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Abstract   23 

Water temperature forecasting in lakes and reservoirs is a valuable tool to manage crucial 24 

freshwater resources in a changing and more variable climate, but previous efforts have yet to 25 

identify an optimal modelling approach. Here, we demonstrate the first multi-model ensemble 26 

(MME) reservoir water temperature forecast, a forecasting method that combines individual 27 

model strengths in a single forecasting framework. We developed two MMEs: a three-model 28 

process-based MME and a five-model MME that includes process-based and empirical models 29 

to forecast water temperature profiles at a temperate drinking water reservoir. Our results 30 

showed that the five-model MME improved forecast performance by 8-30% relative to individual 31 
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models and the process-based MME, as quantified using an aggregated probabilistic skill score. 32 

This increase in performance was due to large improvements in forecast bias in the five-model 33 

MME, despite increases in forecast uncertainty. High correlation among the process-based 34 

models resulted in little improvement in forecast performance in the process-based MME 35 

relative to the individual process-based models. The utility of MMEs is highlighted by two 36 

results: 1) no individual model performed best at every depth and horizon (days in the future), 37 

and 2) MMEs avoided poor performances by rarely producing the worst forecast for any single 38 

forecasted period (<6% of the worst ranked forecasts over time). This work presents an 39 

example of how existing models can be combined to improve water temperature forecasting in 40 

lakes and reservoirs and discusses the value of utilising MMEs, rather than individual models, in 41 

operational forecasts.  42 

1 Introduction 43 

In the face of increased ecosystem variability, researchers are developing new methods for 44 

forecasting freshwater quality and quantity (Lofton et al., 2023). Here, we define a forecast as a 45 

prediction of a future state of a variable with quantified uncertainty (Lewis et al., 2022). 46 

Forecasts of freshwater variables have considerable potential for improving management and 47 

guiding ecosystem service provision as environmental conditions increasingly exceed the 48 

historical envelope due to climate and land use change (Bradford et al., 2020; Dietze et al., 49 

2018; IPCC, 2023). Despite the urgent need for freshwater forecasts, however, the optimal 50 

modelling approach for developing forecasts remains unresolved across different spatial and 51 

temporal scales. One promising forecasting approach that has emerged from other disciplines is 52 

multi-model ensembles (MMEs), in which more than one model is used to simultaneously 53 

forecast the same variable into the future (Chandler, 2013; Clark et al., 2022; Humphries et al., 54 

2018; Kirtman et al., 2014; Long et al., 2021; Velázquez et al., 2011). To date, MMEs have not 55 

been applied to freshwater forecasting (reviewed by Lofton et al., 2023), motivating the need to 56 

understand how an MME forecast performs relative to individual models, as well as how the 57 

structure of the different models in the MME influences forecast performance. 58 

Water temperature forecasting in lakes and reservoirs is an ideal application for testing the 59 

performance of MMEs. First, water temperature forecasts can be useful for the management of 60 

inland waters (Lofton et al., 2023). For example, water temperature forecasts are used to 61 

optimise downstream water release from reservoirs (Huang et al., 2011; Jackson-Blake et al., 62 
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2022; Weber et al., 2017; Zwart et al., 2023), guide water quality management related to lake 63 

mixing events (Carey, Woelmer, et al., 2022; Thomas et al., 2020), as well as underpin the 64 

development of other water quality and ecological forecasts (Huang et al., 2011; Page et al., 65 

2018; Weber et al., 2017), given the importance of water temperature for determining 66 

metabolism, water chemistry, and biological growth (Carey et al., 2012; Kraemer et al., 2017; 67 

Yvon-Durocher et al., 2015). Second, a wide range of models have been developed to predict 68 

lake and reservoir water temperatures, thereby providing an excellent opportunity for examining 69 

the sensitivity of an MME’s performance to the identity and structure of multiple component 70 

models. 71 

To date, process-based models (Baracchini et al., 2020; Clayer et al., 2023; Mercado-Bettín et 72 

al., 2021; Thomas et al., 2020), machine learning and data-driven models (Read et al., 2019; 73 

Zhu et al., 2020; Zwart et al., 2023), as well as a range of “hybrid” approaches (e.g. Graf et al., 74 

2019; Zhu et al., 2020) have been used to forecast near-term dynamics (days to seasons 75 

ahead) in lake and reservoir water temperatures, with varying levels of performance (reviewed 76 

by Lofton et al., 2023). Of these modelling approaches, process-based models (hereafter, 77 

process models) have shown substantial promise, especially in near-term forecast horizons 78 

(Baracchini et al., 2020; Carey, Woelmer, et al., 2022; Mercado-Bettín et al., 2021; Thomas et 79 

al., 2020), with a performance of 0.4 - 1.4 °C RMSE (root mean square error) for reservoir water 80 

temperature forecasted 1-16 days-ahead (Thomas et al., 2020). However, the skill of these 81 

models is often limited by the skill of other forecasts (e.g., weather and inflow discharge) 82 

needed as model driver data (Mercado-Bettín et al., 2021; Thomas et al., 2020). Moreover, 83 

process models also often demonstrate substantial differences in skill among forecasted sites 84 

(Thomas et al., 2023) and depths (Thomas et al., 2020), as well as at different times of year 85 

(e.g., in thermally-stratified vs mixed conditions; Thomas et al., 2020; Wander et al., 2023). 86 

Despite their simplicity, simple empirical models such as persistence and climatology (historical 87 

day-of-year mean and variance) models can also provide useful forecasts (Ward et al., 2014). 88 

Often used as null models to test the skill of emerging forecasting approaches (Lofton et al., 89 

2023; Pappenberger et al., 2015), these simple baseline models include information on current 90 

conditions and seasonal trends that influence lake temperature dynamics. For example, a 91 

persistence model can be useful for forecasting dynamics in systems with high inertia that 92 

exhibit small changes across the forecast horizon (i.e., time into the future; Ward et al., 2014), 93 

which is common in lakes and reservoirs that exhibit seasonal thermal stratification. Additionally, 94 
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climatology forecasts exhibit high performance at longer horizons (e.g., months to years), for 95 

which repeatable seasonal cycles dominate the dynamics (Pappenberger et al., 2015). 96 

Multi-model ensembles (MMEs) that integrate both process models and these simple baseline 97 

models may be particularly effective for forecasting lake and reservoir water temperatures. This 98 

type of MME may be able to overcome the limitations of individual process and baseline models 99 

that are unable to consistently forecast all environmental conditions with high accuracy across 100 

space (i.e., multiple depths in a lake), time (i.e., different seasons within a year), and forecast 101 

horizons. Implementation in other disciplines has overwhelmingly found that MMEs often 102 

produce more skillful forecasts, on average, than individual model forecasts (Atiya, 2020; Clark 103 

et al., 2022; Humphries et al., 2018; Velázquez et al., 2011). Using MMEs also leads to greater 104 

diversity in forecast predictions, potentially increasing decision-making success (Boettiger, 105 

2022). Although predictions from individual models can outperform the aggregated prediction 106 

from the MME locally, at a specific depth, time, or horizon (Abrahart & See, 2002; Atiya, 2020), 107 

it is often not known a priori which forecast model will be best at any given future timestep, 108 

especially for forecasts of sites with substantial spatial and temporal heterogeneity. MMEs are 109 

ideally suited for these situations, because they integrate information from different model 110 

structures into a single forecast, enabling the forecaster to ‘hedge’ (i.e., minimise risk of 111 

incorrect forecasts by assigning non-zero probability to a wide range of possible outcomes) and 112 

provide a more comprehensive and accurate representation of the potential forecasted 113 

outcomes than individual models (Abrahart & See, 2002; Atiya, 2020). MMEs have been 114 

successfully applied to a diverse range of ecological and environmental forecasting applications, 115 

including ticks (Clark et al., 2022), sea level (Long et al., 2021), penguins (Humphries et al., 116 

2018), and river flow (Abrahart & See, 2002; Velázquez et al., 2011), suggesting that their 117 

application for forecasting freshwater ecosystems has promise.  118 

To the best of our knowledge, no one has applied an MME approach to forecasting lake and 119 

reservoir temperatures with specified uncertainty. While MMEs for water temperatures have 120 

been applied to long-term projections (Almeida et al., 2022; Feldbauer et al., 2022; La Fuente et 121 

al., 2022; Wynne et al., 2023), or as model inter-comparisons (Golub et al., 2022), the utility of 122 

MMEs for real-time water temperature forecasting remains unknown. This gap may exist 123 

because ensemble near-term forecasts have, to date, focused on using ensembles of multiple 124 

driver datasets (e.g., weather forecasts; Mercado-Bettín et al., 2021) and parameter sets (e.g. 125 
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Thomas et al., 2020) to partition and quantify uncertainty (Clayer et al., 2023; Thomas et al., 126 

2020), rather than using multiple models to generate more skillful operational forecasts.   127 

Here, we developed a near-term forecasting system that integrates an MME of lake process 128 

models, baseline empirical models, and data assimilation algorithms in an automated 129 

forecasting approach. We used this MME to produce weekly, 1-14 day-ahead forecasts of water 130 

temperature profiles for two years in a small, temperate, drinking water reservoir. We aimed to 131 

understand how MME approaches may improve near-term forecast performance and how 132 

forecast performance varies over different spatial scales and forecast horizons. We used the 133 

MME forecasts to answer the research questions: 1) How does the forecast performance of the 134 

process model MME compare to the individual process models?, 2) How does the addition of 135 

the baseline models into the MME affect forecast performance?, and 3) How does the forecast 136 

performance of the individual models and MMEs vary across horizons and depths? Our goal 137 

was to determine if MMEs can improve freshwater water quality forecasting to guide the 138 

development of operational forecasting workflows.  139 

2 Methods  140 

2.1 Overview of forecasting system 141 

Here, we summarise the automated MME forecasting framework (Figure 1) that leverages the 142 

state-of-the-art FLARE (Forecasting Lake And Reservoir Ecosystems) water forecasting system 143 

(Thomas et al., 2020). FLARE uses in situ water temperature sensor data, which are wirelessly 144 

transmitted directly from the waterbody to the cloud, in a data assimilation algorithm to update 145 

model initial conditions and to calibrate model parameters (Figure 1; Daneshmand et al., 2021). 146 

FLARE’s ensemble‐based forecasting algorithm generates forecasts using process 147 

hydrodynamic models that quantify the uncertainty from driver data (weather forecasts), initial 148 

conditions, model process, and model parameters and then samples from these sources of 149 

uncertainty to generate probability distributions for water temperature at multiple lake or 150 

reservoir depths (see Thomas et al., 2020).  151 

Instead of using a single process model, as has been done in previous implementations of 152 

FLARE (Carey, Woelmer, et al., 2022; Thomas et al., 2020, 2023), we used three different 153 

process models, implemented via integration with LakeEnsemblR R software (LER; Moore et 154 

al., 2021), to answer question 1. These process models were run inside the FLARE framework 155 
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to generate a multi-model ensemble (MME) from the output (Figure 1), hereafter referred to as 156 

the process model MME forecast (PM MME hereafter). To answer questions 2 and 3, two 157 

baseline models were also included to produce the full MME forecast (full MME hereafter), 158 

which consisted of five individual models (n=3 process models and n=2 baseline models). 159 

Finally, these forecasts are evaluated using the in-situ water temperature observations (Figure 160 

1) via a suite of metrics, described below.  161 

2.2 Site description and data collection 162 

We generated water temperature forecasts for Falling Creek Reservoir (FCR), a eutrophic 163 

reservoir located in Vinton, Virginia, USA (37.30°N, 79.84°W). FCR is managed by the Western 164 

Virginia Water Authority as a drinking water source. The reservoir has a mean depth of 4 m and 165 

a maximum depth of 9.3 m, with a surface area of 0.12 km2 (Carey, Lewis, et al., 2022). A 166 

dimictic system, FCR generally stratifies from May to October and has intermittent ice-cover 167 

from December to March (Carey & Breef-Pilz, 2023). The reservoir has one primary inflow and 168 

water level is maintained to be generally constant over time.  169 

FCR is monitored by a series of high-frequency sensors deployed at fixed depths in the water 170 

column at its deepest site near the dam. Water temperature data were collected using T-Node 171 

FR thermistors (NexSens, Fairborn, OH, USA) from March 2019 to March 2023 (Carey et al., 172 

2023; Olsson et al., 2023a), with minor data gaps due to sensor maintenance (see metadata in 173 

Carey et al., 2023), across ten depths in the water column (0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 174 

8.0, 9.0 m). Additional temperature data were collected at 1.6 m with a YSI EXO2 sonde (Xylem 175 

Inc., Yellow Springs, OH, USA), and at 5.0 and 9.0 m using RDO PRO-X Dissolved Oxygen 176 

Sensors (In-Situ Inc., Fort Collins, CO, USA). All measurements were collected at a 10-minute 177 

frequency and averaged to an hourly timestep. Observations were then binned into 0.25 m 178 

intervals, so that they could be matched with the process model output. When multiple 179 

measurements were collected at the same depths, a mean value was calculated. These data 180 

were used in FLARE data assimilation and process model parameter tuning, as well as inputs to 181 

the two baseline models (see section 2.3), and in forecast evaluation (Figure 1, section 2.4). 182 
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 183 

 184 

Figure 1. Multi-model ensemble 185 
and individual forecast 186 
generation (grey shading) and 187 
forecast evaluation workflow 188 
(purple shading), with each 189 
corresponding text section 190 
number in parentheses (e.g., 191 
2.3). Boxes represent tools, 192 
objects, and/or products and 193 
lines represent actions. The 194 
parallel workflows of individual 195 
model forecast generation are 196 
shown in the orange (process 197 
models) and blue (baseline 198 
models) boxes. Within the 199 
process model forecast 200 
workflow, the steps correspond 201 
to the text in section 2.3.1. 202 
Each individual model forecast 203 
is archived into the Forecast 204 
Catalogue from which the 205 
distributions are sampled and 206 
combined in the multi-model 207 
ensemble (black dashed box). 208 
The multi-model ensemble 209 
forecasts are also archived in 210 
the Forecast Catalogue. From 211 
this catalogue, forecasts are 212 
evaluated against in-lake 213 
observations via several 214 
scoring algorithms to generate 215 
a Scores Catalogue, which is 216 
subsequently analysed (section 217 
2.4).218 
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Dates of the mixed and stratified periods were calculated based on the density difference 219 

between 1 m from surface (1 m) and ~1 m above the bottom (8 m) of the lake, with a minimum 220 

density difference of 0.1 kg m-2 indicating that the lake was stratified (Wilson et al., 2020). The 221 

stratified period was defined as the summer period when continuous stratified conditions 222 

occurred and the mixed period as any time outside of this. In addition, the observed thermocline 223 

depth was estimated using the LakeAnalyzer R package (Read et al., 2011). 224 

2.3 Forecast generation 225 

2.3.1 Process model forecasts 226 

In this application, FLARE generated forecasts for each of the three process models every 227 

seven days for 1 to 14 day-ahead horizons over 2 years (March 2021 - March 2023), resulting in 228 

a total of n=104 forecasts per model. For each process model, the weekly forecasts were 229 

generated using the following steps (Figure 1): Step 1) access the individual FLARE forecasts 230 

(Figure 1, step 1) for 1-week ago in a prior FLARE run (or, in the case of the first forecast, 231 

following a spin-up described below); Step 2) use this prediction to initialise each process model 232 

FLARE run that starts 1-week ago and runs to current day (Figure 1, step 2); Step 3) use a data 233 

assimilation algorithm (the ensemble Kalman filter; Evensen, 2003) to assimilate new 234 

observations collected over the past week (Figure 1, step 3) to update that model’s states and 235 

parameters (Figure 1, step 3); and Step 4) use the updated states and parameters as initial 236 

conditions for a 1- to 14-day ahead forecast that starts today (Figure 1, step 4). Each forecast 237 

included 256 simulations (ensemble members) that quantified the uncertainty from driver data 238 

(weather forecasts), initial conditions, model process, and model parameters. Additional 239 

information about FLARE configuration can be found in Thomas et al., (2020) and Thomas et al. 240 

(2023).  241 

Within the FLARE framework, three process models were implemented using the 242 

LakeEnsemblR R package (LER; Moore et al., 2021), and underwent data assimilation within 243 

FLARE as described above. This R package facilitates the running of up to five one-dimensional 244 

hydrodynamic lake models simultaneously using the same driving data and configuration files 245 

(see Moore et al. 2021). The three process models we included in the PM MME were the 246 

General Lake Model (GLM; Hipsey et al., 2019), General Ocean Turbulence Model (GOTM; 247 

Umlauf et al., 2005), and Simstrat (Goudsmit et al., 2002), hereafter referred to as PM1, PM2, 248 

and PM3, respectively. The other two process models implemented in LER (FLake, MyLake) 249 
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were not included because our aim was to apply data assimilation and iteratively forecast full 250 

water column temperature profiles. Specifically, FLake simulates lake systems using a two-layer 251 

representation (Mironov, 2021) that does not simulate a full profile, and MyLake is not able to 252 

“restart” daily (Saloranta & Andersen, 2007), as needed for iterative forecasting with data 253 

assimilation. 254 

All three process models require forecasted meteorological driving data to produce water 255 

temperature forecasts. To make near-term predictions of water temperature, we used weather 256 

forecasts for FCR from the National Oceanic and Atmospheric Administration's (NOAA's) Global 257 

Ensemble Forecast System (GEFS; Hamill et al., 2022). The NOAA GEFS weather forecast 258 

consists of a set of 31 simulations and a forecast horizon of 1 to 16 days-ahead, which we used 259 

to produce 1-14 day-ahead water temperature forecasts from the midnight UTC data product.  260 

We followed the standardised FLARE configuration for forecasting (Thomas et al., 2023). All 261 

process models were run at an hourly time step with the midnight output as the daily forecast. A 262 

spin-up of all models was run from 1 October 2020 to 1 March 2021, the date of the first 263 

forecast. During this spin-up, each model’s parameters were individually tuned by the ensemble 264 

Kalman filter within FLARE (see Supplementary Information, Table S1, Figure S1). Each model 265 

used default parameters to initialise the forecast run and two sensitive parameters were tuned in 266 

the data assimilation process of FLARE (See Supplementary Information, Table S1, Figure S1). 267 

The sensitive parameters selected, based on initial investigation and configuration in other 268 

lakes, were the sediment temperature and incoming shortwave radiation scaling factor for GLM, 269 

and the wind scaling and incoming shortwave radiation factors for Simstrat and GOTM (see 270 

Supplementary Information).  271 

2.3.2 Baseline models 272 

Two simple, empirical baseline models were also used to generate forecasts (Figure 1). The 273 

persistence model uses the last observation for each specific depth as a prediction of future 274 

conditions and the climatology model uses a long-term day-of-year mean as the daily forecast 275 

(Hyndman & Athanasopoulos, 2021; Jolliffe & Stephenson, 2012); both are described in detail 276 

below.  277 
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2.3.2.1 Persistence model 278 

A persistence model assumes that, on average, the forecasted state (in this case, water 279 

temperature) on average does not change over the forecast horizon, with uncertainty driven by 280 

a random walk process (Hyndman & Athanasopoulos, 2021): 281 

𝑦்ାଵ =  𝑦் + 𝑒்ାଵ  (Eqn. 1) 282 

where yT is today’s observation or forecast, eT+1 is random noise, and yT+1 is the next day’s 283 

forecast. The uncertainty (𝑒்ାଵ) in the persistence model forecasts were generated using a 284 

bootstrapping method, as a normal distribution could not be assumed. The bootstrap method 285 

calculates the distribution of residuals from the fit and samples from that distribution for a value 286 

of 𝑒்ାଵ. We used bootstrapping to generate a set of n=256 ensemble members to match the 287 

number of simulations as the process models. The persistence model forecasts were generated 288 

using the RW (random walk) function in the fable R package (version 0.3.2; O’Hara-Wild et al., 289 

2022).  290 

2.3.2.2 Climatology model 291 

A climatology model, also based on historic observations, was used to generate a forecast, 292 

assuming forecasted mean conditions are equal to the historic day-of-year mean. We used two 293 

years of observations (March 2019 - March 2021) from FCR to calculate a day-of-year mean 294 

water temperatures at each depth. We chose this period because the thermistor sensors were 295 

deployed in summer 2018 and we wanted to ensure that each day-of-year mean water 296 

temperature was derived from the same number of historical observations. To obtain uncertainty 297 

around these climatology forecasts, we fitted a linear model between the two years of 298 

observations and calculated the standard deviation of the residuals, at each depth 299 

independently. We generated the probabilistic climatology forecasts by sampling from a normal 300 

distribution with the obtained mean and standard deviation, generating n=256 ensemble 301 

members.  302 

2.3.3 Multi-model ensembles (MMEs) 303 

As described above, we generated two MMEs: the PM MME (containing PM1, PM2, PM3; n = 3 304 

models total) and the full MME that also included the two baseline models (persistence, 305 

climatology; n = 5 models total). To create the full MME forecasts, the n=256 ensemble 306 
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members from each of the three individual process models and two baseline models were 307 

combined into a new MME (Figure 1). As the number of simulations generated from forecast 308 

can affect forecast skill (Machete & Smith, 2016), we sampled from the pool of individual model 309 

simulations to generate MMEs with n=256 ensemble members, with each model equally 310 

represented. The number of simulations from each individual model in the MME forecasts is 311 

given as 256/n, where n is the number of models in the MME. For example, in the full MME 312 

there were 5 models represented in the forecast, giving 51 simulations (256/5) from each 313 

individual model.    314 

2.4 Forecast evaluation 315 

Forecasts from both the individual models and MMEs were evaluated using four evaluation 316 

metrics calculated on each forecast-observation pair. We used multiple evaluation metrics 317 

because each metric provides complementary information about the performance of the 318 

forecast. First, we calculated the mean bias (difference in mean forecasted water temperature 319 

and observed water temperature). Forecasts with lower bias indicate increased forecast 320 

accuracy. Second, we calculated the standard deviation (SD) of the forecasts to understand 321 

uncertainty in the forecasts. We expect uncertainty to increase across the forecast horizon as 322 

confidence in future conditions decreases. We also expect to see larger SD in the MME 323 

forecasts than individual model forecasts as they reflect a greater diversity of predictions. Both 324 

metrics are useful for determining how the forecast accuracy (bias) and precision (using SD as 325 

a metric of uncertainty) vary independently and are commonly calculated metrics for forecast 326 

performance (Jolliffe & Stephenson, 2012).  327 

Third, we evaluated the models using the ignorance score (IGN), which uses both the accuracy 328 

and the precision of the forecasts in its evaluation, and describes the probability placed by the 329 

forecast on the observed outcome (Smith et al., 2015). IGN was calculated using the 330 

scoringRules R package (Jordan et al., 2019), in which larger values represent a lower 331 

probability placed on the observed outcome and lower forecast performance. IGN, originally 332 

proposed by Good (1952), is defined as: 333 

IGN(p(x), X) = −log2 (p(X)) (Eqn. 2) 334 

where p(x) is the density assigned to the outcome X. 335 
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IGN penalises forecasts that place very low probabilities on the observed outcome and gives an 336 

infinitely large score if a forecast places zero probability on an outcome that is ultimately 337 

observed (Smith et al., 2015). We selected the IGN score as a focal evaluation metric because 338 

differences in scores between models represent the additional probability placed on the 339 

observed outcome in the more skillful forecast (Smith et al., 2015). The difference in IGN scores 340 

between two models can be used as the exponent of base two to calculate the probability 341 

difference between the models (Smith et al., 2015). For example, an IGN score difference of 0.5 342 

units between two models corresponds to the better model placing 20.5, or 1.41 times more 343 

probability, on the more skillful forecast. Thus, in this example, there is a confidence gain of 344 

41% in the better model compared to the other model (Smith et al., 2015).  345 

Finally, we calculated shadowing time, which quantifies the time that the forecast is able to 346 

“shadow” the observations, given an estimate of observational uncertainty (Gilmour & Smith, 347 

1997; Smith et al., 2010). The shadowing time is the maximum number of consecutive days, 348 

starting from forecast initiation, that at least one simulation (ensemble member) tracks the mean 349 

observation, within a specified observation uncertainty. Here, we define a simulation as 350 

shadowing when it falls within the 95% confidence interval of each observation (assuming a 351 

normal distribution centred on the observation). Observational uncertainty (standard deviation) 352 

was estimated at 0.2°C, based on an analysis of the variation in observations within each day 353 

and depth (see Supplementary Information, Figure S2). Shadowing time is a useful metric to 354 

determine how well the forecast models can replicate the dynamics of a system, rather than the 355 

statistics of the forecast (Gilmour & Smith, 1997; Smith et al., 2010). 356 

2.5 Analyses 357 

First, to address question 1, we compared the evaluation metrics among the individual process 358 

model forecasts and the PM MME forecast. Second, to address question 2, we compared the 359 

full MME with the PM MME, and the performance of the five individual process models and 360 

baseline models. To understand how and why the MME forecasts might be able to outperform 361 

individual models, we also calculated the Pearson correlation coefficient (r) on forecast bias. 362 

Third, to address question 3, we compared the forecast metrics at different depths and forecast 363 

horizons. We also determined each model’s rank (out of the 7 forecasts from the 5 individual 364 

and 2 MMEs) for each individual forecast-observation pair across depth and horizon using the 365 
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IGN score. All analyses were conducted using R statistical software (v.4.2.1; R Core Team, 366 

2021). 367 

2.6 Archiving 368 

All data and code are archived and available in the Zenodo repositories (Olsson et al., 2023a, 369 

2023b) or the Environmental Data Initiative repositories (Carey et al., 2023; Carey & Breef-Pilz, 370 

2023). Instructions on reproducing the individual model forecasts as well as the multi-model 371 

ensemble are available in (Olsson et al., 2023b). In addition, the forecasts and scores can be 372 

accessed here to enable the manuscript figures to be reproduced (Olsson et al., 2023a).  373 

3 Results 374 

3.1 Observed and forecasted temperature dynamics at FCR 375 

FCR exhibited typical seasonal dynamics during the two-year forecasting period. Continuous 376 

summer thermal stratification lasted from 11 March - 3 November 2021 and 31 March - 19 377 

October 2022. Outside of these periods, there were transient periods of mixing and stratification 378 

during spring and autumn (Figure 2). Ice cover was observed intermittently during the periods of 379 

11 January - 8 February 2022 and 23 December 2022 - 6 February 2023. As ice cover was 380 

short and intermittent, we hereafter refer to the period outside of the summer stratified period as 381 

‘mixed,’ despite brief periods with inverse thermal profiles (Figure 2). Mean thermocline depth 382 

during the summer stratified period was 2.7 m in 2022 and 3.1 m in 2023.  383 
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384 
Figure 2. Observed high-frequency water temperatures across eleven depths at Falling Creek 385 
Reservoir from March 2021 to March 2023. The grey shaded areas show the periods of 386 
continuous summer stratification and white shaded areas show the mixed periods.  387 

Our workflow (Figure 1) was able to successfully produce weekly 1-14 day-ahead forecasts for 388 

the two-year forecasting period for all five individual models and the two MMEs (Figure S3). In 389 

general, mean forecast performance was highest at the beginning of the forecast horizon and 390 

decreased further into the 14-day-horizon (Figure S3). Across all depths and horizons, the IGN 391 

score of the individual models (other than climatology) increased by 80-170% from 1 to 14 days-392 

ahead, representing lower performance. Forecast uncertainty also increased across the 14-day 393 

horizon for all models except for climatology (by >100%). 394 

Two examples highlight how the forecasts generated by the individual models exhibited 395 

differences in how well they reproduced observations across depths and times (Figure 3). First, 396 

forecasts generated during the mixed period at 1 m depth (20 February 2023) show that PM1 397 

and PM3 forecasts closely followed observations throughout the 1 to 14-day ahead horizon, with 398 

PM2 diverging from observations after the 8th day of the forecast horizon. In contrast, the 399 

climatology and persistence baseline models consistently underestimated water temperature. In 400 

a second period with stratified water temperatures (1 August 2022), forecasts generated at 8 m 401 

depth show that PM3, and to a lesser extent PM1 and PM2, underestimated the water 402 

temperature. The two baseline models were most skillful for this particular forecast.  403 
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The variable performances of the individual models are reflected in the performance of the two 404 

MME forecasts (Figure 3). For example, in the first example forecasts for 20 February 2023 at 1 405 

m depth, the PM MME performed better than the full MME because of the superior performance 406 

of the process models than the baseline models. Likewise, in the second example forecasts for 407 

1 August 2022 at 8 m, the full MME performed better than the PM MME because of the strength 408 

of the baseline models.  409 

410 
Figure 3. Two example water temperature forecasts from the five individual models and the two 411 
multi-model ensembles: one generated on 20 February 2023 at 1 m depth (mixed period; left 412 
panels) and one generated on 1 August 2022 at 8 m depth (stratified period; right panels). The 413 
top row shows the individual forecasts from the three process models (PMs), the middle row 414 
shows the individual forecasts from the two baseline models, and the bottom row shows the 415 
multi-model ensembles (PM and full MMEs). Shaded areas show the 95% confidence interval 416 
around the median forecast (line) and the filled points are the observed water temperatures. The 417 
colours for the different forecasts are consistent throughout. 418 

3.2 Question 1: How does the performance of the process model MME compare to the 419 

individual process models? 420 

Overall, the PM MME exhibited a higher aggregated performance, as determined by the lowest 421 

absolute bias and ignorance score, than the individual PMs (Table 1; Figure 4). When 422 

aggregated across all forecast dates, horizons, and depths, the bias of the PM MME was similar 423 

to PM1, highlighting how the addition of the other two PMs with slightly higher absolute bias did 424 

not increase bias in the MME (Table 1). The bias increased over the 1-14 day forecast horizon 425 

for all PMs and the PM MME, with bias increasing less for the PM MME and PM1 (Figure 4a). In 426 
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contrast to bias, the PM MME had a larger mean forecast uncertainty (SD) than any of the 427 

individual models, especially at longer horizons (Figure 4b). SD increased over the forecast 428 

horizon at a faster rate for the PM MME than any individual PM (Figure 4b). At 1 day-ahead, the 429 

SD was similar for all PM forecasts (1.1°C), but by 14 days-ahead, the PM MME had 0.2°C 430 

higher SD than the best individual PM forecast (Fig. 4b).  431 

Table 1. The mean ignorance score (IGN), absolute bias, standard deviation (SD), and 432 
shadowing time aggregated for all forecasts across all depths, times, and horizons for each 433 
forecast model, individual and multi-model ensemble (MME) across the two-year forecasting 434 
period. Models are sorted by most to least skillful, based on IGN, with the “best” forecast based 435 
on each metric in bold.  436 

Forecast model IGN Absolute Bias (°C) SD (°C) Shadowing time (days)
Full MME 1.52 0.69 1.66 7.3 
Climatology 1.63 0.98 1.45 3.2 
PM1 1.67 0.95 1.47 4.5 
Process model MME 1.68 0.94 1.62 4.2 
PM2 1.80 1.16 1.49 3.7 
PM3 1.81 1.09 1.53 4.0 
Persistence 1.89 0.98 1.26 7.9 

When using the IGN metric to evaluate performance, which combines accuracy and precision, 437 

the PM MME performance was similar but slightly lower than the performance of PM1 (Table 1).  438 

This result highlights the penalty given by the IGN score to the higher standard deviation in the 439 

PM MME. The best performing PM only placed 9% more probability on the observed outcome 440 

than the worst PM forecast on average, and 1% more probability than the PM MME (Equation 441 

2). IGN increased over the forecast horizon at a similar rate for both the PM MME and most 442 

skillful individual forecast (PM1, Figure 4). At 14 days-ahead, the PM MME placed 13% more 443 

probability in the observed outcome and PM1 16% more probability than the two other individual 444 

forecast models. This change in probability demonstrates that the MME is not penalised strongly 445 

for including the “worse” models overall (Figure 4).  446 

Using the shadowing time metric, the PM MME did not show increased ability to replicate 447 

observed water temperature dynamics relative to the individual models. The mean shadowing 448 

time for the PM MME (4.2 days) was slightly shorter than the best PM (4.5 days; Table 1). 449 

Shadowing time for the other PMs (PM2 and PM3) were shorter than the PM MME but all were 450 

between 3.7 and 4.5 days, less than half of the total forecast horizon.451 
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452 
Figure 4. a) Mean absolute bias, b) standard deviation, and c) ignorance score across the 14-453 

day forecast horizon for the three individual process models (PM), two baseline models 454 

(climatology and persistence), and the process model multi-model ensemble (PM MME) and full 455 

multi model ensemble (full MME).  456 

3.3 Question 2: How does the addition of the baseline models into the full MEE affect 457 

forecast performance? 458 

Altogether, the full MME had the lowest IGN, lowest bias, and highest standard deviation of any 459 

individual model or MME (Table 1). Aggregated across all depths, times of year, and horizons, 460 

the inclusion of the two baseline models into the full MME decreased bias by 26% but only 461 

increased the standard deviation by 2% (Table 1), relative to the PM MME. This large reduction 462 

in bias led to a lower IGN for the full MME (vs. the PM MME) despite the slight increase in 463 

uncertainty. Using the difference in the IGN metric, the full MME placed 12% more probability on 464 

the observed outcome than the PM MME. Overall, the improvement in performance of the full 465 

MME relative to the PM MME increased throughout the forecast horizon (Figure 4a), a 6% 466 

improvement at 2 days-ahead compared to 15% at 14 days-ahead.  467 

The shadowing time of the full MME (7.3 days) was longer than the PM MME (4.2 days; Table 468 

1). This improvement in shadowing time was due to the inclusion of the persistence model in the 469 

full MME. The persistence model had the longest shadowing time of any individual model or 470 

MME (7.9 days).  471 
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The individual PM forecasts exhibited high covariance with other PM forecasts and low 472 

covariance with the baseline model forecasts (Figure 5). At 1 m, the PM models exhibited strong 473 

positive correlations at 1, 7, and 14 day-ahead horizons (r = 0.73 to 0.96), with PM1 and PM2 474 

being most correlated at these three horizons. In contrast to the individual PM models, the 475 

individual baseline models generally showed low covariance between each other and with the 476 

PM models (Figure 5). A few exceptions to this pattern were at 1 day-ahead, when the 477 

persistence model showed a moderate correlation with PM3 (r = 0.45) at 1 m. Similarly, at 7 and 478 

14 days-ahead, the persistence and climatology showed a positive correlation (r = 0.58 and r = 479 

0.60, respectively), and at 14 days-ahead the climatology model was positively correlated with 480 

all other models. The correlations among the PMs were always higher than any correlation 481 

involving a baseline model (Figure 5). 482 

483 
Figure 5. Correlation (Pearson r) of bias among individual model forecasts. The correlation 484 
coefficient between models was calculated for the mean forecast bias (mean - observations) at 485 
1, 7, and 14 day-ahead horizons for 1 m. Red indicates a strong positive correlation and blue 486 
indicates a strong negative correlation.  487 

3.4 Question 3: How does the forecast performance of the individual models and MMEs vary 488 

across horizons and depths? 489 

The ranking of models demonstrates the hedging that occurs when using MMEs to forecast at 490 

different depths and horizons. The individual model forecasts were more likely to be ranked the 491 

‘worst’ of the seven forecasts (Figure 6, Figure S4) than the two MME forecasts. Out of all 492 

n=104 forecasts generated, the full MME had <1% of rank 7 (worst) forecasts across 1 and 8 m 493 

(n=1 forecast) and 10% of rank 1 (best) forecasts (n=11). At 1 m, the full MME was most often 494 

ranked in the middle (65-95% of forecasts ranked 3-5, respectively; Figure 6a). At 8 m, the full 495 

MME was more often ranked the second-best forecast, especially at shorter horizons (Figure 496 
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6b), with more than 50% of forecasts at ranks 1 or 2 up to 4 days-ahead. Despite the decrease 497 

in high-ranking forecasts (ranks 1-2) at longer horizons, there was no appreciable increase in 498 

the proportion of worst-ranking forecasts (ranks 6-7), remaining between 2-6% of forecasts at 499 

most horizons. 500 

The individual PM forecasts were dominated by rankings of either the best (1) or worst (7) 501 

performance, whereas the PM MME had fewer of these extreme ranks. At 1 m, the individual 502 

PM models had almost equal proportions of rank 1 and rank 7 forecasts across the full horizon 503 

(Figure 6i,k,m), with over 40% of forecasts ranked at one of these extremes, compared to only 504 

2% of the PM MME forecasts exhibiting one of these extreme ranks. At 8 m, the individual PM 505 

models were more often at an intermediate rank than at 1 m (Figure 6j,l,n), although PM2 and 506 

PM3 had more than 40% of the worst forecast, whereas PM1 had up to 56% of forecasts with 507 

an intermediate rank and fewer very poor forecasts (rank=7).  508 

The ranks of the baseline models varied substantially at different depths and horizons. At 1 m, 509 

the persistence model had more than 50% of forecasts in rank 1 for 1 day-ahead forecasts, 510 

which declined steeply to only 10% at horizons >5 days-ahead (Figure 6e). Concurrently, the 511 

proportion of forecasts for which persistence was the worst forecast also increased across the 512 

forecast horizon, with more than 50% of the forecasts having persistence at ranks 6 or 7 513 

forecast at 13-14 days ahead (Figure 6e). At 8 m, the persistence forecasts dominated the best 514 

performing rank across the whole horizon (Figure 6f), only decreasing marginally from around 515 

80% to 65% of total forecasts by 14 days-ahead (Figure S4). The climatology model 516 

demonstrated strengths at longer horizons at both 1 and 8 m. The proportion of climatology 517 

forecasts at 1 m with a rank 1 increased across the forecast horizon, from <5% at 1 day-ahead 518 

to 26% of forecasts at 14 days-ahead (Figure 6g). However, climatology was frequently the 519 

least skillful forecast at 1 m, especially at 1 day-ahead (Figure S4; 65% of forecasts). At 520 

horizons between 3 and 10 days-ahead, 40% of the climatology forecasts were either the first or 521 

second ranked forecast, which increased to 80% at horizons >10 days-ahead.  522 
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523 
Figure 6. Proportion of total forecasts (n = 104) with each rank, from 1 (best) to 7 (worst), out of the five individual models and two 524 
multi-model ensembles (process model (PM) and full MMEs). Ranks were calculated for each individual forecast (n = 104) and each 525 
horizon (1 to 14 day-ahead) based on the ignorance forecast metric at 1 m (top row) and 8 m (bottom row) depths.  526 
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Inspection of the disaggregated forecast scores further demonstrates that there was no one 527 

consistently best-performing model or MME at all horizons and all depths, as determined by IGN 528 

scores and shadowing times (Figure 7a,b). At 1 m, the two MME forecasts had the highest skill 529 

across the total horizon (Table S2), although they were outperformed at certain horizons by the 530 

individual PM2 model and, beyond 10 days-ahead, climatology (Figure 7a). Conversely, at 8 m, 531 

the persistence model had the best performance for 2 days-ahead, the full MME exhibited the 532 

best performance 1 and 3-5 days-ahead, and then the climatology model had the highest skill 533 

up to 14 days-ahead (Figure 7b).  534 

 535 
Figure 7. Disaggregated forecast performance (ignorance score) at 1 (a) and 8 m (b) for each 536 
and mean shadowing time at each observed depth in the water column in the mixed (c) and 537 
stratified periods (d) for the three individual process models (PM), two baseline models 538 
(climatology and persistence), and the process model (PM) MME and full MME.  539 

As with the aggregated shadowing times, including the baseline models in the full MME 540 

extended the shadowing time compared to the PM MME at almost all depths during both the 541 

stratified and mixed periods (Figure 7c, d). The persistence model had the longest shadowing 542 

time across all forecasts (mean = 7.9 days, Table 1), which was consistent across depths, 543 

except for forecasts at the surface (0 m) during the stratified period (Figure 7d). The persistence 544 

model showed significantly better shadowing ability than the other individual model forecasts, 545 

especially at depths deeper than 4 m, which corresponded to depths below the thermocline, 546 
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calculated at a depth of 2.7-3.1 m during the forecast period. For example, at 5 m, the 547 

shadowing time of the persistence forecast during the stratified period was 2.5 times longer than 548 

the next best individual model (PM1). The shadowing time of the PM MME did not improve on 549 

the best individual model (PM1), although all PM showed low shadowing ability (<6 days at all 550 

depths) relative to the persistence and full MME. At 8 m, both the persistence model and the full 551 

MME were able to almost shadow the full horizon (Figure 7d; mean shadowing times = 13.5 and 552 

13.2 days, respectively). 553 

4 Discussion 554 

Reservoir water temperature forecasts generated using a multi-model ensemble (MME) 555 

consisting of process and baseline models performed better overall than using individual models 556 

or a process model (PM) MME. Our results support previous research that shows that MME 557 

methods often outperform individual models (Atiya, 2020; Johansson et al., 2019; Viboud et al., 558 

2018). For example, in a large diverse forecasting competition of multiple finance and 559 

demography variables, 70% of the most accurate forecasts were MMEs (Atiya, 2020). Our 560 

results showed that no individual model performed best at all depths and horizons, as the best 561 

models at 1 m (the individual process models) were the worst performers at 8 m. In contrast to 562 

this finding, the full MME was rarely the worst-performing forecast, highlighting the hedging 563 

ability of MMEs to prevent very poor forecast performance (Atiya, 2020). MMEs incorporate the 564 

strengths of multiple models given that all models are likely imperfect representations of reality 565 

(Atiya, 2020) as well as acknowledging the between-model uncertainty (Humphries et al., 2018). 566 

Below, we examine some of the implications for using MME forecasts and highlight ways to 567 

further improve MME forecasts for other applications.  568 

4.1 No one individual model is optimal for all forecast horizons or depths   569 

For individual 1-14 day-ahead forecasts at specific horizons and depths, individual models 570 

outperformed the MMEs (Figure 7), accounting for >96% of the best forecasts at 1 m and >91% 571 

at 8 m (Figure S4). Each model captures slightly different dynamics of the mechanistic 572 

processes controlling reservoir water temperature and therefore performed optimally under 573 

different conditions (Lapeyrolerie & Boettiger, 2023). This was also observed in a multi-model 574 

river forecasting study in which individual models alternately performed best in predicting 575 

different stages, phases, or mechanisms of rainfall-runoff (Abrahart & See, 2002) and a penguin 576 
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population forecasting study in which a range of models differentially captured inter-annual and 577 

inter-species variability (Humphries et al., 2018). Altogether, our study contributes to the 578 

evidence that combining forecasts from different models provides a more comprehensive and 579 

accurate representation of the forecasted system than one model alone.  580 

In our analysis, the optimal model varied by depth and horizon, demonstrating the individual 581 

strengths of each model. The persistence forecast was significantly better across all horizons at 582 

8 m than other models (ranked best in 66 - 82% of all forecasts, Figure 6e), but generally 583 

performed poorly at 1 m at horizons beyond 1 to 2 days-ahead (Figure 7). This finding is in 584 

agreement with a previous water temperature forecast study at the same reservoir, which found 585 

high forecast skill from a persistence model deeper in the lake and higher skill from a PM at the 586 

surface (Thomas et al., 2020). Individual PMs have been shown to be successful at forecasting 587 

water temperature dynamics at the lake surface at short horizons (Thomas et al., 2020; Wander 588 

et al., 2023). As weather forecast skill degrades further into the future, there is a subsequent 589 

reduction in water temperature forecasting skill at these shallower depths at longer horizons 590 

(Carey, Woelmer, et al., 2022; Thomas et al., 2020). This pattern is likely because 591 

meteorological driver data uncertainty has been shown to be the primary source of uncertainty 592 

in surface water temperature forecasts, due to the sensitivity of surface water temperatures to 593 

atmospheric forcing (Thomas et al., 2020).  594 

One promising approach for better utilising the strengths of the individual models is to weight 595 

the individual models within the MME based on their historical forecast performance. Weighting 596 

the individual models may further increase MME skill (reviewed by Wang et al., 2022), as these 597 

methods seek to exploit the inherent benefits of each individual model represented in the MME 598 

(Abrahart & See, 2002). MME blending methods that weight accurate models more highly and 599 

adjust weights dynamically may leverage the strengths of the models whilst minimising their 600 

weaknesses (Chandler, 2013; Spence et al., 2018). For example, Abrahart & See (2002) used a 601 

fuzzy logic approach to use the previous forecast performance to weight the models used in the 602 

next forecast MME when forecasting river flow. However, selecting the optimal MME blending 603 

method was dependent on the dynamics of the flow conditions (Abrahart & See, 2002). Wang et 604 

al. (2022) note in their review that simple combination methods, such as the linear pooling with 605 

equal weights (as done here) or simple averaging, are some of the most robust approaches for 606 

model blending and that improvements from optimised weights can be outweighed by the error 607 

added by estimating these parameter values (Dormann et al., 2018). In short, estimating the 608 
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weighting parameters adds another source of uncertainty to the forecasts whereas simple 609 

averaging is robust and easier to implement (Barrow & Kourentzes, 2016). A potential 610 

alternative to applying a weighting method would be to identify a suitable pool of models to use 611 

in the MME and omit the worst performing ones, thus diminishing the worst predictions within 612 

each individual model forecast (Abrahart & See, 2002; Dormann et al., 2018), unless it is very 613 

diverse from the other models (Atiya, 2020). 614 

4.2 The PM MME did not significantly improve on the best individual process model 615 

When aggregating the ignorance score across all forecasts, the PM MME performed slightly 616 

worse than the best individual PM model. However, the PM MME had many fewer individual 617 

forecasts when it was ranked as the least skillful model (Figure 6). This result demonstrates the 618 

value of hedging through MMEs. Even when the aggregate forecast skill of the PM MME is not 619 

significantly improved compared to its individual models, the process MME still provides value 620 

by preventing the generation of poorly-performing forecasts that can occur from individual 621 

models (Doblas-Reyes et al., 2005; Hagedorn et al., 2005). 622 

Overall, the performance of the individual PMs was highly positively correlated (Figure 5), 623 

limiting the amount of unique information provided by individual models to the MME. Others 624 

have found that MME forecasts were most skillful when the covariance among models was low 625 

(Dormann et al., 2018; Renwick et al., 2018), as well as when models exhibit diverging bias in 626 

their mean predictions (Dormann et al., 2018; Petropoulos et al., 2022). This finding supports 627 

the need for more diverse model structures to fully optimise the MME forecasts. In this study, 628 

high covariance among PMs was likely caused by three key drivers. First, the three process 629 

models were all 1-D hydrodynamic models. Examining whether adding more complex process 630 

models (e.g., 3-D models) or simpler process models (e.g., Hanson et al., 2023) could help 631 

reduce inter-model covariance is another opportunity for further research. Second, the three 632 

PMs all used the same forecasted weather from the NOAA Global Ensemble Forecasting 633 

System as driver data. Future work could include models that use alternative weather drivers, 634 

such as different weather forecast products (e.g. Buizza & Richardson, 2017) or historical 635 

weather climatology. Third, all three PMs applied the same data assimilation algorithm (an 636 

ensemble Kalman filter). Future work could explore the influence of the diversity of data 637 

assimilation algorithms on MME forecasts by including alternative data assimilation approaches, 638 

such as a particle filter (Fearnhead & Künsch, 2018). 639 
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4.3 Including baseline models in the MME improved forecast skill 640 

Results from the full MME demonstrate that more model diversity within an MME increases 641 

forecast skill (Figure 4c; Table 1). The most model diversity was added to the MME by including 642 

the two baseline models that represent end members of empirical models. Specifically, the 643 

persistence model represents the most recent data and climatology represents the long-term 644 

historical average for the forecasted system. By including these baseline empirical models, 645 

water temperature forecast performance was substantially increased compared to the PM MME 646 

(Table 1).  647 

Including baseline models in an MME presents a relatively easy approach with low 648 

computational costs to improve forecast performance if data are readily available for 649 

constructing the baseline models. While many forecasting studies use baseline models as null 650 

models to evaluate forecasts, here we show their value as a component of the forecast 651 

themselves. These baseline models, despite their simplicity, provide additional forecast 652 

information that the complex process models do not, and highlight that model complexity does 653 

not necessarily translate to forecast skill (Viboud et al., 2018; Ward et al., 2014). Even simple 654 

models, lacking any domain expertise, can provide useful information to an MME (Wang et al., 655 

2022). For example, forecasting of penguin populations showed that simpler domain-agnostic 656 

time series models produced better forecasts than complex domain-specific population models 657 

(Humphries et al., 2018). 658 

4.4  Recommendations and next steps 659 

Identifying a set of models with low covariance is likely to increase aggregated forecast skill 660 

from an MME relative to its individual models. In advance of producing an MME forecast, a 661 

model selection process would help ensure that the MME will improve skill relative to individual 662 

models, based on among-model covariance and individual model variance and bias (Dormann 663 

et al., 2018; Hagedorn et al., 2005). It is likely that the optimal set of models to include in the 664 

MME will be specific to individual sites, given how individual models perform differently among 665 

lakes (e.g., Bruce et al., 2018). For example, the same forecast model performed better at some 666 

lakes than others in a multi-site comparison (Thomas et al., 2023), with similar differences in 667 

model performance found among sites when forecasting phytoplankton (Page et al., 2018; 668 

Rousso et al., 2020).  669 
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Further ways to improve forecast skill should also focus on constraining uncertainty. The full 670 

MME had the highest variance of any of the forecast models, which undermines some of the 671 

improvement in bias from the model averaging and leaves a forecast that is likely 672 

underconfident (Wang et al., 2022). Methods such as boosting, dimensionality reduction, and 673 

trimming can optimise bias-variance trade-offs (Wang et al., 2022). For example, trimming the 674 

tails (exterior) of the individual forecast distributions has been shown to increase confidence in 675 

the MME by reducing the variance of the individual model forecasts before being combined into 676 

an MME (Howerton et al., 2023; Zhao et al., 2022). Previous results showed that MMEs were 677 

more successful when their component model forecasts were overconfident (low variance) 678 

(Hagedorn et al., 2005; Wang et al., 2022; Weigel et al., 2008). 679 

Finally, our results demonstrate the value of calculating multiple evaluation metrics when 680 

assessing the skill of forecasting methods, as each metric highlights potential areas to improve 681 

overall skill. For example, the forecast standard deviation evaluation showed that uncertainty 682 

was much larger for the MMEs than any individual model (Figure 7c, d). Simultaneously, the 683 

MMEs had the lowest bias (Figure 7a, b). The IGN score was able to combine these two 684 

evaluation components into a single metric of statistical performance, highlighting that 685 

improvements in overall performance would likely come from reducing forecast uncertainty.  686 

Although shadowing time is a metric infrequently used in freshwater forecast evaluation (Lofton 687 

et al., 2023), it is potentially valuable, given its focus on the model’s ability to replicate actual 688 

dynamics, rather than just the statistics of the forecast (Gilmour & Smith, 1997; Petropoulos et 689 

al., 2022) or the shape of the distribution (Smith et al., 2015), providing information on likely lead 690 

times at which a forecast will have utility (Smith et al., 2010). Improving the capacity of the PMs 691 

to have longer shadowing times may help improve their overall representation of lake and 692 

reservoir dynamics. 693 

5 Conclusions 694 

This work has demonstrated the usefulness of multi-model ensembles in improving water 695 

temperature forecasts. A five-model MME had the highest forecast skill among all of the 696 

forecasts generated by individual models or a three-model MME, which is likely due to hedging: 697 

the five-model MME was able to avoid generating very bad forecasts despite being unable to 698 

provide the most skillful forecast at many individual horizons or depths. The addition of two 699 

baseline models, which had low covariance with the PM models, into the MME provided useful 700 
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shadowing ability and complementary forecast information. Our results present an example of 701 

how existing models can be combined to improve water temperature forecasting in lakes and 702 

reservoirs. Future work could focus on including additional forecasting model structures to 703 

further increase the diversity of predictions included in the MME and investigate optimal 704 

methods to blend predictions and constrain model variance. Altogether, we highlight the value of 705 

including simple baseline models (which may in some cases be already calculated as null 706 

models for forecast evaluation) into multi-model ensembles for forecasting to improve 707 

forecasting skill effectively and efficiently with little additional effort. 708 
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