References
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J.
(1990). Basic local alignment search tool. Journal of Molecular
Biology , 215(3), 403-410.
Bartoń, K. (2020). MuMIn: Multi-model inference [Computer software].
R package version 1.43.17.https://CRAN.R-project.org/package=MuMIn
Beal, A., Kiszka, J., Wells, R., & Eirin-Lopez, J. M. (2019). The
Bottlenose dolphin Epigenetic Aging Tool (BEAT): a molecular age
estimation tool for small cetaceans. Frontiers in Marine Science ,
6, 561.https://doi.org/10.3389/fmars.2019.00561
Bearzi, G. 2000. First report of a common dolphin (Delphinus
delphis ) death following penetration of a biopsy dart. Journal of
Cetacean Research and Management , 2(3), 217-222.
Birtles, R. A., Arnold, P. W., & Dunstan, A. (2002). Commercial swim
programs with dwarf minke whales on the northern Great Barrier Reef,
Australia: some characteristics of the encounters with management
implications. Australian Mammalogy , 24(1), 23-38.https://doi.org/10.1071/AM02023
Booth, L. N., & Brunet, A. (2016). The aging epigenome. Molecular
Cell , 62(5), 728-744.https://doi.org/10.1016/j.molcel.2016.05.013
Bors, E. K., Baker, C. S., Wade, P. R., O’Neill, K. B., Shelden, K. E.,
Thompson, M. J., Fei, Z., Jarman, S., & Horvath, S. (2020). An
epigenetic clock to estimate the age of living beluga whales.Evolutionary Applications ,14, 1263-1273.https://doi.org/10.1111/eva.13195
Carzon, P., Clua, É., Dudzinski, K. M., & Delfour, F. (2023).
Deleterious behaviors and risks related to close interactions between
humans and free-ranging dolphins: A review. Biological
Conservation, 279, 109948.https://doi.org/10.1016/j.biocon.2023.109948
Crimmins, E. M., Shim, H., Zhang, Y. S., & Kim, J. K. (2019).
Differences between men and women in mortality and the health dimensions
of the morbidity process. Clinical Chemistry , 65(1), 135-145.https://doi.org/10.1373/clinchem.2018.288332
Foulkes, W. D., Flanders, T. Y., Pollock, P. M., & Haywardt, N. K.
(1997). The CDKN2A (p16) gene and human cancer. Molecular
Medicine , 3(1), 5–20.https://doi.org/10.1007/BF03401664
Fox, J., & Weisberg, S. (2019). An {R} Companion to Applied
Regression, Third Edition. Thousand Oaks CA: Sage. URL:https://socialsciences.mcmaster.ca/jfox/Books/Companion/
García‐Vernet, R., Martín, B., Peinado, M. A., Víkingsson, G., Riutort,
M., & Aguilar, A. (2021). CpG methylation frequency of TET2 ,GRIA2 , and CDKN2A genes in the North Atlantic fin whale
varies with age and between populations. Marine Mammal Science,37(4), 1230-1244.https://doi.org/10.1111/mms.12808
Guo, L., Lin, W., Zeng, C., Luo, D., & Wu, Y. (2020). Investigating the
age composition of Indo-Pacific humpback dolphins in the Pearl River
Estuary based on their pigmentation pattern. Marine Biology ,
167(4), 1-12.https://doi.org/10.1007/s00227-020-3650-x
Hamano, Y., Manabe, S., Morimoto, C., Fujimoto, S., & Tamaki, K.
(2017). Forensic age prediction for saliva samples using
methylation-sensitive high resolution melting: exploratory application
for cigarette butts. Scientific Reports , 7(1), 1-8.https://doi.org/10.1038/s41598-017-10752-w
Hammond, P. S., Mizroch, S. A., & Donovan, G. P. (Eds.). (1990).
Individual recognition of cetaceans: use of photo-identification and
other techniques to estimate population parameters. International
Whaling Commission (Special Issue 12) , Cambridge, 440.
Hartman, K. L., Wittich, A., Cai, J. J., van der Meulen, F. H., &
Azevedo, J. M. (2015). Estimating the age of Risso’s dolphins
(Grampus griseus ) based on skin appearance. Journal of
Mammalogy , 97(2), 490-502.https://doi.org/10.1093/jmammal/gyv193
Henley, J. M., & Wilkinson, K. A. (2013). AMPA receptor trafficking and
the mechanisms underlying synaptic plasticity and cognitive aging.Dialogues Clin Neurosci , 15:11–27.https://doi.org/10.31887/DCNS.2013.15.1/jhenley
Herzing, D. L. (1997). The life history of free-ranging Atlantic spotted
dolphins (Stenela frontalis ): age classes, color phases, and
female reproduction. Marine Mammal Science , 13(4):576-595.https://doi.org/10.1111/j.1748-7692.1997.tb00085.x
Horvath, S. (2013). DNA methylation age of human tissues and cell types.Genome Biology , 14(10), 1-20.https://doi.org/10.1186/gb-2013-14-10-r115
Horvath, S., Gurven, M., Levine, M. E., Trumble, B. C., Kaplan, H.,
Allayee, H., Ritz, B. R., Chen, B., Lu, A. T., Rickabaugh, T. M.,
Jamieson, B. D., Sun, D., Li, S., Chen, W., Quintana-Murci, L., Fagny,
M., Kobor, M. S., Tsao, P. P., Reiner, A. P., Edlefsen, K. L., Absent,
D., & Assimes, T. L. (2016). An epigenetic clock analysis of
race/ethnicity, sex, and coronary heart disease. Genome Biology ,
17(1), 1-23.https://doi.org/10.1186/s13059-016-1030-0
Kakuda, T., Tajima, Y., Arai, K., Kogi, K., Hishii, T., & Yamada, T.,
K. (2002). On the resident “bottlenose dolphins” from Mikura Water.Memoirs of the National Science Museum , Tokyo, 38:255-272.
Kita, Y. F., Murayama, M., Kogi, K., Morisaka, T., Sakai, M., & Shiina,
T. (2017). Kinship analysis of Indo-Pacific bottlenose dolphin
(Tursiops aduncus ) in Mikura Island
[御蔵島に生息するミナミハンドウイルカ(Tursiops
aduncus )の親子鑑定]. DNA Polymorph , 25, 52–57. (in Japanese)
Kita, Y. F., Kawase, M., Kogi, K., & Murayama, M. (2018). Diet analysis
of Indo-Pacific bottlenose dolphin (Tursiops aduncus ) in Mikura
Island [御蔵島ミナミハンドウイルカ(Tursiops
aduncus )における食性解析]. DNA Polymorph , 26, 51-55. (in
Japanese)
Kogi, K., Hishii. T., Imamura, A., Iwatani, T., & Dudzinski, K. M.
(2004). Demographic parameters of Indo-Pacific bottlenose dolphins
(Tursiops aduncus ) around Mikura island, Japan. Marine
Mammal Science , 20(3), 510-526.https://doi.org/10.1111/j.1748-7692.2004.tb01176.x
Kogi, K. (2013). Indo-Pacific bottlenose dolphins around Mikurashima
Island [御蔵島のミナミハンドウイルカ]. Kaiyo Monthly , 45,
215–225. (in Japanese)
Krzyszczyk, E., & Mann, J. (2012). Why become speckled? Ontogeny and
function of speckling in Shark Bay bottlenose dolphins (Tursiopssp.). Marine Mammal Science , 28(2), 295-307.https://doi.org/10.1111/j.1748-7692.2011.00483.x
Lawn, R. B., Anderson, E. L., Suderman, M., Simpkin, A. J., Gaunt, T.
R., Teschendorff, A. E., Widschwendter, M., Hardy, R., Kuh, D., Relton,
C. L., & Howe, L. D. (2018). Psychosocial adversity and socioeconomic
position during childhood and epigenetic age: analysis of two
prospective cohort studies. Human Molecular Genetics, 27(7),
1301-1308.https://doi.org/10.1093/hmg/ddy036
Marini, S., Davis, K. A., Soare, T. W., Zhu, Y., Suderman, M. J.,
Simpkin, A. J., Smith, A. D. A. C., Wolf, E. J., Relton, C. L., & Dunn,
E. C. (2020). Adversity exposure during sensitive periods predicts
accelerated epigenetic aging in
children. Psychoneuroendocrinology , 113, 104484.https://doi.org/10.1016/j.psyneuen.2019.104484
Lemaître, J. F., Ronget, V., Tidière, M., Allainé, D., Berger, V.,
Cohas, A., Colchero, F., Conde, D. A., Garratt, M., Liker, A., Marais,
G. A. B., Scheuerlein, A., Székely, T., & Gaillard, J. M. (2020). Sex
differences in adult lifespan and aging rates of mortality across wild
mammals. Proceedings of the National Academy of
Sciences , 117(15), 8546-8553.https://doi.org/10.1073/pnas.1911999117
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer,
G. (2013). The hallmarks of aging. Cell, 153(6), 1194-1217.https://doi.org/10.1016/j.cell.2013.05.039
Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch, F.
(2022). e1071: Misc Functions of the Department of Statistics,
Probability Theory Group (Formerly: E1071), TU Wien_. R package version
1.7-12,
<https://CRAN.R-project.org/package=e1071>.
Migheli, F., Stoccoro, A., Coppede, F., Wan Omar, W. A., Failli, A.,
Consolini, R., Seccia, M., Spisni, R., Miccoli, P., & Migliore, L.
(2013). Comparison study of MS-HRM and pyrosequencing techniques for
quantification of APC and CDKN2A gene methylation. PloS
One , 8(1), e52501.https://doi.org/10.1371/journal.pone.0052501
Nakamura, S., Yamazaki, J., Matsumoto, N., Inoue‐Murayama, M., Qi, H.,
Yamanaka, M., Nakanishi, M., Yanagawa, Y., Sashika, M., Tsubota, T.,
Ito, H., & Shimozuru, M. (2023). Age estimation based on blood DNA
methylation levels in brown bears. Molecular Ecology Resources ,
15.https://doi.org/10.1111/1755-0998.13788
Nakano, K., Ito, H., Hamano, Y., Tamaki, K., Udono, T, Hirata, S.,
Inoue-Murayama, M. (2019). Age estimation based on DNA methylation for
chimpanzee fecal samples
[チンパンジーの糞試料由来のDNAを用いたメチル化解析による年齢推定].DNA Polymorph, 27, 59-61. (in Japanese)
Nakano, K., Ito, H., Kenji, T., Suzumura, T., Inoue-Murayama, M. (2020).
Age estimation based on DNA methylation for wild Japanese macaques
[ニホンザルにおける野生個体由来DNAのメチル化解析による年齢推定].DNA Polymorph. 28, 22-25. (in Japanese)
Noren, D. P., & Mocklin, J. A. (2012). Review of cetacean biopsy
techniques: factors contributing to successful sample collection and
physiological and behavioral impacts. Marine Mammal Science ,
28(1), 154-199.https://doi.org/10.1111/j.1748-7692.2011.00469.x
Perrin, W. F., & Myrick, Jr., A. C. (Eds.). (1980). Age determination
of toothed whales and sirenians (No. 3). Reports of the
International Whaling Commission (Special Issue 3) , Cambridge. 51–229.
Peters, K. J., Gerber, L., Scheu, L., Cicciarella, R., Zoller, J. A.,
Fei, Z., Horvath, S., Allen, S. J., King, S. J., Connor, R. C., Rollins,
L. A., & Krützen, M. (2023). An epigenetic DNA methylation clock for
age estimates in Indo‐Pacific bottlenose dolphins (Tursiops
aduncus ). Evolutionary Applications. 16, 126-133.https://doi.org/10.1111/eva.13516
Petralia, R. S., Mattson, M. P., & Yao, P. J. (2014). Aging and
longevity in the simplest animals and the quest for
immortality. Ageing Research Reviews , 16, 66-82.https://doi.org/10.1016/j.arr.2014.05.003
Polanowski, A. M., Robbins, J., Chandler, D., & Jarman, S. N. (2014).
Epigenetic estimation of age in humpback whales. Molecular Ecology
Resources , 14(5), 976-987.https://doi.org/10.1111/1755-0998.12247
Prado, N. A., Brown, J. L., Zoller, J. A., Haghani, A., Yao, M.,
Bagryanova, L. R., Campana, M. G., Maldonado, J. E., Raj, K., Schmitt,
D., Robeck, T. R., & Horvath, S. (2021). Epigenetic clock and
methylation studies in elephants. Aging Cell , 20(7), e13414.https://doi.org/10.1111/acel.13414
Qi, H., Kinoshita, K., Mori, T., Matsumoto, K., Matsui, Y., &
Inoue-Murayama, M. (2021). Age estimation using methylation-sensitive
high-resolution melting (MS-HRM) in both healthy felines and those with
chronic kidney disease. Scientific Reports , 11(1), 1-10.https://doi.org/10.1038/s41598-021-99424-4
R Core Team (2020). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. URL:https://www.R-project.org/
Reidy, R. D., Lemay, M. A., Innes, K. G., Clemente‐Carvalho, R. B.,
Janusson, C., Dower, J. F., Cowen, L. E., & Juanes, F. (2022).
Fine‐scale diversity of prey detected in humpback whale feces.Ecology and Evolution , 12(12), e9680.https://doi.org/10.1002/ece3.9680
Ryan, C. P., Hayes, M. G., Lee, N. R., McDade, T. W., Jones, M. J.,
Kobor, M. S., Kuzawa, C. W., & Eisenberg, D. T. (2018). Reproduction
predicts shorter telomeres and epigenetic age acceleration among young
adult women. Scientific Reports , 8(1), 11100.https://doi.org/10.1038/s41598-018-29486-4
Simpkin, A. J., Hemani, G., Suderman, M., Gaunt, T. R., Lyttleton, O.,
Mcardle, W. L., Ring, S. M., Sharp, G. C., Tilling, K., Horvath, S.,
Kunze, S., Peters, A., Waldenberger, M., Ward-Caviness, C., Aohr, E. A.,
Sørensen, T. A., Relton, C. L., & Smith, G. D. (2016). Prenatal and
early life influences on epigenetic age in children: a study of
mother–offspring pairs from two cohort studies. Human Molecular
Genetics , 25(1), 191-201.https://doi.org/10.1093/hmg/ddv456
Smith, S. C., & Whitehead, H. (2000). The diet of Galapagos sperm
whales Physeter macrocephalus as indicated by fecal sample
analysis. Marine Mammal Science , 16(2), 315-325.https://doi.org/10.1111/j.1748-7692.2000.tb00927.x
Suzuki, A., Akuzawa, K., Kogi, K., Ueda, K., & Suzuki, M. (2021).
Captive environment influences the composition and diversity of fecal
microbiota in Indo‐Pacific bottlenose dolphins, Tursiops
aduncus . Marine Mammal Science , 37 (1), 207-219.https://doi.org/10.1111/mms.12736
Takahashi, T., Sakai, M., Kogi, K., Morisaka, T., Segawa, T., & Ohizmi,
H. (2020). Prey species and forage behaviour of Indo-Pacific bottlenose
dolphins (Tursiops aduncus ) around Mikura Island in Japan.Aquatic Mammals , 46(6), 531-541.https://doi.org/10.1578/AM.46.6.2020.531
Tanabe, A., Shimizu, R., Osawa, Y., Suzuki, M., Ito, S., Goto, M.,
Pastene, L. A., Fujise, Y., & Sahara, H. (2020). Age estimation by DNA
methylation in the Antarctic minke whale. Fisheries Science ,
86(1), 35-41.https://doi.org/10.1007/s12562-019-01371-7
Tse, M. Y., Ashbury, J. E., Zwingerman, N., King, W. D., Taylor, S. A.,
& Pang, S. C. (2011). A refined, rapid and reproducible high resolution
melt (HRM)-based method suitable for quantification of global LINE-1
repetitive element methylation. BMC Research Notes , 4, 1-11.https://doi.org/10.1186/1756-0500-4-565
Warnecke, P. M., Stirzaker, C., Melki, J. R., Millar, D. S., Paul, C.
L., & Clark, S. J. (1997). Detection and measurement of PCR bias in
quantitative methylation analysis of bisulphite-treated
DNA. Nucleic Acids Research, 25(21), 4422-4426.https://doi.org/10.1093/nar/25.21.4422
Wang, J. Y. (2018). Bottlenose dolphin, Tursiops aduncus ,
Indo-Pacific bottlenose dolphin. In Encyclopedia of Marine Mammals (pp.
125-130). Academic Press.https://doi.org/10.1016/B978-0-12-804327-1.00073-X
Wang, X., & Li, G. (2018). PAmeasures: Prediction and Accuracy Measures
for Nonlinear Models and for Right-Censored Time-to-Event Data. R
package version 0.1.0,https://CRAN.R-project.org/package=PAmeasures
Weller, D. W., Cockcroft, V. G., Würsig, B., Lynn, S. K., & Fertl, D.
(1997). Behavioral responses of bottlenose dolphins to remote biopsy
sampling and observations of surgical biopsy wound healing.Aquatic Mammals. 23(1): 49-58.
Wojdacz, T. K., & Dobrovic, A. (2007). Methylation-sensitive high
resolution melting (MS-HRM): a new approach for sensitive and
high-throughput assessment of methylation. Nucleic Acids
Research , 35(6), e41.https://doi.org/10.1093/nar/gkm013
Wojdacz, T. K., Dobrovic, A., & Hansen, L. L. (2008).
Methylation-sensitive high-resolution melting. Nature
Protocols , 3(12), 1903-1908.https://doi.org/10.1038/nprot.2008.191
Wright, P. G., Mathews, F., Schofield, H., Morris, C., Burrage, J.,
Smith, A., Dempster, E. L., & Hamilton, P. B. (2018). Application of a
novel molecular method to age free‐living wild Bechstein’s bats.Molecular Ecology Resources, 18(6), 1374-1380.https://doi.org/10.1111/1755-0998.12925
Yagi, G., Sakai, M., & Kogi, K. (2022). Age‐related changes to the
speckle patterns on wild Indo‐Pacific bottlenose dolphins. Marine
Mammal Science , 38(1), 73-86.https://doi.org/10.1111/mms.12845
Yagi, G., Kogi, K., & Sakai, M. Noninvasive age estimation for wild
Indo-Pacific bottlenose dolphins (Tursiops aduncus ) using speckle
appearance based on quantification-theory model I analysis. Marine
Mammal Science , 39(2), 662-670.https://doi.org/10.1111/mms.12999
Zhao, R., Choi, B. Y., Lee, M. H., Bode, A. M., & Dong, Z. (2016).
Implications of genetic and epigenetic alterations of CDKN2A(p16INK4a) in cancer. EBioMedicine , 8(127), 30–39.https://doi.org/10.1016/j.ebiom.2016.04.017
Table 1 Details of target gene, primer, and PCR information, and
accession number.