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Abstract

Simulation and optimization of chemical flowsheets rely on the solution of a large number of

non-linear equations. Finding such solutions can be supported by constructing machine-learning

based surrogates, relating features and outputs by simple, explicit functions. In order to generate

training data for those surrogates computationally efficiently, schemes to adaptively sample the

feature space are mandatory. In this article, we present a novel family of utility functions to

favor an adaptive, Bayesian exploration of the feature space in order to identify regions that

are convergent, fulfill customized inequality constraints and are Pareto-optimal with respect to

conflicting objectives. The benefit is illustrated by small toy-examples as well as by industrially

relevant chemical flowsheets.
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I. INTRODUCTION

Flowsheets of chemical production processes are typically modelled using the MESH-

equations [1]. For stationary processes, a system of coupled nonlinear equations results,

whose size scales with the number of components and the number of theoretical stages used

in the model. For industrial production plants, the system can contain up to an order

of 103 − 106 equations, containing mass and heat balances as well as thermodynamic

information and the flowsheet topology; cf. [2] for examples of industrial applications.

Since these systems are generally underdetermined, they are complemented with user-

defined equality specifications so that a fully determined system is obtained. Additionally,

inequality constraints may be needed to accurately describe the allowed operating window

of the process.

The set of equality specifications describes the process design and they are denoted as

features in the following. The complete solution vector of the system is denoted as the

vector of process variables. Some of its entries (or functions thereof) can be chosen as

objectives for process optimization.

Generally, for a given set of equality specifications, it is, due to nonlinearities, a priori

unknown whether a solution exists at all. If no solution is found for a given set of

feature values, i.e. if the simulation is divergent, this may have two reasons: Either no

solution exists for that set, or the initial point used in the simulation is not within the

convergence radius of an existing, but unknown solution. In black-box simulations, these

two cannot be distinguished, which can lead to false conclusions about the simulation

outcome: Although a solution exists, the simulation may fail, and the simulated point is

erroneously considered as not being covered by the simulation model.

The idea pursued here is to explore the feature space with two goals: Avoiding un-

necessary simulations at points where no solution exists and realizing simulations in the

most informative regions of the feature space.

In order to favor sampling at informative points in feature space, a Bayesian, i.e.

adaptive exploration strategy is used. A succinct summary is given in the following; for

further details, we refer to the reviews [3], [4] and references therein.

Let x denote a vector in feature space and f(x) the corresponding output vector ob-

tained from the rigorous flowsheet simulation. The Bayes strategy employed here then

2



a) b)

Figure 1: a) The Bayes Loop; see the main text for details. b) Use cases for adaptive

exploration covered in this work.

works as follows (cf. Fig. 1):

An initial data set D0 = {(xi, f(xi))i=1,...,N0} consisting of features and their output

values is created and used to adapt the sampling ranges and train a utility function u,

based on surrogate models relating feature and output spaces. The utility function encodes

the information gain and thus is maximized, so that a new data point with feature vector

x∗ = argmaxx u and output vector f(x∗) is obtained. A simple stopping rule consists

in terminating the procedure if the optimal value u(x∗) is less then a lower acceptance

threshold l. Otherwise, (x∗, f(x∗)) is added to the current set of samples, and the next

iteration starts by adapting the sampling ranges.

Two assets are important to emphasize: First, depending on the utility function, differ-

ent use cases can be dealt with, cf. Fig. 1 b). Not only is it possible to resolve the border

of convergent simulations in feature space, but, in the presence of inequality constraints,

one may also explore the feasible region, defined by solutions obeying the inequality con-

straints, within the convergent domain. Going one step further, one may also explore

Pareto-optimal solutions in the convergent and feasible regions.

Second, the sampling scheme is adaptive, as opposed to uniform schemes like, for

example, Latin Hypercube or Sobol sampling [5]. Cf. [6] for an introduction into surrogate

modelling of processes based on uniform and adaptive schemes. This avoids simulations

which are not informative for the use case at hand. This was also exploited by [7] to deal

with parametric model uncertainties.

The novel contribution presented in this work is a significant improvement of utility
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functions compared to previous work [8], [9]. These utility functions cover different use

cases (convergence, feasibility, optimization, cf. Fig. 1) and are combined by adapting

the frequency of their subsequent calls to the desired use case. These calls include an

automated selection of the domain where the training of the surrogate and the maxi-

mization of the utility functions are carried out. Furthermore, a numerically efficient

procedure to deal with multicriteria optimization problems within the Bayesian scheme

is presented. The benefit is demonstrated by simple toy examples and by industrially

relevant flowsheets.

Different previous works exist that deal with the search for the feasible domain of

black-box simulations. This problem itself is well-known [10], [11] with many applica-

tions. In recent years, the use of machine learning techniques to address this problem

by setting up surrogates based on simulation data [12] became increasingly popular and

successful: Kriging models [13], [14] and radial basis functions [15] in combination with

an expected improvement function [16] are used in analogy to Bayes optimization [4] for

the feasibility exploration with surrogates. A summary of different approaches has been

published recently [17].

However, our approach presented in this manuscript differs from those known ap-

proaches by combining binary information about convergence and a continuous measure

of feasibility fulfillment. We substantially improve the utility functions from Ref. [8] and

[9] in order to increase the information carried in the individual samples, thus increasing

computational efficiency. Furthermore, we propose heuristics to adapt the domains to the

actual interesting regions of the feature space, which leads to a high degree of reliability

of the utility function’s predictions for samples. As outlined in Fig. 1, the key idea of the

original method is to iteratively design computer experiments (i.e., flowsheet simulation

runs) and use the data to improve machine learning models for predicting the convergence

behavior of the simulation given the design variables. Such loops are typically employed

in feasibility exploration strategies and are closely related to Bayes optimization methods

[17].

Apart from exploring convergence and feasibility, the Bayes scheme has been employed

to address optimization problems. It can be seen as a stochastic globalization strategy

[18], [19]. Apart from exploring the borders of convergence and feasibility, this is the

third use-case that is dealt with in this manuscript: Bayesian optimization is used in
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order to generate starting values for a local solver working on the flowsheet simulation. In

order to place the Bayesian scheme into a multicriteria context, typically the dominated

hypervolume improvement is considered [20], [21]. Since its calculation can be rather

time consuming [22], here a rather simple, yet efficient method to incorporate conflicting

objective functions is introduced.

Adaptive exploration schemes are also used as adaptive design of experiment strate-

gies; the review [23] contains a comparison with uniform procedures. Applications are

described, for example, for the field of material design in [24] and for chemical synthesis

in [25].

The remainder of this paper is organized as follows. The following section describes the

utility functions, individually for each use case. The third section contains application

examples from chemical engineering. The paper ends with a conclusion and outlook

section. Details on the adaption of the domain and on the building blocks of the utility

functions are deferred to appendices.

II. UTILITY FUNCTIONS FOR CONVERGENCE, FEASIBILITY AND

PARETO SAMPLING

This section describes how the utility terms given in appendix B are combined to a

utility function to carry out adaptive exploration strategies for the use cases convergence

sampling, feasibility sampling and Pareto optimization sampling. All these terms are

designed such that they are maximized, with a smallest possible value equal to 0. This

makes it possible to define a stopping rule, which is reached if maximizing the utility

function does not yield a value larger than some lower acceptance threshold l, which will be

given in each use case below. If no improvement beyond l is found, either hyperparameters

of the utility terms are adjusted, or the sampling is stopped, as described in the following.

A. Convergence sampling

Using the utility terms defined in appendix B, the utility function for convergence

sampling is set up as:

uc = log [A (R +Rb S)] (1)
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with a lower acceptance threshold lc = −0.5. It involves utility terms for attraction A

(with attraction radius rA), repulsion R (with repulsion radius r), repulsion Rb (with

repulsion radius rb) and the entropy S.

The second term, namely ARb S, favorizes samples with a certain nearest-neighbours

distance close to the border, where the entropy term is close to one. The reason for includ-

ing an additional term AR is as follows: If only very few points have been sampled, the

contribution from S can be small far away from those points, meaning that the prediction

of convergence is certain. However, this prediction can be wrong, so an additional glob-

alization term AR is included, with radii rb < r < rA in Eq. (1). A simple toy example

illustrating the behaviour of the Bayesian sampling is given below, in Sec. III A.

The importance of Rb is handled dynamically: Initially, a larger value of rb is chosen,

so that expanding the domain is prioritized over refining the border. If it is not possible

to find samples that way, that is, if no improvement leading to values larger than lc is

possible, the border radius is reduced, and another utility optimization is started with

the already trained surrogates. The sampling stops if rb reaches a lower bound and no

values of uc beyond lc are found.

B. Feasibility sampling

The utility function for feasibility sampling, uf , shall avoid samples too far away from

and too close to existent data, and respect convergence and feasibility. It is chosen as

uf = log(ARPC) + α log(PF ) (2)

and is composed of the utility terms for attraction A, repulsion R, the probability for

convergence PC and the probability of feasibility by constraint fulfilment PF ; the lower

acceptance threshold is set to lf = −0.5.

The argument of the first logarithm on the right hand side of Eq. (2) favors samples

with a constant distance to each other, namely at the maximum value of AR, within the

convergent region. The argument of the second logarithm yields a significant contribution

when at the same time, these samples fulfill the constraints.

The factor α is added for stability. The common approach for expected improvement

under independent constraints corresponds to α = 1. However, if no feasible samples are
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known, the regressor is likely to predict very low probability to be feasible over the entire

domain, and the acceptance threshold for the utility cannot be fulfilled at all. In this case

α < 1 is used to reduce the importance of constraint fullfilment for the present step and

allow the algorithm to slowly progress towards feasible samples.

If there are only very few feasible samples, the regressor may not recognize them

reliably and again never predict a feasible sample. In this case α < 1 based upon the

following heuristic is chosen: Calculate the mean predicted probability to be feasible over

all feasible samples as

Plog =
∑

constraints

log

(
1

nF

nF∑
i=0

PFi

)
(3)

If Plog < −0.2, we use α = − 0.2
Plog

. If utility optimization does not lead to values larger

than lf , a new optimization with a reduced repulsion radius or reduced α, but the same

surrogates is started. The procedure stops when no values beyond lf are found and the

repulsion radius and α reach their lower bounds.

C. Pareto Optimization sampling

The utility function for optimization is chosen as

uo = log(αAPC PF EI) , (4)

with a lower acceptance threshold lo = −2.5. The product APC PF favors samples that are

convergent, feasible and close to known solutions. Closeness means that known solutions

can be used as initialization for the nonlinear solver, thus enhancing convergence. Eq. (4)

also contains the expected improvement EI and a scale factor α, included here in order

to define a problem-independent lower acceptance threshold. It is chosen as the standard

deviation of the equally weighted sum of all No many objectives over the data set used

for the ‘Zoom to non-dominated domain’.

Additionally, the following criteria to accept a sampled point are applied: Sample

suggestions with uo ∈ [−1,−0.5) need a minimal distance of 2% to all existing samples,

and for lo ≤ uo < −1 they need 10% in order to be accepted. Furthermore, samples of

such low utility are discarded if there are any others available.

7



To generate samples within a multicriteria setting consisting of No many objective

functions, the procedure is as follows. With probability 50% just one single objective is

selected for the EI (equal chance for each, resulting in a probability of 1/(2No) for a given

objective function). In the remaining 50%, each objective is selected with 50% chance. If

this selects none, as objective function, the equally weighted sum is chosen in the EI.

Thereafter, the domain adaption for Pareto-optimality sampling, cf. Sec. A 3, is per-

formed for the objective function and all constraints. Then the surrogates are trained,

the current best sample with respect to EI is identified and the utility is optimized.

In all application examples studied so far, this heuristic procedure yields good starting

values, especially when it comes to problems that require globalization strategies. As

already stated in the introduction, this is the very goal of the approach presented here:

Finding good starting values so that a local optimization solver working on the flow-

sheet simulation is likely to converge to the globally optimal solutions, using adaptive

scalarization schemes [26]. Since our aim is not to approximate the Pareto boundary ac-

curately within the Bayesian framework, we restrain from computationally costly Pareto

hypervolume improvements [20], [22].

D. Combined sampling strategies

The strategies described above can be combined by successive calls in the Bayes loop.

For example, for exploration of the design space, feasibility and convergence sampling

runs are done iteratively. To explore and optimize simultaneously, all three utilities are

maximized iteratively one after the other until the termination criterion is met. The num-

bers of repeated calls of the sampling strategies are hyper-parameters that are determined

by experience.

III. APPLICATION TO EXAMPLES FROM CHEMICAL ENGINEERING

A. Toy example

As a first step the reasoning behind the utility function Eq. (1) will be motivated on

the basis of a simple analytical example from a previous work [9]. In this example there
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are two features x = (x1, x2) ∈ [−2, 2] × [−2, 2]. The convergent, divergent and feasible

regions are defined as

• divergent for ||x||2 > 1,

• convergent for ||x||2 ≤ 1 and

• feasible for ||x||2 ≤ 1 and x1x2 > 0.1.

and are depicted in Fig. 2.

Figure 2: Domains of the toy example from [9].

In Fig. 3 the improved sampling strategies as sketched above are compared to a result

from a previous work [9]. Therefore, first the same utility functions as in [9] are adopted,

but the sampling is done with the improved initialization and range selection as described

in Sec. A. The applied range heuristic avoids sampling very far from the convergent

domain. Still, an accumulation of divergent samples at the boundary of the feasible

domain appears.

In a second step, cf. the right panel in Fig. 3, not only the range selection has been

done, but at the same time the improved utility functions for convergence and feasibility

sampling, cf. Sec. II, have been used. This leads to a much more homogeneous resolution

of both the convergence border and the feasible domain.

Using the simple toy model, the structure of the utility function for convergence sam-

pling Eq. (1) can be made plausible as follows. Maximizing the entropy S alone would
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Figure 3: Left: Exploration strategy from [9] (15 random initial points + 45 adaptive

samples with weights (ws, wr, wc) = (1, 5, 1)). Middle: Exploration strategy with utility

from [9] and initialization and range heuristics described in Sec. A. Right: Exploration

with utility from this work, Eq. (1), and with range heuristics. Axis labels are as in

Fig. 2.

suggest points on the assumed border between convergent and divergent regions, inde-

pendently of already sampled points. Therefore, a repulsion term Rb should be included

multiplicatively. However, as illustrated in Fig. 4, a utility of the form RS still does not

lead to the desired behaviour: If only very few divergent points have been met at a certain

stage of the exploration, and these divergent points are not distributed evenly along the

convergence border, the sampling would take quite a long time to resolve the complete

boundary, if this happens at all. Therefore, an additional repulsion term R is added, with

a radius r > rb, thus favoring samples further away from the known ones. Fundamentally,

the roles of R and S are not symmetric: It does make sense to sample for S = 0, i.e. for a

certain prediction of the convergence behaviour, if the distance between samples is large.

Finally, the overall distance to the known samples is kept limited by a global attraction

term A entering as a prefactor.

The combination of utility terms in Eqs. (1) and (2) serves to direct the samples towards

the most relevant positions. Fig. 5 shows this for two specific steps. In both cases the

utility plot shows rather high values outside of the domain selected for the corresponding

step, marked by a white frame. However, due to the range heuristics, it is not necessary to

have a reasonable utility (and, in consequence, accurate surrogate models) in the whole,

but only in the selected domain - a significantly simpler task. Despite of the rather small

number of samples available at the used step the utility functions do highlight relevant
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Figure 4: Comparison of a utility function containing only Rb S (left panel) versus the

suggestion in (1) (right panel). In both cases, the same six datapoints (as shown) have

been used to train both utilities. The maxima of the utility function within the white

boxes are marked by white arrows; the values of the utility functions are given by the

color scale.

positions for new samples efficiently.

B. Methanol water flash

In this example, a flash fed with a liquid mixture of 0.5 kmol/h water and 0.5 kmol/h

methanol at 25◦C is considered. As equality specifications, values for the flash pressure

p ∈ [0.5, 5] bar and the heat duty Q̇ ∈ [−2.0,+1.0] kW are set. Solving the MESH

equations then determines the flash temperature T . Sampling is initialized with the star-

like heuristic, see Sec. A 1, starting from the convergent point (p, Q̇) = (0.5 bar, 0.5 kW).

Thereafter, the sampling strategy based on the convergence utility of Eq. (1) is applied

to explore the input space (p, Q̇) with 200 adaptive points. The resulting data points in

the design space are shown in Fig. 6. The convergence utility is able to explore a large

part of the convergent subdomain of the design space.
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Figure 5: Contour plot of the utility function for border (left) and feasible (right)

sampling at two selected steps in the example. The maxima of the utility functions

within the selected domains (white frames) are marked by arrows.

Figure 6: Exploration of the design variable space (p, Q̇) of the methanol water flash

with the convergence utility of Eq. (1).

C. Multi-objective Bayes optimization

We now want to turn to higher dimensional problems, which also involve optimization

with respect to multiple objectives. In the following we illustrate how a prior optimization-

driven exploration of the input space can significantly improve the approximation of the

Pareto boundary.
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1. The OSY test problem

First, we consider the following optimization problem with a six-dimensional input

space, two objective functions, and six restrictions from [27]

OSY : min
x

 f1(x) ≡ −[25(x1 − 2)2 + (x2 − 2)2 + (x3 − 1)2 + (x4 − 4)2 + (x5 − 1)2]

f2(x) ≡ x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6


s.t. c1(x) ≡ x1 + x2 − 2 ≥ 0, c2(x) ≡ 6− x1 − x2 ≥ 0,

c3(x) ≡ 2− x2 + x1 ≥ 0, c4(x) ≡ 2− x1 + 3x2 ≥ 0,

c5(x) ≡ 4− (x3 − 3)2 − x4 ≥ 0, c6(x) ≡ (x5 − 3)2 + x6 − 4 ≥ 0,

0 ≤ x1, x2, x6 ≤ 10, 1 ≤ x3, x5 ≤ 5, 0 ≤ x4 ≤ 6,

(5)

whose solution is the Pareto boundary shown in Fig. 7 (see [27] for details). Due to

the non-convexity of the feasible set and the concavity of the first objective function, we

have a non-convex bi-criteria optimization problem at hand. This means that, on the one

hand, we have to choose an appropriate scalarization strategy, and on the other hand, we

have to compute a globally optimal solution in each scalarization. The former is quite

unproblematic: here we used a hybrid approximation (approximating the convex regions

of the Pareto boundary using weighted-sum and the non-convex parts using Pascoletti-

Serafini scalarization; see [26] for details). Achieving the latter, however, in general is

difficult—either computationally expensive when using deterministic methods of global

optimization or, in the case of applying heuristics, finding the global optimum is not

guaranteed. We compared the following three globalization approaches:

(NG) no globalization at the beginning, only initialization of subsequent scalarizations

with the scalarization-specific best already calculated solution (warm-starting)

(MG) multi-start of the extreme compromise calculations f ∗
1 and f ∗

2 using 10 random

starting points and subsequent initialization as in (NG)

(EG) optimization-driven exploration of the input space using 35 initial evaluations and

11 adaptive samples (incl. three weighted-sum starts) and subsequent initialization

as in (NG)

The starting point in all three cases was the infeasible solution x = (1.3, 2.0, 2.0, 2.0, 2.0).
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Fig. 7 shows the Pareto boundary approximations achieved by means of the three global-

ization strategies.

Figure 7: OSY problem: Pareto boundary (blue line) and its approximations – without

globalization (red circles), by extreme compromises multi-start globalization (orange dia-

monds), and exploration-based globalization (green squares)

Strategy (NG) provides Pareto-optimal solutions only in the lower right part. Other-

wise, the resulting boundary is too small and only a poor approximation of the actual

boundary. The multi-start strategy (MG) provides globally optimal extreme compro-

mises, but the following (not multi-started) scalarizations lead in general only to sub-

optimal solutions. For the multi-start, of course, more computation time is required. The

exploration-based strategy (EG) provides Pareto-optimal points for all scalarizations and

this with similar running times as with strategy (NG).

2. Separation of Chloroform and Acetone with entrainer Benzene

In process engineering tasks the situation is even more complicated. Not only that

in general there are also non-convex, multi-objective optimization problems. The often

equation-based simulation of the flow sheet is mostly given as a black box. As a conse-

quence, in each optimization iteration the system of equations has to be solved exactly.

In the case of ambiguous solvability, this leads to further local optima. But, in the case

of – sometimes only numerical – divergences it results in ‘getting stuck’ Pareto point

calculations and, thus, in poor Pareto boundary approximations.

We would like to demonstrate this briefly for the separation of Chloroform and Acetone
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using Benzene as entrainer and consider the flow sheet shown in Fig. 8. As conflicting

measures of CAPEX and OPEX, we consider the sum of equilibrium stages N and the

total heat duty Q, both of which are minimized. This results in a NQ-curve for the total

flow sheet. Therefore, as features, the reflux ratios, the splits, the number of stages, and

the feed heights of all three columns are chosen. In addition to the natural constraints that

the feeds must be within the columns, we require that the withdrawn product streams

as shown in Fig. 8 should have a minimum purity of 95%. Thus, we have a mixed-

integer, multi-criteria optimization problem with two objective functions, twelve decision

variables, and six restrictions at hand.

If the starting point is too far away from one or both extreme compromises, divergences

occur when solving the system of equations and, thus, the extreme compromise calculation

terminates too early. By means of a prior exploration of the input space, on the other hand,

a family of initial solutions covering a large convergence range can be generated, from

which scalarization-specific best starting points can be selected. Using 101 (optimization-

driven) adaptive samples (and 71 initial evaluations), we were able to compute the Pareto

boundary approximation shown in Fig. 8, while without exploration one reference run

fails.

P
=

1
b
a
r

P
=

1
b
a
r

P
=

1
b
a
r

Feed

Acetone

Benzene

Chloroform

Figure 8: Entrainer distillation of Chloroform and Acetone via Benzene. Left: Flow

sheet topology; right: Pareto points (orange triangles) obtained from exploration results

(blue circles) with scalarization-specific start point selection (dashed black lines) instead

of using original starting point (grey square).

Thus, a prior, optimization-driven exploration of the input space can not only provide

good approximations of Pareto boundaries in acceptable time, but also enable Pareto
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point computations at all.

3. Pressure swing distillation

As a further example the pressure swing distillation of Chloroform and Acetone is

considered. The feed consists of a binary mixture of 0.86 mol/mol Chloroform and 0.14

mol/mol Acetone at a rate of 1250 kg/h. These two components form an azeotrope and

thus cannot be separated directly by a single distillation column. In this case the mass

fractions of both products (Chloroform and Acetone) were maximized subject to a limit

of the total heat duty of 1.5 MW. As features once again the reflux ratios R1,2 and splits

S1,2 of the two columns were used (R1,2 ∈ [1, 80], S1,2 ∈ [0.01, 0.99]), but now the total

number of theoretical stages and the feed stages are kept fixed.

Using adaptive exploration with focus on Pareto-optimal samples as described in Sec. II

a large number of simulations in the proper scope for a pareto boundary was obtained.

These samples provide very reasonable initial values for a stringent multi-criteria opti-

mization algorithm. The comparatively higher number of samples around the extreme

compromises visible in Fig. 9 is intended by the construction of the Pareto sampling util-

ity, because the extreme compromises span the range of the objectives and are more prone

to getting stuck in local minima.

P
=

1
b
a
r

P
=

1
0
b
a
r

Feed

Chloroform Acetone

Figure 9: Left: Topology of flow sheet for pressure swing distillation; right: Result from

adaptive Pareto sampling (blue circles). The rigorous Pareto boundary obtained by

sandwiching (see [26]) is shown by orange triangles for reference.
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IV. CONCLUSION

Although conceptually simple, the success of the Bayesian strategy to adaptively ex-

plore the feature space of chemical flow sheet simulations essentially depends on the utility

function. Choosing the utility function adequately is crucial to obtain the most informa-

tive points in few iterations. We have given examples for utility functions that cover the

use cases of exploring convergent, feasible and Pareto-optimal regions. As a surrogate

underlying the utility function, Gaussian processes have been used, because they offer a

simple structure of the surrogate with only few hyper parameters.

Evidence was given that the Bayesian scheme with the utility functions presented

above can support optimization based on rigorous heavy-load simulations by generating

reliable starting points. Although the application examples have a chemical engineering

background, the procedure itself is independent from this application domain and may

prove useful in other domains as well.

Appendix A: Adapting the domain

1. Initialization

To create the initial sample set D0, cf. Fig. 1, we assume that at least one convergent

simulation exists. From this convergent simulation, a star-like design with homotopy is

performed as sketched in Fig. 10 as follows. For each dimension of the design space the

two directions +ei and −ei are considered, all separately and independently. In each

direction at first one step of fixed length (25% of the total range in that direction) is

performed and simulated. If that step converges another step in the same direction is

taken, if it diverges the step size is reduced (to 25%) and then simulated again. If a step

leads out of the allowed design space, the step is limited to the boundary instead. This

procedure is repeated until either a maximum number of simulations is performed, or

both a convergent and a divergent point have been found.

Here it is assumed that from this initialization procedure, at least one additional con-

vergent simulation is recovered, so that at least two convergent simulations are available

for the zooming and adaptive strategies explained in the following sections.
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Figure 10: Star-like initialization pattern in feature space. The convergent domain is

depicted as a white ellipse, the grey area denotes the divergent region. Arrows denote

the points chosen for simulation. If the simulation is divergent, backward steps are

performed in order to obtain convergent simulations. Straight black lines illustrate the

star-like pattern.

2. Domain adaption for convergence sampling

Figure 11: Zoom for convergence sampling in feature space. Blue circles (red open

circles) denote convergent (divergent) points. The minimal enclosing box is shown in

green; by adding a small margin, the dashed green box results.

The ranges for the sampling of the feature space defined initially by the user may

be quite large compared to the actual convergent region. This may lead to strongly

imbalanced data sets, and different length scales, inducing unnecessarily large errors of

the classifier.

For this reason, the actual domain (that is the region within which the optimization

of the utility function is done) should not be much larger than the region covered by

convergent data points. It is therefore chosen to be only moderately larger than the box-
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shaped domain created by the convergent samples. Therefore, the minimal box containing

all convergent samples is determined and increased by a small margin, cf. Fig. 11.

3. Domain adaption for Pareto-optimality sampling

Figure 12: Adaption of domain for sampling Pareto sets. Green triangles:

Pareto-optimal points; blue circles and red open circles denote dominated points, both

in feature (left) and objective space (right). Only the Pareto points and the dominated

points depicted as blue circles are used to select the domain for surrogate training in

feature space, shown as green full rectangle on the left. See the main text for further

details.

For sampling strategies which have one or more optimization objectives, it is desirable

to train the surrogates only on those samples that are most favourable with respect

to the optimization targets. In this way, the surrogates achieve better accuracy in the

neighbourhood of the currently best-performing samples. Fig. 12 shows a sketch of this

situation. All data points which are reasonably good with respect to both objectives are

located in a rather small part of the feature space.

To include points which only weakly violate possible inequality constraints but perform

well in the objectives, constraint violations are included as additional objectives.

From this enlarged set of objectives, the strictly non-dominated samples, i.e. the Pareto

points, are obtained, shown as green triangles in Fig. 12. The ranges for each objective

obtained from these Pareto points is used as normalization factor for each objective,

respectively.

The domain for the training of the surrogate shall contain the features of the Pareto
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points and of those points that are not too far away from them. The distance to the

Pareto set is measured along the domination cone center (1, 1, 1, . . .), cf. Fig. 12, where

the domination cone is shown by dashed lines, and distance along (1, 1) of one exemplary

point as full line. All points are sorted ascending with respect to this distance; the Pareto

points all have value 0.

This allows to make a partition of all samples into three subsets P , D1, D2. The

subset P contains the Pareto points, D1 and D2 contain the first and second halves of the

dominated points. Now the standard deviation σD1 of the distance to the Pareto set is

evaluated on D1, and only those points from D1 and D2 are taken to define the sampling

domain with a distance smaller than α ·σD1 with a tuning factor α. In practice, the choice

α = 5 leads to good exploration results. In Fig. 12, these points are shown as blue circles.

Blue squares are points contained in D1, but with distance > ασD1 . Points in D2 are not

considered to evaluate the threshold which effectively removes outliers.

The points in feature space belonging to the samples obtained in this way are used to

obtain a minimal enclosing box (green box in Fig. 12), which, after adding a small margin

(dashed box in Fig. 12), defines the domain for new samples.

4. Split domain for many samples

Figure 13: Splitting the domain in feature space along the dimension with the largest

range of convergent samples (blue circles): The preferred (rejected) split is shown as full

(dashed) line.

The computational effort of training surrogates grows with the number of training

points. In order to nevertheless allow sampling of a large number of points, an internal
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domain split mechanism is used. If the number of samples reaches a critical value Nc, the

domain will automatically be split into smaller parts. Then, any sampling strategy can

be run independently on the smaller parts. Finally, sample suggestions from all parts are

merged. In this way, for very large data sets the training times for the surrogates and

the time needed to solve the optimization problems grows roughly only linearly with the

number of points.

The split happens at the median value along one dimension. Three criteria are taken

into account in order to select this dimension, namely:

• the difference D between the median of the projected points on one feature and the

corresponding center of the design space,

• the fraction F of projected samples within a range of ±5% around the median,

• the ratio R of the zoomed and the original domain for convergence sampling

(cf. Fig. 11) is closest to one.

A small value for D ensures that the two domains resulting from the split have similar

volume. The fraction F is a measure for those samples that have to be used to train

surrogates in both domains and should be small. A large value of R means that convergent

samples cover a large range in that dimension, which should favor a split, cf. Fig. 13. To

take all three criteria into account, we choose the dimension with the smallest value of

D + F −R.

Appendix B: Utility terms

The three adaptive sampling strategies (convergence sampling, feasibility sampling,

and optimization sampling) are based on the optimization of the corresponding utility

terms, cf. Sec. I and Fig. 1.

We first describe these single utility terms and then comment on how these terms are

combined to the entire utility function. The utility terms are supposed to be maximized.
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(a) (b) (c)

(d) (e) (f)

Figure 14: (a) Repulsion, (b) attraction, (c) convergence, (d) entropy, (e) feasibility and

(f) expected improvement utility terms with points in feature space. Regions of high

utility are shown in white, dark regions have low utility. The types of data points are

divergent (red open circles), convergent infeasible (blue circles) and convergent feasible

(green triangles). Axis labels have been omitted.

1. Repulsion

The repulsion term can be interpreted as repelling the suggested point from the already

existing ones. This is illustrated in Fig. 14: The term vanishes close to the existing

data points (in the input space) and increases the farther away one is from them. It is

implemented as a product over all n samples at design variable values xi (the same ones

used to train the convergence classification model).

R(x) =
n∏

i=1

(
1− e−γ(x−xi

r s )
2)

(B1)
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Different hyperparameters are involved in R: The prefactor in the exponential γ =

− log(0.05), which means R(x) = 0.95 for a single sample if the distance to that sam-

ple equals r s. The default value for the repulsion radius is chosen as r = 0.25. The

scale s is the length of the selected design space region (cf. Sec. A: ‘Domain adaption for

convergence sampling’ does affect the scale but ‘Domain adaption for Pareto-optimality

sampling’ and ‘Split domain for many samples’ do not).

2. Attraction

The attraction term in the utility serves to avoid long jumps. It was introduced in

order to evaluate inputs too far away from already known points. This is particularly

useful for flowsheet simulations in order to initialize the nonlinear equation solver with

solutions not too far away from the current point. The attraction term is defined similar

to the repulsion term in the following way:

A = 1−
nC∏
i=0

(
1− e

−γ
(

x−xi
rA s

)6
)

(B2)

Here, only the nC convergent samples are used as centers xi and the radius rA must

assume a value significantly larger than the repulsion radius r (at least twice). Otherwise,

the product AR in the utility function is too small for the threshold.

The attraction term is visualized in Fig. 14b for a two-dimensional example: For

distances on the scale of the attraction radius rA or smaller, the term is large (white) but

decreases rapidly for distances larger than rA (light grey), approaching a constant value

of 0 (dark grey) for very large distances.

3. Convergence

The calibrated classifier CASIMAC [28] is used to predict the probability of convergence

PC (cf. Fig. 14c). From this, entropy is calculated as:

S = − 1

log 2
(PC logPC + (1− PC) log(1− PC)) (B3)

It takes its maximal value S = 1 in places where the predicted convergence probability

is PC = 1/2, i.e. at the expected border between convergent and divergent regions. It
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therefore draws the suggested points towards this border. Illustrated in two dimensions

in Fig. 14d, one can see that the entropy is large (white area) close to the estimated

border between the divergent (red) and convergent (non-red) points. In regions which are

classified with high confidence (corresponding to PC = 1 or PC = 0), the entropy term

approaches zero (dark grey).

4. Feasibility

The probability of feasibility under a given constraint is calculated from the distribution

predicted by the regression model. In the case of Gaussian Process Regression, this

distribution is a normal distribution with mean µ, corresponding to the predition of the

surrogate, and its standard deviation σ. The probability P≥c to respect a lower bound c

as inequality constraint then takes the form [29]:

P≥c =
1√
2πσ

∫ ∞

c

e−
(x−µ)2

2σ2 dx =
1

2

(
1− erf

(
c√
2σ

− µ

))
(B4)

If upper and lower bound are present for one output, the probability is calculated as

P[c0,c1] =
1√
2πσ

∫ c1

c0

e−
(x−µ)2

2σ2 dx = P≥c0 + P≤c1 − 1 (B5)

For multiple constraints the product of these probabilities is used; the corresponding

utility term encoding the probability of feasibility by constraint fulfilment is denoted by

PF . The interpretation of this term is straight forward: If it is present in the utility

function it draws points towards the expected region of constraint fulfilment. In Fig. 14e,

the convergent points fulfilling the constraints are shown in green, and the probability

of convergence is highest (white) there. Maximizing the utility will therefore draw the

samples towards the white region populated by the green points.

5. Optimization

For optimization within the adaptive sampling framework, a term suggesting interest-

ing points from the point of view of target optimization is needed. A standard choice is

the expected improvement which is calculated by the formula [29]

EI(x) = σ(x)(Zϕ(Z) + φ(Z)) (B6)

Z = (µ(x)− l(xbest)) /σ(x) (B7)
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where ϕ(Z) and φ(Z) are the standard normal cumulative distribution function and prob-

ability density function, respectively. The best known value of the target function is de-

noted by l(xbest) and, µ(x) and σ(x) are the surrogate prediction for the target and the

error at x.

Expected improvement can be interpreted as to be high in regions where either the

target takes on large values (it is assumed here that the target is to be maximized) or the

model error is large, so that a good target value cannot be excluded.

In Fig. 14f, expected improvement is highest in the white region, which is in the region

of feasible points with good target values, but at the same time not too close to the

existing data points (where the expected model error is low and therefore sampling there

will not improve the model).
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