votes 

of several decision trees (Breiman, 2001; Kuhn, 2013). For each split of a decision tree, RF 

only allows a subset of the features to be selected. This restriction ensures that features 

that strongly influence the datapoints will not be preferred as several trees will not have 

the option to select it. Essentially, RF decorrelates the trees and therefore makes the 

results more reliable (Kuhn, 2013). The implementation of RF chosen only had one 

tunable parameter: the number of randomly selected predictors available for each tree 

split. 

 

Support Vector Machines (SVM) were first proposed by (Cortes and Vapnik, 1995). 

This family of classifiers are the most complex models tested in this study. SVMs have 

two notable features: firstly, they are inherently binary classifiers, and secondly, they 

create linear hyperplanes (Murphy, 2022; Kuhn, 2013). SVM initiates by identifying 

datapoints of opposing classes proximal to one another. It then attempts to find the 

hyperplane that is equidistant from both sets of points, known as the maximum margin 

hyperplane. The opposing datapoints used to create this hyperplane are referred to as 

the support vectors. By this definition, SVMs are linear classifiers, but have been adapted 
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to create non-linear decision boundaries. Three SVM models are used in this study; linear 

SVM, SVM with radial basis function, and SVM with polynomial kernel. The linear SVM 

only has one tunable parameter: the cost. The radial SVM has two parameters: sigma and 

cost. The polynomial SVM has three parameters: the degree, scale, and cost. 

 

Hyperparameter Optimization 

For models which did not have any tunable hyperparameters, such as MLR, LDA, 

and QDA, the training was conducted using 10-fold cross-validation repeated 10 times 

with accuracy used as the metric. For models which contained tunable hyperparameters, 

a grid search technique was employed for each of the hyperparameters, with 10-fold 

cross-validation repeated 10 times applied to each set of hyperparameters. 

Hyperparameters for each model (if present), and the selected values are presented in 

Table S2. The hyperparameter optimization curves for each of the models are shown in 

Fig. S5. 

 

Feature Importance using Shap Values 

Shapley values were used to test the hypothesis regarding the importance of aspect 

ratio with respect to the other shape features in supervised ML models. Shapley values 

were first introduced by Lloyd Shapley in 1953 (Shapley, 1953) to fairly distribute 

winnings between players based on their contribution to the game. The two pillars of 

Shapley values are additivity, where the sum of the winnings of each player must equal 

the total winnings, and fairness, where the highest performers cannot receive a lower 

share than the lowest performers. A concise explanation of the mechanism is as follows; 

in a scenario containing 4 players, in order to identify the importance of Player 1, all 

possible subsets of the players are made with and without Player 1. In the subset 

containing Player 1, the amount Player 1 receives is calculated, and in the subset without 

Player 1, the other players share Player 1’s winnings. The difference between the 

amounts of both subsets gives the marginal contribution of Player 1, and therefore the 

overall importance of Player 1. Shapley values were theoretically proven as the fairest 

possible manner to distribute winnings. Lundberg et al. (2017) appropriated this concept 

from cooperative game theory into artificial intelligence (AI) to impute the importance of 

input features within black-box models (a field now known as ‘Explainable AI’). To 

differentiate from its usage in game theory, the authors coined the term Shap values. 

Some models such as MLR and Random Forest have built-in variable importance 

measures. For MLR it is the magnitude of the coefficient, whereas Random Forest 

computes variable importance from the mean decrease in Gini impurity at each split of 

the decision trees, as well as the mean decrease in overall out-of-bag accuracy. However, 

most models do not provide this information and are effectively black boxes. Shap values 

are advantageous in that they are model-agnostic and retroactive with respect to the 

model building process, offering an external check used to explain the feature 

contributions to the predictions. It is important to note that Shap values calculate the 

local importance of features, which is the importance of a particular feature to a specific 

subset of datapoints. An aggregation is performed to provide the global importance of 

each feature with regards to the entire dataset. 
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Figure S1. Fragmentation of microfractures from the thin section images. The red 

outlines indicate the segmented portions of the microfracture. 
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Figure S2. Composites of the HSB and LAB binary masks. Red signifies the HSB binary 

mask, green is the LAB binary mask, and yellow is the union of both masks. The HSB 

mask displays a stronger segmentation overall, but the LAB mask provides a notable 

boost in connectivity. 
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Figure S3. Univariate distributions of the shape features for the raw global dataset, the 

raw labelled dataset, and the transformed labelled dataset. 
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Figure S4. (a) Result of k-means on the global dataset. (b) Result of DBSCAN on the 

global dataset. 
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Figure S5. Hyperparameter optimization visualizations for the supervised ML models. 

MLR, LDA, and QDA did not contain any tunable hyperparameters and hence not 

included. 
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Figure S6. Learning curves for all the supervised models. Random forest was the only 

model which showed overfitting as the training accuracy was constantly 100% with the 

resampling accuracy significantly lower. 
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Figure S7a. Boxplot of aspect ratio ranges for the secondary labels of pore and 

microfracture types. 

 

 

Figure S7b. Boxplot of extent ranges for the secondary labels of pore and microfracture 

types. 
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Figure S7c. Boxplot of formfactor ranges for the secondary labels of pore and 

microfracture types. 

 

 

Figure S7d. Boxplot of compactness ranges for the secondary labels of pore and 

microfracture types. 
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Figure S7e. Boxplot of solidity ranges for the secondary labels of pore and microfracture 

types. 
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Figure S8. Probability of microfracture prediction per secondary label for each 

supervised model. The dashed line represents the 50% decision threshold, any objects 

above 50% are classified as microfractures and any object below the threshold are 

classified as pores. 
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Figure S9. Probability of microfracture prediction per secondary label for each 

supervised model. The dashed line represents the 50% decision threshold, any objects 

above 50% are classified as microfractures and any object below the threshold are 

classified as pores. 
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Table S1. Studies on automated pore typing using AI. 

Table S2. List of hyperparameters for each supervised ML model and the final values 

chosen. 

Model 

Number of 

hyperparameters Hyperparameters Final values 

MLR 0 - - 

LDA 0 - - 

QDA 0 - - 

kNN 1 Number of neighbours (k) k = 3 

Naive-

Bayes 

3 Laplace (fL), Kernel, 

bandwidth adjust (BA) 

fL = 2, 

Kernel = 

True, BA = 2 

Random 

Forest 

1 Number of randomly 

selected variables at each 

split (mtry) 

mtry = 2 

Linear SVM 1 Cost (C) C = 0.3 

Radial SVM 2 Cost (C) and Sigma C = 22.63, 

Sigma = 

0.04 

Polynomial 

SVM 

3 Cost (C), degree of 

polynomial, and scale 

C = 0.974 , 

degree = 4, 

scale = 0.1 

 

 

Data Set S1. Image data for the study. 




