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Key Points: 13 

• Typhoon Hinnamnor (2022) re-intensified after interacting with underlying  Marine 14 
Heatwave (MHW) in the East China Sea.  15 

• Typhoon wind-driven mixing dissipated the underlying MHW. 16 

• Stratification change induced by the typhoon altered the local generation site of 17 

semidiurnal internal tides, thereby reducing its activity.  18 
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Abstract 19 

Typhoons, fueled by warm sea surface waters, heighten concern as they increasingly interact with 20 
frequent Marine Heatwaves (MHWs) in a changing climate. Typhoon Hinnamnor (2022) 21 
weakenned and re-intensified as it approached the Korean Strait, interacting with underlying 22 
MHW in the northern East China Sea (nECS). Here, we found a substantial increase in latent heat 23 
loss from the nECS during the MHW period, contributing to the typhoon re-intensification from 24 
in-situ observations supplemented by reanalysis products. Strong sea surface wind forcing 25 
associated with the typhoon enhanced vertical mixing and upwelling, resulting in a pronounced 26 
(0.90°C) sea surface cooling after the typhoon passage, facilitating MHW dissipation with reduced 27 
thermal stratification. Such changes in background stratification, furthermore, significantly 28 
weakened semidiurnal internal tides due to unfavorable condition for generation from a nearby 29 
source. These findings underscore the importance of continuous time-series observations for 30 
monitoring interaction processes among the extremes in a changing climate. 31 

Plain Language Summary 32 

Typhoons, powered by warm ocean waters, are causing more concern as they increasingly interact 33 
with frequent episodes of extremely warm sea conditions known as Marine Heatwaves (MHWs) 34 
in our changing climate. This study focuses on Typhoon Hinnamnor in 2022, which went through 35 
a weakening and strengthening cycle as it neared the Korean Strait and encountered an MHW in 36 
the northern East China Sea (nECS). By using in-situ data collected in the nECS and additional 37 
data analysis, we discovered a significant increase in heat loss from the nECS during the MHW, 38 
contributing to the typhoon getting stronger again. The powerful winds from the typhoon caused 39 
enhanced mixing and cooling of the sea surface after it passed, helping to dissipate the MHW and 40 
reduce the layering of temperatures in the ocean. We also observed changes in temperature patterns 41 
during and after the MHW, emphasizing the importance of ongoing observations to understand 42 
and monitor these interactions in our changing climate. 43 

1. Introduction 44 

The northwestern Pacific region is the most favorable globally for typhoon development, 45 
generating over a third of all typhoons annually, with an average of 16 typhoons forming and 46 
traversing the area each year, roughly twice the number of Atlantic hurricanes (Gray, 1968; Chen 47 
& Ding, 1979; Webster et al., 2005). Projections suggest that warming climate has led to an 48 
increase in typhoon intensity and destructive potential, supported by observations (Murakami et 49 
al., 2020) and climate model simulations (Chu et al., 2020), also resulting in a notable rise in 50 
extreme events like powerful typhoon storm surges (Knutson et al., 2019) and Marine Heatwaves 51 
(MHWs) (Hobday et al., 2016; Saranya et al., 2022; Saranya and Nam, 2024; Dasgupta et al., 52 
2024). These pose a significant threat to marine and coastal ecosystems worldwide, as well as to 53 
the sustainable development of coastal economies and societies (Emanuel, 2003; Jin et al., 2014; 54 
Emanuel, 2013; Bindoff et al., 2019; Collins et al., 2019; Oppenheimer et al., 2019).  55 

The East China Sea (ECS), a partially enclosed marginal sea in the northwestern Pacific, features 56 
a broad continental shelf with shallow water depths, typically <100 m. The ECS features unique 57 
dynamical characteristics, including the generation of semidiurnal internal tides (ITs) facilitated 58 
by the Okinawa trough to the south of the northern ECS (Lee et al., 2006; Zhao, 2014; Xu et al., 59 
2016; Cho et al., 2016; Nam et al., 2018; Lee and Nam, 2021). These ITs, arising from barotropic 60 
tidal currents flowing over abrupt ocean bottom topography, play a crucial role in the region's 61 
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ocean dynamics, alongside locally generated ITs on the shelf (Eich et al., 2004). Therefore, the 62 
ECS poses distinctive dynamical characteristics that produce a complex background condition 63 
during the occurrences of extremes such as typhoons and MHWs. Moreover, the ECS is 64 
experiencing a warming trend significantly higher than the global average (Cai et al., 2017; Yan 65 
et al., 2020), leading to the emergence of strong and prolonged MHWs (Gao et al., 2020; Dasgupta 66 
et al., 2024). While most northwestern Pacific typhoons decay over the ECS region, a warming 67 
climate has led to increased interactions between typhoons and the rapidly warming ECS, resulting 68 
in their re-intensification rather than decay. Typhoons undergo unique intensification in coastal 69 
regions, affecting sea surface temperatures (SST) (Jacob et al., 2000; Emanuel, 2003; Zheng et al., 70 
2010b) and oceanic processes like vertical mixing and thermocline shoaling (Zheng et al., 2010; 71 
Lin et al., 2011; Balaguru et al., 2012; Nam et al., 2012; Wada et al., 2014; Park et al., 2019; 72 
Kawakami et al., 2022; Kang et al., 2024). Understanding these complex interaction processes 73 
among extreme events such as typhoons, MHWs, and ITs is crucial for enhancing our capabilities 74 
to forecast extremes and mitigate their destructive impacts. While previous studies have addressed 75 
how typhoons intensify in the presence of MHWs and consequently how MHWs decay (Rathore 76 
et al., 2022; Pun et al., 2023), the effects of these interactions on the ocean's background 77 
thermodynamic conditions have yet to be further explored. 78 

Typhoon  Hinnamnor, originating in the northwestern Pacific on 28 August, 2022, intensified into 79 
a super typhoon upon entering the nECS between 3–5 September , reaching a maximum wind 80 
speed of 46.3 m s-1 amid existing MHW conditions. After causing significant damage upon making 81 
landfall in the Korean Peninsula on 6 September, 2022, Hinnamnor transitioned into an 82 
extratropical cyclone upon entering the East Sea (Japan Sea). The typhoon Hinnamnor passed over 83 
two continuous in-situ observation facilities, the Ieodo Ocean Research Station (I-ORS, 125.10°E, 84 
32.07°N) and the Jeju Numbu Buoy (JNB, 126.15°E, 32.03°N), which recorded the interaction 85 
between the two extremes and provide a unique opportunity to study the interaction in high 86 
temporal resolution. This study presents the first comprehensive analysis of critical ocean-87 
atmosphere interactions during the typhoon's re-intensification amidst MHWs and the subsequent 88 
dissipation of MHWs in the nECS, alongside variations in ITs patterns at the I-ORS due to changes 89 
in background stratification, independent of external (barotropic) tidal forcing. 90 

2. Data  91 

2.1.1. In-situ time series and hydrographic data 92 

Typhoon Hinnamnor passed through the Korea Strait in the vicinity of time-series observation 93 
sites of I-ORS and JNB, both located in the nECS (Figure 1a, b and c). We used the meterological 94 
observations, including wind speed, direction, air temperature, and relative humidity at 42.3 m 95 
above mean sea level, as well ashydrographic observations comprising in-situ temperatures and 96 
salinities measured at depths of 3, 21, and 38 m from the I-ORS.   Additionally, we incoorperated 97 
wind speed, direction, air temperature, relative humidity at a 10 m height, SST and sea surface 98 
salinity from the JNB buoy. Detailed information regarding the time-series observations from I-99 
ORS and JNB is provided in supplementary Table S1. 100 
Furthermore, bi-monthly (from 19–23 August 2022) ship-based hydrographic observational data 101 
(National Institute of Fisheries Science (NIFS)) from 32 stations (Lines 315, 316, and 317) in the 102 
nECS were utilized (Figure 1a, b, c). It includes both water temperature and salinity at 0, 10, 20, 103 
30, 50, 75 m water depths. All observational data used in this study have undergone standard 104 
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quality control and quality assurance procedures (UNESCO/IOC ocean data standards). Derived 105 
parameters like potential temperature, practical salinity, and potential density are calculated using 106 
the Thermodynamic Equation of SeaWater 2010 (TEOS-10) toolbox.   107 
 108 
2.1.2. Other data products 109 

Since meteorological parameters are observed at a height of 42.3 m at I-ORS, we also used  110 
Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) (1980-111 
present). This involved analyzing surface fluxes, wind speed, relative humidity, and air 112 
temperature at a 10 m height (standard height to estimate flux parameters), with a time interval of 113 
1 hr and horizontal resolutions of 0.5° latitude × 2/3° longitude (Gelaro et al., 2017). 114 
We used the bathymetric slope derived from NOAA National Centers for Environmental 115 
Information. 2022: ETOPO 2022 16 Arc-Second Global Relief Model for the slope analysis. We 116 
used potential temperature, salinity from Global Ocean Physics Analysis and Forecast data with 117 
0.083° × 0.083° spatial resolution and 6 hr temporal resolution  to find out the buoyancy frequency 118 
for the IT generation site analysis. The  credibility of the Global Ocean Physics Analysis and 119 
Forecast data has been extensively verified with the I-ORS in-situ observation and the ship-based 120 
hydrographic observations. To identify surface MHW, we used daily SST data from the Optimum 121 
Interpolated SST (OISST) dataset with a spatial resolution of 0.25° × 0.25° for the period 1982–122 
2018 (Reynolds et al., 2007). 123 
 124 
2.2. Methods 125 
 126 
The position and pressure of typhoon center, and maximum wind speed of typhoon Hinnamnor 127 
were calculated in 3 hr intervals by linearly interpolating the 6 hr best track data (Kunitsugu, 2012). 128 
The typhoon's displacement was then determined every 3 hr, and the translation speed was defined 129 
as the displacement divided by 3. 130 
Efficient heat transfer from the ocean to the atmosphere is a fundamental process in typhoons 131 
(Malkus and Riehl 1960; Emanuel 1986). Obtaining direct measurements of turbulent fluxes in 132 
typhoons, particularly under high-wind conditions, is challenging (Drennan et al. 2007; Zhang et 133 
al. 2008). Therefore, we rely on parameterizations, with heat and moisture fluxes commonly 134 
described using bulk aerodynamic formulas. These formulas depend on easily measurable near-135 
surface atmospheric and upper-ocean data (e.g., Shay et al. 2000; Shay and Uhlhorn 2008; Shay 136 
2010; Jaimes et al. 2015, 2016) as follows. Q!	 = ρ#c$	C%U&'(SST − T#), Q( =137 
ρ#L)#$	C*U&'(q! − q#)	where Q!	 and Q(	 denote the bulk air–sea sensible and latent heat flux, 138 
respectively (the total flux is defined as Q! +	Q(	). The ρ# , c$	  and L)#$	represent atmospheric 139 
density, specific heat capacity of air at constant pressure (1004 J kg-1 °C-1), latent heat of 140 
vaporization (2.5 × 106 J kg-1) respectively.  C%	and C* are surface exchange coefficients as 1.1 × 141 
10-3 ((0.7375 + 0.0525U&') × 10+,	for	5	m	s+& ≤ U&' < 25	m	s+&)), C%	 =	C*	 (Jaimes et al., 142 
2015) of sensible and latent heat, respectively, U&' is the 10 m wind speed, T# is the 10 m air 143 
temperature, q! is the saturated specific humidity at the SST (hypothesized as at 98% saturation at 144 
the SST) (Buck. 1981) and q#	is the 10 m atmospheric specific humidity. Additionally, ΔT = 145 
SST − T#  and Δq = q! − q#	correspond to the air-sea temperature and moisture differences, 146 
collectively referred to as thermodynamic disequilibrium. We used wind speed, T#, and relative 147 
humidity from I-ORS at 42 m and the 3 m temperature at I-ORS is considered as SST.  148 
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We calculated the Ocean Heat Content (OHC) using temperature profiles at I-ORS as follows 149 

OHC = 	ρ-c$	 ∫ T	–	T./0
'
1!"

dz. The ρ-, c$	, D,2, T./0, represent the average sea water density 150 

(1029 kg m-3), specific heat capacity of seawater, maximum observation depth at I-ORS and 151 
minimum temperature from the observation respectively. To delineate the role of stratification we 152 

derived the squared buoyancy frequency (N3) as, N3 =– 4
5#

65
67
	where, g, ρ', ρ represent the gravity 153 

constant (9.8 m s-2), backgraound density (1,025 kg m-3) and potential density at I-ORS derived 154 
from potential  temperature. At I-ORS, the Mixed Layer Depth (MLD) is defined as the depth 155 
where the temperature changes by 0.8°C from the temperature measured at 3 m depth.  156 
Fast Furier Transform  band-pass filter with cutoff periods of 8 and 16 hr was used to extract the 157 
semidiurnal fluctuations from the time-series of sea level, potential temperature and potential 158 
density. To determine the dominance of the main tidal components, especially the semidiurnal 159 
major constituents M2 and S2, we computed the tidal amplitude and phase of sea level records. 160 
This was done using the harmonic analysis method described by Pawlowicz et al. (2002) and 161 
implemented through a Matlab toolbox (Harmonic analysis of time series using Least Square Fit, 162 
M MA, 2024). 163 
We relied on the linear theory that the internal tides tend to form under optimal circumstances 164 
when the slope of the seabed (S)  aligns closely with the characteristic slope of the waves, C=± 165 

I (𝛚𝟐+𝐟𝟐)
(𝐍(𝐳)𝟐+𝛚𝟐)

 , where ω, f, N, and	z are the wave frequency, inertial frequency, buoyancy frequency, 166 

and the vertical coordinate (Knauss and Garfield 2016). In such scenarios, the orientation of the 167 
tidal ellipse across the continental shelf becomes significant for facilitating internal tide generation 168 
(Holloway et al., 2001).  169 

3. Results 170 

3.1. Timeline of typhoon Hinnamnor-MHWs interaction and accoiated air-sea exchanges 171 

In this section, we explain the timeline of the interaction between typhoon Hinnamnor and MHWs, 172 
along with the associated air-sea processes as recorded at I-ORS. A moderate category MHW was 173 
identified in the nECS, commencing on 23 August, 2022, at the I-ORS location and persisting until 174 
4 September, 2022 with a lifespan of 13 days (Figure 1 c). We define this period as P1 specifying 175 
the MHWs period. The SST anomaly peaked on 30 August, surpassing 3°C, with a cumulative 176 
intensity of 373.53°C day (Figure 1a and c). Typhoon Hinnamnor, originating on 28 August, 177 
along-track time series of the typhoon’s central pressure exhibited a double peak in its life cycle, 178 
indicating two intensification phases. This typhoon encountered large-scale MHW upon entering 179 
the nECS on 4 August, covering most of the region in nECS,  with a central pressure of 950 hPa 180 
(Figure 1a). From 21:00 UTC 4 September (hereafter, all time information is presented in UTC), 181 
the typhoon's central pressure started decreasing, reaching 940 hPa by 5 September. During 4–6 182 
September, the typhoon's wind speed increased by 5.14 m s-1 within 24 hr after the interaction with 183 
underlying MHWs at the nECS. At the I-ORS location, MHWs were present until 4 September 184 
with SST anomaly 1.5°C. The MHW anomaly dissipated abruptly by 5 September after 185 
encountering the approaching typhoon winds (Figure 1b and c). We define this period from 186 
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September 4 to 5 as P2 when typhoon interacted with underlying MHWs at the I-ORS location 187 
and  diminished it. 188 

On 4 September the MHW dissipated, and Hinnamnor reintensified subsequently. At I-ORS, wind 189 
speed and wave height surged as typhoon Hinnamnor approached on September 4–5, reaching 190 
maximum of 30 m s-1 and 8–10 m respectively on 6 September (Figure 2a, b, c, and d). Overall, 191 
typhoon winds were present at the I-ORS location during 4–7 September. We define this period 192 
as P3, partially overlapping with the earlier defined period P2. Typhoon winds peaked at I-ORS 193 
location during 6 September. We divide P3 into periods before and after the peak wind intensity 194 
as P31 and P32, respectively. During P1, SST and the temperature at 3 m were higher than air 195 
temperature, but by 1 September, air temperature surpassed SST. During the typhoon-MHW 196 
interaction (P2), latent and sensible heat fluxes from ocean to atmosphere increased (reaching upto 197 
50 kJ m-2 & 20 kJ m-2 , respectively) and subsequently air temperature increased by 2°C. After 4 198 
September, both SST and 3 m temperature dropped. JNB data and MERRA-2 also show a 199 
consistent variability as observed in I-ORS (Figure S1a and b). Shortwave radiation was high 200 
during the late August (300–500 kJ m-2) during the genesis and intensification of MHWs (P1 201 
period) and significantly reduced during typhoon passage (P31) (Figure 2f).  We define the post 202 
typhoon passage at I-ORS from 7–14 September as P4 (Figure 2). 203 

3.2. Changes in ocean interior environment before, during and after typhoon passage 204 

The ocean underwent significant changes before, during, after the interaction between the MHW 205 
and typhoon Hinnamnor. From late August to 4 September (P1), surface waters were warm (26–206 
28°C), less dense, and less saline, while cooler, denser, and more saline water existed below 20 m. 207 
During the typhoon passage (P31 and P32), temperatures in the upper 20 m decreased, and 208 
upwelling of colder water occurred below 30 m (P32) upper layers (0-20 m) became homogeneous 209 
with 24°C, whereas ocean temperature became 16 °C below 30 m depth (Figure 3a). Post-typhoon 210 
(P4), upper surface gained heat due to increased solar influx and, resulting in increased SST 211 
(Figure 2a). Also upper water column became less denser due to fresh water flux during the 212 
typhoon passage (Figure 2b). Vertical profiles indicated a deepening of the MLD by 20 m from 213 
21:00  5 September to 06:00 6 September, 2022 (P31 to P32) during the typhoon passage (Figure 214 
2g).  Temperature, density, and salinity profiles during different stages like P2, P31, P32 and P4 215 
showed a homogeneous upper surface with cold, less dense, and less saline water, indicating the 216 
existence of a well-mixed surface layer with cold subsurface layers. Additionally, temperature 217 
decreased by 1.32°C on the surface after P2, with mixing at the upper 20 m and upwelling at 38 m 218 
(temperature decreased by 1.39°C). Furthermore, during P4, temperatures decreased by 2.73°C 219 
compared to 29 August 2022 (P1). 220 

During the MHW (P1), significant fluctuations in isotherms, isopycnals, and isohalines occurred 221 
at mid-depths in I-ORS, which diminished following the typhoon passage from 9–17 September 222 
despite of the barotropical tidal forcing (Figure 3). OHC at the upper 38 m exhibited high values 223 
with oscillations during the MHW period (P1), decreasing during the MHW-typhoon interaction 224 
(P2) and significantly reducing post-typhoon passage (P4), reaching around 1 ×109 kJ m-2 (Figure 225 
2d). During the MHW period (P1), stratification at 12 m depth exhibited enhanced oscillations, 226 
followed by a decrease during the typhoon, and increased stratification from 9–17 September (P4).  227 
Conversely, at 29 m depth, fluctuations increased during the MHW period, followed by a decrease 228 
and maintenance during the typhoon (P2, P31, P32) and post-typhoon period (Figure 3e). Tidal 229 
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harmonic analysis of sea level data at I-ORS and spectral analysis of temperature at 3, 21, and 38 230 
m revealed barotropic spring tides during 28 August to 1 September (P1) and after the typhoon 231 
passage from 10 September to 17 September (P4), while neap tides were present during the 232 
typhoon passage at I-ORS (P2, P31 and P32) (Figure S2a, 3f). Periodicity spectral analysis of 233 
temperature before (28 August to 5 September) (P1) and after (9–17 September) (P4) the typhoon 234 
passage confirmed the presence of ITs with a periodicity of 12.4 hr. The 8–16 hr bandpass filtered 235 
time series of isotherm displacement (18, 20, and 22°C) and N2 exhibited enhanced oscillations 236 
during the MHW period from 28 August to 2 September (P1), coinciding with the barotropic spring 237 
tidal cycle (Figure S2c, f). After the typhoon passage from 9–17  September (P4), despite the 238 
spring barotropic forcing, there were reduced isotherm displacement and N2 oscillations (Figure 239 
S2c, f). 240 

In order to investigate the changes in the ITs we relied on the Global Physical Analysis forecast 241 
data. Time-depth evolution of potential temperature, potential density, practical salinity, and 8–16 242 
hr bandpass filtered potential density from both the I-ORS location and the Global Physical 243 
Analysis forecast data from 28 August to 17 September, 2022, show the model effectively captures 244 
the MHW presence and typhoon-induced vertical mixing and wind curl-driven upwelling (Figure 245 
S3 a-g). However, it fails to reproduce the IT fluctuations observed in isotherms, isopycnals, and 246 
isohalines also visible in the bandpass filtered potential density (Figure S3 d and h). Additionally, 247 
warm bias in the upper layer >20 m is noted after the typhoon passage in the model, where a 248 
constant temperature of 25°C is present (Figure S3 a and b). Comparisons between NIFS shipboard 249 
hydrographic observations and model zonal sections during 19–23 August 2022 further confirmed 250 
the model's performance, with biases ranging from -0.9–0.9 for potential temperature, potential 251 
density, and practical salinity (Figure S4). Hence, using the model's physical variables, changes in 252 
stratification and the generation site of ITs were explored. 253 

The passage of typhoon Hinnamnor induced vertical mixing and wind-driven upwelling, resulting 254 
in a significant decrease in stratification post-passage (Figure 3e) and reducing semidiurnal 255 
isotherm fluctuations.The spatial distribution of N2 which enhanced and oscilated  during 256 
MHWfrom 28 August to 4 September (P1), with values >0.0012 s-2 pre-typhoon passage, 257 
decreasing to 0.0006–0.0011 s-2 during the typhoon passage (4–6 September) (P31), and further 258 
decreasing from 9–17 September (P4), particularly around the I-ORS location and most regions in 259 
the nECS (Figure 4a, b, c). We observed a generation site for ITs near the I-ORS and JNB which 260 
is evident from the spatial map of  C-S, where the near zero values of C-S depicts the generation 261 
site region. The identified generation site has a slope ranging from 0.005–0.0065 (Figure S6 b). 262 
Consequently, enhanced IT oscillations were observed at the I-ORS location alongside spring tidal 263 
forcing. However, during and after the typhoon passage, stratification reduced at the I-ORS and 264 
nearby places, with C increasing to 0.0055–0.0065 (C-S>0), leading to reduced generation of ITs 265 
despite spring tidal forcing (Figure 4 d, e, and f).  266 

4. Discussions and Conclusions 267 

The in-situ time-series observations from two fixed locations of I-ORS and JNB captured a 268 
detailed interaction between the two extremes, typhoon Hinnamnor and MHW and provided a 269 
unique opportunity to study the interactions between these two extremes. This study explains how 270 
typhoon reintensified after interaction with the underlying MHW and how the ocean conditions 271 
impacted by these extremes. Previous research, such as the study on typhoon Bavi (2020) in the 272 
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nECS, has highlighted the role of MHWs, where SST exceeding 30°C fueled typhoon intensity, 273 
while subsiding airflows away from typhoon zones, coupled with intense solar radiation, often 274 
lead to rapid warming of SST, potentially affecting typhoon landfall intensity (Lok et al., 2021; 275 
Pun et al., 2023). Typhoon Hinnamnor experienced reintensification with a wind speed increase 276 
of 5.14 m s-1, and in-situ observations from I-ORS indicated that typhoon winds induced a latent 277 
heat release (50 kJ m-2) from the ocean to the atmosphere, resulting in a 1.92°C decrease in 278 
temperature at 3 m during the MHW-typhoon interaction compared to 29 August to 4 September. 279 
Studies have consistently demonstrated that the primary catalyst appears to be an MHW, 280 
contributing a significant surplus of heat flux that typhoons would not typically encounter in 281 
normal conditions (Rathore et al., 2022; Pun et al., 2023; Choi et al., 2024).  282 

In addition to explaining the reintensification of typhoon by MHW this study presents the 283 
subsequent demise of MHW by typhoon. Notably, the study observes amplified and reduced ITs 284 
during the MHW and post-typhoon periods, respectively, despite both corresponding to the 285 
barotropic spring tide. The observed changes in ITs in the nECS are linked to typhoon-induced 286 
alterations in stratification. This research aligns with previous findings that demonstrated the 287 
significant impact of typhoon winds, as seen with Chanhom and Nangka in July 2015, rapidly 288 
transforming ocean conditions along southeast coast of Korea and influencing ITs during 289 
downwelling events. This underscores the potential for typhoons to induce distinctive coastal 290 
environmental changes (Chae et al., 2021). 291 

This study reports, for the first time, the possible generation site of ITs in the nECS near the I-292 
ORS and JNB. Unlike prior studies focusing on MHW-typhoon dynamics, our research unveils 293 
unprecedented oceanic changes arising from the interaction of these extreme events, a previously 294 
undocumented aspect. The existence of MHW and favorable stratification conditions supported 295 
local IT generation, manifesting in strong isothermal oscillations at the I-ORS. Following typhoon-296 
induced stratification changes, the generation site ceased to exist, leading to a reduction in 297 
isothermal oscillations at the I-ORS (Figure 4j). The study underscores the importance of long-298 
term ocean observations for understanding interactions between ocean extremes and emphasizes 299 
the significance of studying ITs for energy distribution within the ocean.  300 
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 531 

Figure 1. (a, b, c) MHW anomalies, overlaid with typhoon Hinnamnor's track and central pressure 532 
(Stars represent in-situ observations from I-ORS (brown) and JNB (magenta) and traingles 533 
represent ship-board hydrographic observations along Lines 315 (blue), 316 (green), and 534 
317(cyan). (d) Timeseries of maximum wind speed (m s-1), typhoon's central pressure (hPa), and 535 
translation speed (m s-1). The red and grey-shaded intervals represent the MHW and interaction 536 
between MHW-typhoon periods. The dotted vertical line represents the time step with maximum 537 
typhoon winds at I-ORS. The orange, brown, pink, and blue timelines on the top represent the 538 
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different stages of MHW-typhoon interactions. (e) Timeseries of OISST representing MHW at the 539 
I-ORS location (start, peak and end dates) 540 

 541 

 542 

Figure 2. I-ORS timeseries observations (a) wind speed (m s-1), wind gust (m s-1), and wind 543 
direction (measured clockwise direction from the north). (b) Wave height (m) and maximum wave 544 
height (m). (c) Air temperature  (˚C), temperature at 3 m (˚C), and OISST (˚C). (d) Latent heat 545 
flux, sensible heat flux, and total heat flux (kJ m-2). (e) ∆q (q! − q#) (g kg-1), ∆T (SST − T#) (˚C), 546 
q! (g kg-1), and q# (g kg-1). (f) Shortwave, latent heat flux, sensible heat flux, and longwave (kJ 547 
m-2) (MERRA-2 datasets). The shaded intervals, dotted line and timelines on the top are same as 548 
Figure 1. 549 
 550 
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 551 

Figure 3.  Time-depth plot of (a) potential temperature (˚C), (b) potential density (kg m-3), and (c) 552 
practical salinity (psu). Timeseries of (d) OHC  (kJ m-2), (e) N2 (s-2), (f) M2 and S2 components of 553 
sealevel. Mean vertical profiles of (g) potential temperature (with MLD in m before and after the 554 
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typhoon passage denoted by red and blue), (h) potential density, and (i) practical salinity in the 555 
different stages of MHW-typhoon interactions.  556 
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 558 

Figure 4. Spatial distribution of (a-c) N2 (s-2). (d-f) wave characteristic slope (C). (g-i) difference 559 
between wave characteristic slope (C) and bottom slope (S) (C-S). The star symbols are the 560 
locations of I-ORS (brown) and JNB (magenta). (j) Schematic representation of interaction 561 
between MHW, ITs and typhoon Hinnamnor at I-ORS location. 562 
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