5. REFERENCES
[1] Caro, Y., Venkatachalam, M., Lebeau, J., Fouillaud, M., & Dufossé, L., 2017. Pigments and colorants from filamentous fungi. Fungal Metab., 2017, 499–568.
[2] Yusuf, M., Shabbir, M., Mohammad, F., 2017. Natural Colorants: Historical, Processing and Sustainable Prospects. Nat. Products Bioprospect., 2017, 7 , 123–145.
[3] Narsing Rao, M.P., Xiao, M., Li, W.J., 2017. Fungal and bacterial pigments: Secondary metabolites with wide applications. Front. Microbiol., 2017, 8 , 1–13.
[4] Ogbonna, C.N., 2016. Production of food colourants by filamentous fungi. African J. Microbiol. Res., 2016, 10 , 960–971.
[5] Freire, A.K.L., dos Santos Bentes, A., de Lima Sampaio, I., Matsuura, A.B.J., et al., 2012. Molecular characterisation of the causative agents of Cryptococcosis in patients of a tertiary healthcare facility in the state of Amazonas-Brazil. Mycoses, 2012, 55 .
[6] Pankaj, V.P., Kumar, R., 2016. 4. Microbial pigment as a potential natural colorant for contributing to mankind. Res. Signpost India Res. Trends Mol. Biol., 2016, 37661 , 85–98.
[7] Venkatachalam, M., Magalon, H., Dufossé, L., Fouillaud, M., 2018. Journal of Food Composition and Analysis Production of pigments from the tropical marine-derived fungi Talaromyces albobiverticillius : New resources for natural red-colored metabolites. J. Food Compos. Anal., 2018, 70 , 35–48.
[8] Sigurdson, G.T., Tang, P., Giusti, M.M., 2017. Natural Colorants: Food Colorants from Natural Sources. Annu. Rev. Food Sci. Technol., 2017, 8 , 261–280.
[9] Dufossé, L., Fouillaud, M., Caro, Y., Mapari, S.A.S., Sutthiwong, N., 2014. Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr. Opin. Biotechnol., 2014, 26 , 56–61.
[10] Dufossé, L., 2018. Red colourants from filamentous fungi: Are they ready for the food industry? J. Food Compos. Anal., 2018,69 , 156–161.
[11] Kalra, R., Conlan, X.A., Goel, M., 2020. Fungi as a Potential Source of Pigments: Harnessing Filamentous Fungi. Front. Chem., 2020,8 , 1–23.
[12] Souza, Patrícia Nirlane da Costa; Grigoletto, T.L.B., Moraes, L.A.B., Abreu, L.M.., Guimarães, C.S., et al., 2016. Production and chemical characterization of pigments in filamentous fungi. Microbiology, 2016, 162 , 12–22.
[13] Akilandeswari, P., Pradeep, B. V., 2016. Exploration of industrially important pigments from soil fungi. Appl. Microbiol. Biotechnol., 2016, 100 , 1631–1643.
[14] Anugraha, A.C; Thomas, T., 2021. A review on pigment producing soil fungi and its applications 2021, 4 , 89–112.
[15] Celestino, J.D.R., Carvalho, L.E. De, Lima, M.D.P., Lima, A.M., et al., 2014. Bioprospecting of Amazon soil fungi with the potential for pigment production. Process Biochem., 2014, 49 , 569–575.
[16] Osmanova, N., Schultze, W., Ayoub, N., 2010. Azaphilones: a class of fungal metabolites with diverse biological activities. Phytochem. Rev., 2010, 9 , 315–342.
[17] Teixeira, M.F.S., Martins, M.S., da Silva, J.C., Kirsch, L.S., et al., 2012. Amazonian biodiversity: Pigments from Aspergillus and Penicillium-characterizations, antibacterial activities and their Toxicities. Curr. Trends Biotechnol. Pharm., 2012, 6 , 300–311.
[18] CLARK, F., 1965. Actinomyces .
[19] Riddell, R.W., 1950. Permanent Stained Mycological Preparations Obtained by Slide Culture. Mycologia, 1950, 42 , 265–270.
[20] Ferrer, C., Colom, F., Frase, S., Mulet, E., et al., 2001. Detection and Identification of Fungal Pathogens by PCR and by ITS2 and 5 . 8S Ribosomal DNA Typing in Ocular Infections. J. Clin. Microbiol., 2001, 39 , 2873–2879.
[21] White, T.J., T. Bruns, S. Lee, and J.W.T., 1990. In: Innis, M.A., Gelfand, D.H., Sninsky J.J, WTJ (Ed.), PCR Protoc. A Guid. to Methods Appl. , Academic in Press, New York, pp. 315–322.
[22] Velmurugan, P., Hur, H., Balachandar, V., Kamala-kannan, S., et al., 2011. Monascus pigment production by solid-state fermentation with corn cob substrate. JBIOSC, 2011, 112 , 590–594.
[23] CLSI, 2010. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts ; Approved Standard — Third Edition.vol. 28.
[24] Cruz, K.S., Lima, E.S., Silva, M.D.J.A.D., Souza, E.S.D., et al., 2019. Screening and antifungal activity of a β-carboline derivative against cryptococcus neoformans and C. gattii. Int. J. Microbiol., 2019,2019 .
[25] Sharma, D., Gupta, C., Aggarwal, S., Nagpal, N., 2012. Pigment extraction from fungus for textile dyeing 2012, 37 , 68–73.
[26] Kramar, A., Ilic-Tomic, T., Petkovic, M., Radulović, N., et al., 2014. Crude bacterial extracts of two new Streptomyces sp. isolates as bio-colorants for textile dyeing. World J. Microbiol. Biotechnol., 2014, 30 , 2231–2240.
[27] Leonardi, G.R., Gaspar, L.R., Maia Campos, P.M.B.G., 2002. Study of pH variation on the skin using cosmetic formulation s with and without vitamins A, E or ceramide: By a non-invasive method. An. Bras. Dermatol., 2002, 77 , 563–569.
[28] Libório, J.F.D.A., 2016. CARACTERIZAÇÃO FÍSICO-QUÍMICA DO EXTRATO SECO DAS SEMENTES DE MYRCIARIA DUBIA (KUNTH) MCVAUGH E DESENVOLVIMENTO DE FORMULAÇÃO SEMISSÓLIDA. 2016.
[29] Peres, E.G; Souza, M.P; Sousa, T.F; Silva, C.V.A; Barros, A.L; Silva, F.M.A; Costa, E.V; Medeiros, L.S; Forim, MR; Souza, A.D.L; Paz, W.H.P; Silva, G.F; Souza, A.Q.L; Koolen, H.H.., 2023. Dereplication of Sclerotiorin-Like Azaphilones Produced by. J. Braz. Chem. Soc., 2023,00 , 1–15.
[30] Vansteelandt, M., Blanchet, E., Egorov, M., Petit, F., et al., 2013. Ligerin, an antiproliferative chlorinated sesquiterpenoid from a marine-derived penicillium strain. J. Nat. Prod., 2013, 76 , 297–301.
[31] Guimarães, F.S., Bueno, G.T., De Sena Oliveira Mendes, D., Do Nascimento, N.R., et al., 2018. Vegetation dynamics and landscape evolution in the contact between campinarana and campina on spodosols - Demini River basin-AM (Brazil). Rev. Bras. Geomorfol., 2018,19 , 587–600.
[32] Narendrababu, B., Shishupala, S., 2017. Spectrophotometric detection of Pigments from Aspergillus and Penicillium isolates. J. Appl. Biol. Biotechnol., 2017, 5 , 053–058.
[33] Darwesh, O.M., Matter, I.A., Almoallim, H.S., Alharbi, S.A., Oh, Y.K., 2020. Isolation and optimization of Monascus ruber OMNRC45 for red pigment production and evaluation of the pigment as a food colorant. Appl. Sci., 2020, 10 , 1–15.
[34] Surendirakumar, K., Pandey, R.R., Muthukumar, T., Sathiyaseelan, A., et al., 2022. Characterization and biological activities of melanin pigment from root endophytic fungus, Phoma sp. RDSE17. Arch. Microbiol., 2022, 204 , 1–15.
[35] Lucas, E.M.F., De Castro, M.C.M., Takahashi, J.A., 2007. Antimicrobial properties of sclerotiorin, isochromophilone VI and pencolide, metabolites from a Brazilian cerrado isolate of Penicillium sclerotiorum Van Beyma. Brazilian J. Microbiol., 2007, 38 , 785–789.
[36] Anelli, P., Peterson, S.W., Haidukowski, M., Logrieco, A.F., et al., 2018. Penicillium gravinicasei, a new species isolated from cave cheese in Apulia, Italy. Int. J. Food Microbiol., 2018, 282 , 66–70.
[37] Han, P., Zhang, X., Xu, D., Zhang, B., et al., 2020. Metabolites from clonostachys fungi and their biological activities. J. Fungi, 2020, 6 , 1–30.
[38] Chidananda, C., Rao, L.J.M., Sattur, A.P., 2006. Sclerotiorin, from Penicillium frequentans, a potent inhibitor of aldose reductase. Biotechnol. Lett., 2006, 28 , 1633–1636.
[39] O. dos Santos, P., Ferraz, C.G., Ribeiro, P.R., Miranda, F.M., et al., 2019. Antioxidant and antibacterial activities of the chlorine pigment sclerotiorin from Penicillium mallochii and its chemotaxonomic significance. Biochem. Syst. Ecol., 2019, 86 , 103915.
[40] Falade, A.O., Adewole, K.E., Ekundayo, T.C., 2021. Therapeutic potentials of endophytes for healthcare sustainability. Egypt. J. Basic Appl. Sci., 2021, 8 , 117–135.
[41] Frisvad, J.C., 2018. A critical review of producers of small lactone mycotoxins: Patulin, penicillic acid and moniliformin. World Mycotoxin J., 2018, 11 , 73–100.
[42] Bouhri, Y., Askun, T., Tunca, B., Deniz, G., et al., 2020. The orange-red pigment from Penicillium mallochii: Pigment production, optimization, and pigment efficacy against Glioblastoma cell lines. Biocatal. Agric. Biotechnol., 2020, 23 .
[43] Zhai, M.M., Qi, F.M., Li, J., Jiang, C.X., et al., 2016. Isolation of Secondary Metabolites from the Soil-Derived Fungus Clonostachys rosea YRS-06, a Biological Control Agent, and Evaluation of Antibacterial Activity. J. Agric. Food Chem., 2016, 64 , 2298–2306.
[44] Ayyolath, A., Kallingal, A., Thachan Kundil, V., Variyar, E.J., 2020. Studies on the bioactive properties of Penicillium mallochi ARA-1 pigment isolated from coffee plantation. Biocatal. Agric. Biotechnol., 2020, 30 , 101841.
[45] Jin, H.J., Zhang, X., Cao, H., Niu, Y.J., et al., 2018. Chemical Composition, Security and Bioactivity of the Red Pigment from Penicillium purpurogenum Li-3. Chem. Biodivers., 2018, 15 .
[46] Kallingal, A., Ayyolath, A., Thachan Kundil, V., Joseph, T.M., et al., 2021. Extraction and optimization of Penicillium sclerotiorum strain AK-1 pigment for fabric dyeing. J. Basic Microbiol., 2021.
[47] Hernández, V.A., Machuca, Á., Saavedra, I., Chavez, D., et al., 2019. Talaromyces australis and Penicillium murcianum pigment production in optimized liquid cultures and evaluation of their cytotoxicity in textile applications. World J. Microbiol. Biotechnol., 2019,35 , 1–9.
[48] Sudha, Gupta, C., Aggarwal, S., 2016. Dyeing wet blue goat nappa skin with a microbial colorant obtained from Penicillium minioluteum. J. Clean. Prod., 2016, 127 , 585–590.
[49] Koli, S.H., Suryawanshi, R.K., Mohite, B. V., Patil, S. V., 2019. Prospective of Monascus Pigments as an Additive to Commercial Sunscreens. Nat. Prod. Commun., 2019, 14 .