References
1. Raghu G, Remy-Jardin M, Richeldi L, Thomson CC, Inoue Y, Johkoh T, et
al. Idiopathic Pulmonary Fibrosis (an Update) and Progressive Pulmonary
Fibrosis in Adults: An Official ATS/ERS/JRS/ALAT Clinical Practice
Guideline. Am J Respir Crit Care Med. 2022;205(9):e18-e47.
2. King TE, Jr., Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I,
Glassberg MK, et al. A phase 3 trial of pirfenidone in patients with
idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2083-92.
3. Phan THG, Paliogiannis P, Nasrallah GK, Giordo R, Eid AH, Fois AG, et
al. Emerging cellular and molecular determinants of idiopathic pulmonary
fibrosis. Cell Mol Life Sci. 2021;78(5):2031-57.
4. Yanagihara T, Chong SG, Vierhout M, Hirota JA, Ask K, Kolb M. Current
models of pulmonary fibrosis for future drug discovery efforts. Expert
Opin Drug Discov. 2020;15(8):931-41.
5. Sarmento B, Andrade F, da Silva SB, Rodrigues F, das Neves J,
Ferreira D. Cell-based in vitro models for predicting drug permeability.
Expert Opin Drug Metab Toxicol. 2012;8(5):607-21.
6. Bagnato G, Harari S. Cellular interactions in the pathogenesis of
interstitial lung diseases. Eur Respir Rev. 2015;24(135):102-14.
7. Fujino N, Kubo H, Suzuki T, Ota C, Hegab AE, He M, et al. Isolation
of alveolar epithelial type II progenitor cells from adult human lungs.
Lab Invest. 2011;91(3):363-78.
8. Liu Y, Cheng D, Wang Y, Xi S, Wang T, Sun W, et al. UHRF1-mediated
ferroptosis promotes pulmonary fibrosis via epigenetic repression of
GPX4 and FSP1 genes. Cell Death Dis. 2022;13(12):1070.
9. Lv X, Liu C, Liu S, Li Y, Wang W, Li K, et al. The cell cycle
inhibitor P21 promotes the development of pulmonary fibrosis by
suppressing lung alveolar regeneration. Acta Pharm Sin B.
2022;12(2):735-46.
10. Cipolla E, Fisher AJ, Gu H, Mickler EA, Agarwal M, Wilke CA, et al.
IL-17A deficiency mitigates bleomycin-induced complement activation
during lung fibrosis. FASEB J. 2017;31(12):5543-56.
11. Chen L, Alam A, Pac-Soo A, Chen Q, Shang Y, Zhao H, et al.
Pretreatment with valproic acid alleviates pulmonary fibrosis through
epithelial-mesenchymal transition inhibition in vitro and in vivo. Lab
Invest. 2021;101(9):1166-75.
12. Pedroza M, Le TT, Lewis K, Karmouty-Quintana H, To S, George AT, et
al. STAT-3 contributes to pulmonary fibrosis through epithelial injury
and fibroblast-myofibroblast differentiation. FASEB J.
2016;30(1):129-40.
13. Zhou T, Li Z, Chen H. Melatonin alleviates lipopolysaccharide (LPS)
/ adenosine triphosphate (ATP)-induced pyroptosis in rat alveolar Type
II cells (RLE-6TN) through nuclear factor erythroid 2-related factor 2
(Nrf2)-driven reactive oxygen species (ROS) downregulation.
Bioengineered. 2022;13(1):1880-92.
14. Chakraborty A, Mastalerz M, Ansari M, Schiller HB, Staab-Weijnitz
CA. Emerging Roles of Airway Epithelial Cells in Idiopathic Pulmonary
Fibrosis. Cells. 2022;11(6).
15. Xu Y, Mizuno T, Sridharan A, Du Y, Guo M, Tang J, et al. Single-cell
RNA sequencing identifies diverse roles of epithelial cells in
idiopathic pulmonary fibrosis. JCI Insight. 2016;1(20):e90558.
16. Mills PR, Davies RJ, Devalia JL. Airway epithelial cells, cytokines,
and pollutants. Am J Respir Crit Care Med. 1999;160(5 Pt 2):S38-43.
17. Forbes B, Shah A, Martin GP, Lansley AB. The human bronchial
epithelial cell line 16HBE14o- as a model system of the airways for
studying drug transport. Int J Pharm. 2003;257(1-2):161-7.
18. Asghar S, Monkley S, Smith DJF, Hewitt RJ, Grime K, Murray LA, et
al. Epithelial senescence in idiopathic pulmonary fibrosis is propagated
by small extracellular vesicles. Respir Res. 2023;24(1):51.
19. Minagawa S, Araya J, Numata T, Nojiri S, Hara H, Yumino Y, et al.
Accelerated epithelial cell senescence in IPF and the inhibitory role of
SIRT6 in TGF-beta-induced senescence of human bronchial epithelial
cells. Am J Physiol Lung Cell Mol Physiol. 2011;300(3):L391-401.
20. Bodo M, Baroni T, Bellocchio S, Calvitti M, Lilli C, D’Alessandro A,
et al. Bronchial epithelial cell matrix production in response to silica
and basic fibroblast growth factor. Mol Med. 2001;7(2):83-92.
21. Li X, Kim SE, Chen TY, Wang J, Yang X, Tabib T, et al. Toll
interacting protein protects bronchial epithelial cells from
bleomycin-induced apoptosis. FASEB J. 2020;34(8):9884-98.
22. Hou F, Xiao K, Tang L, Xie L. Diversity of Macrophages in Lung
Homeostasis and Diseases. Front Immunol. 2021;12:753940.
23. Zhang L, Wang Y, Wu G, Xiong W, Gu W, Wang CY. Macrophages: friend
or foe in idiopathic pulmonary fibrosis? Respir Res. 2018;19(1):170.
24. Cui H, Jiang D, Banerjee S, Xie N, Kulkarni T, Liu RM, et al.
Monocyte-derived alveolar macrophage apolipoprotein E participates in
pulmonary fibrosis resolution. JCI Insight. 2020;5(5).
25. Boutanquoi PM, Burgy O, Beltramo G, Bellaye PS, Dondaine L, Marcion
G, et al. TRIM33 prevents pulmonary fibrosis by impairing TGF-beta1
signalling. Eur Respir J. 2020;55(6).
26. Liang Q, Cai W, Zhao Y, Xu H, Tang H, Chen D, et al. Lycorine
ameliorates bleomycin-induced pulmonary fibrosis via inhibiting NLRP3
inflammasome activation and pyroptosis. Pharmacol Res. 2020;158:104884.
27. Daigneault M, Preston JA, Marriott HM, Whyte MK, Dockrell DH. The
identification of markers of macrophage differentiation in
PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One.
2010;5(1):e8668.
28. Chanput W, Mes JJ, Wichers HJ. THP-1 cell line: an in vitro cell
model for immune modulation approach. Int Immunopharmacol.
2014;23(1):37-45.
29. She Y, Xu X, Yu Q, Yang X, He J, Tang XX. Elevated expression of
macrophage MERTK exhibits profibrotic effects and results in defective
regulation of efferocytosis function in pulmonary fibrosis. Respir Res.
2023;24(1):118.
30. Du S, Li C, Lu Y, Lei X, Zhang Y, Li S, et al. Dioscin Alleviates
Crystalline Silica-Induced Pulmonary Inflammation and Fibrosis through
Promoting Alveolar Macrophage Autophagy. Theranostics.
2019;9(7):1878-92.
31. Qian Q, Ma Q, Wang B, Qian Q, Zhao C, Feng F, et al. MicroRNA-205-5p
targets E2F1 to promote autophagy and inhibit pulmonary fibrosis in
silicosis through impairing SKP2-mediated Beclin1 ubiquitination. J Cell
Mol Med. 2021;25(19):9214-27.
32. Wang Y, Sang X, Shao R, Qin H, Chen X, Xue Z, et al. Xuanfei Baidu
Decoction protects against macrophages induced inflammation and
pulmonary fibrosis via inhibiting IL-6/STAT3 signaling pathway. J
Ethnopharmacol. 2022;283:114701.
33. Zhang Y, Fu J, Han Y, Feng D, Yue S, Zhou Y, et al. Two-Pore-Domain
Potassium Channel TREK-1 Mediates Pulmonary Fibrosis through Macrophage
M2 Polarization and by Direct Promotion of Fibroblast Differentiation.
Biomedicines. 2023;11(5).
34. Muhl L, Genove G, Leptidis S, Liu J, He L, Mocci G, et al.
Single-cell analysis uncovers fibroblast heterogeneity and criteria for
fibroblast and mural cell identification and discrimination. Nat Commun.
2020;11(1):3953.
35. Xu Y, Hu X, Zhang Y, Pan Z, Sun Z, Huang Z, et al. Heterogeneous
microenvironment analysis to explore the potential regulatory role of
endothelial-mesenchymal transition in idiopathic pulmonary fibrosis. Ann
Transl Med. 2022;10(8):486.
36. Molina-Molina M, Machahua-Huamani C, Vicens-Zygmunt V, Llatjos R,
Escobar I, Sala-Llinas E, et al. Anti-fibrotic effects of pirfenidone
and rapamycin in primary IPF fibroblasts and human alveolar epithelial
cells. BMC Pulm Med. 2018;18(1):63.
37. Wang Y, Zhang L, Huang T, Wu GR, Zhou Q, Wang FX, et al. The
methyl-CpG-binding domain 2 facilitates pulmonary fibrosis by
orchestrating fibroblast to myofibroblast differentiation. Eur Respir J.
2022;60(3).
38. Li JM, Yang DC, Oldham J, Linderholm A, Zhang J, Liu J, et al.
Therapeutic targeting of argininosuccinate synthase 1 (ASS1)-deficient
pulmonary fibrosis. Mol Ther. 2021;29(4):1487-500.
39. Nguyen XX, Renaud L, Feghali-Bostwick C. Identification of Impacted
Pathways and Transcriptomic Markers as Potential Mediators of Pulmonary
Fibrosis in Transgenic Mice Expressing Human IGFBP5. Int J Mol Sci.
2021;22(22).
40. Zhang K, Na T, Wang L, Gao Q, Yin W, Wang J, et al. Human diploid
MRC-5 cells exhibit several critical properties of human umbilical
cord-derived mesenchymal stem cells. Vaccine. 2014;32(50):6820-7.
41. Kim HS, Moon SJ, Lee SE, Hwang GW, Yoo HJ, Song JW. The arachidonic
acid metabolite 11,12-epoxyeicosatrienoic acid alleviates pulmonary
fibrosis. Exp Mol Med. 2021;53(5):864-74.
42. Huang LS, Sudhadevi T, Fu P, Punathil-Kannan PK, Ebenezer DL,
Ramchandran R, et al. Sphingosine Kinase 1/S1P Signaling Contributes to
Pulmonary Fibrosis by Activating Hippo/YAP Pathway and Mitochondrial
Reactive Oxygen Species in Lung Fibroblasts. Int J Mol Sci. 2020;21(6).
43. Ogger PP, Albers GJ, Hewitt RJ, O’Sullivan BJ, Powell JE, Calamita
E, et al. Itaconate controls the severity of pulmonary fibrosis. Sci
Immunol. 2020;5(52).
44. Liu H, Zhang X, Shao Y, Lin X, Dong F, Liu X. Danshensu alleviates
bleomycin-induced pulmonary fibrosis by inhibiting lung
fibroblast-to-myofibroblast transition via the MEK/ERK signaling
pathway. Bioengineered. 2021;12(1):3113-24.
45. Sun W, Li Y, Ma D, Liu Y, Xu Q, Cheng D, et al. ALKBH5 promotes lung
fibroblast activation and silica-induced pulmonary fibrosis through
miR-320a-3p and FOXM1. Cell Mol Biol Lett. 2022;27(1):26.
46. Sundarakrishnan A, Chen Y, Black LD, Aldridge BB, Kaplan DL.
Engineered cell and tissue models of pulmonary fibrosis. Adv Drug Deliv
Rev. 2018;129:78-94.
47. Brookes O, Boland S, Lai Kuen R, Miremont D, Movassat J,
Baeza-Squiban A. Co-culture of type I and type II pneumocytes as a model
of alveolar epithelium. PLoS One. 2021;16(9):e0248798.
48. Gan C, Wang Y, Xiang Z, Liu H, Tan Z, Xie Y, et al.
Niclosamide-loaded nanoparticles (Ncl-NPs) reverse pulmonary fibrosis in
vivo and in vitro. J Adv Res. 2022.
49. Peng Y, Chu S, Yang Y, Zhang Z, Pang Z, Chen N. Neuroinflammatory In
Vitro Cell Culture Models and the Potential Applications for
Neurological Disorders. Front Pharmacol. 2021;12:671734.
50. Caracena T, Blomberg R, Hewawasam RS, Fry ZE, Riches DWH, Magin CM.
Alveolar epithelial cells and microenvironmental stiffness
synergistically drive fibroblast activation in three-dimensional
hydrogel lung models. Biomater Sci. 2022;10(24):7133-48.
51. Yuan J, Li X, Yu S. Cancer organoid co-culture model system: Novel
approach to guide precision medicine. Front Immunol. 2022;13:1061388.
52. Tan Q, Choi KM, Sicard D, Tschumperlin DJ. Human airway organoid
engineering as a step toward lung regeneration and disease modeling.
Biomaterials. 2017;113:118-32.
53. Suezawa T, Kanagaki S, Moriguchi K, Masui A, Nakao K, Toyomoto M, et
al. Disease modeling of pulmonary fibrosis using human pluripotent stem
cell-derived alveolar organoids. Stem Cell Reports. 2021;16(12):2973-87.
54. Liu R, Meng X, Yu X, Wang G, Dong Z, Zhou Z, et al. From 2D to 3D
Co-Culture Systems: A Review of Co-Culture Models to Study the Neural
Cells Interaction. Int J Mol Sci. 2022;23(21).
55. Moss BJ, Ryter SW, Rosas IO. Pathogenic Mechanisms Underlying
Idiopathic Pulmonary Fibrosis. Annu Rev Pathol. 2022;17:515-46.