Reference list
Arias, M., Meichanetzoglou, A., Elias, M., Rosser, N., De-Silva, D. L.,
Nay, B., & Llaurens, V. (2016). Variation in cyanogenic compounds
concentration within a Heliconius butterfly community: does
mimicry explain everything?. BMC evolutionary
biology , 16 (1), 1-10.
Beltran, M., Jiggins C. D., Brower, A. V., Bermingham, E., Mallet, J.
(2007). Do pollen feeding, pupal-mating and larval gregariousness have a
single origin in Heliconius butterflies? Inferences from
multilocus DNA sequence data. Biological journal of the Linnean
Society , 92 (2), 221-39.
Benson, W. W., Brown Jr, K. S., & Gilbert, L. E. (1975). Coevolution of
plants and herbivores: passion flower butterflies. Evolution ,
29(4), 659-680.
Birnbaum, S. S. L., & Abbot, P. (2018). Insect adaptations toward plant
toxins in milkweed–herbivores systems–a review. Entomologia
Experimentalis et Applicata , 166 (5), 357-366.
Braby, M. F. & Nishida, K. (2010). The immature stages, larval food
plants and biology of Neotropical mistletoe butterflies (Lepidoptera:
Pieridae). II. The Catasticta group (Pierini: Aporiina). J.
Nat. Hist ., 44(29-30), 1831-1928.
Brown Jr, K. S. (1981). The biology of Heliconius and related
genera. Annual review of entomology , 26(1), 427-57.
Campbell, S. A. & Stastny, M. (2015). Benefits of gregarious feeding by
aposematic caterpillars depend on group age structure. Oecologia ,
177(3), 715-721.
Cicconardi, F., Milanetti, E., de Castro, É. C. P., et al. (2022).
Evolutionary dynamics of genome size and content during the adaptive
radiation of Heliconiini butterflies. BioRxiv , 2022-08.
Clark, B. R. & Faeth, S. H. (1997). The consequences of larval
aggregation in the butterfly Chlosyne lacinia . Ecol.
Entomol ., 22(4), 408-415.
Clark, B. R. & Faeth, S. H. (1998). The evolution of egg clustering in
butterflies: a test of the egg desiccation hypothesis. Evol.
Ecol ., 12(5), 543-552.
Coley, P. D., Bateman, M. L., & Kursar, T. A. (2006). The effects of
plant quality on caterpillar growth and defense against natural
enemies. Oikos , 115 (2), 219-228.
Couto, A., Young, F. J., Atzeni, D., Marty, S., Melo-Florez, L.,
Hebberecht, L., … & Montgomery, S. H. (2022). Rapid expansion and
visual specialization of learning and memory centers in Heliconiini
butterflies. bioRxiv , 2022-09.
de Castro, É. C. P., Musgrove, J., Bak, S., McMillan, W. O., & Jiggins,
C. D. (2021). Phenotypic plasticity in chemical defence of butterflies
allows usage of diverse host plants. Biology
Letters , 17 (3), 20200863.
de Castro, É. C. P., Zagrobelny, M., Cardoso, M. Z., & Bak, S. (2018).
The arms race between heliconiine butterflies and Passifloraplants–new insights on an ancient subject. Biological
Reviews , 93 (1), 555-573.
de Castro, É. C. P., Zagrobelny, M., Zurano, J. P., Zikan Cardoso, M.,
Feyereisen, R., & Bak, S. (2019). Sequestration and biosynthesis of
cyanogenic glucosides in passion vine butterflies and consequences for
the diversification of their host plants. Ecology and
evolution , 9 (9), 5079-5093.
de Luna Souto, A. G., Cordeiro, M. H. M., Silva Rosado, L. D., dos
Santos, C. E. M., & Bruckner, C. H. (2017). Non-destructive estimation
of leaf area in passion fruit (’Passiflora edulis ’
L.). Australian Journal of Crop Science , 11 (12),
1534-1538.
Denno, R., & Benrey, B. (1997). Aggregation facilitates larval growth
in the neotropical nymphalid butterfly Chlosyne
janais . Ecological Entomology , 22 (2), 133-141.
Despland, E. (2019). Caterpillars cooperate to overcome plant glandular
trichome defenses. Frontiers in Ecology and Evolution , 7 ,
232.
Despland, E. (2021). Selection forces driving herding of herbivorous
insect larvae. Frontiers in Ecology and Evolution , 9, 854.
Despland, E. & Le Huu, A. (2007). Pros and cons of group living in the
forest tent caterpillar: separating the roles of silk and of grouping.Entomol. Exp. Appl ., 122(2), 181-189.
Digrado, A., Gonzalez‐Escobar, E., Owston, N., Page, R., Mohammed, S.
B., Umar, M. L., Boukar, O., Ainsworth, E. A & Carmo‐Silva, E. (2022).
Cowpea leaf width correlates with above ground biomass across diverse
environments. Legume Science , 4(4), e144.
Endler, J. A. (1993). The color of light in forests and its
implications. Ecological monographs , 63 (1), 1-27.
Engler-Chaouat, H. S., & Gilbert, L. E. (2007). De novo synthesis vs.
sequestration: negatively correlated metabolic traits and the evolution
of host plant specialization in cyanogenic butterflies. Journal of
chemical ecology , 33 (1), 25-42.
Fordyce, J. A. (2003). Aggregative feeding of pipevine swallowtail
larvae enhances hostplant suitability. Oecologia , 135(2),
250-257.
Fordyce, J. A., & Agrawal, A. A. (2001). The role of plant trichomes
and caterpillar group size on growth and defence of the pipevine
swallowtail Battus philenor . Journal of Animal
Ecology , 70 (6), 997-1005.
Fürstenberg-Hägg, J., Zagrobelny, M., & Bak, S. (2013). Plant defense
against insect herbivores. International journal of molecular
sciences , 14 (5), 10242-10297.
Gilbert, L. E. (1971). Butterfly-plant coevolution: has Passiflora
adenopoda won the selectional race with heliconiine
butterflies? Science , 172 (3983), 585-586.
Greeney, H. F., Dyer, L. A. & Smilanich, A. M. (2012). Feeding by
lepidopteran larvae is dangerous: A review of caterpillars’ chemical,
physiological, morphological, and behavioral defenses against natural
enemies. Invertebr. Surviv ., 9(1), 7-34.
Greeney, H. F., & Jones, M. T. (2003). Shelter building in the
Hesperiidae: a classification scheme for larval shelters. Journal
of Research on the Lepidoptera , 37 (1998), 27-36.
Hadfield, J. D. (2010). MCMC Methods for Multi-Response Generalized
Linear Mixed Models: The MCMCglmm R Package. Journal of
Statistical Software, 33 (2), 1-22.
Hebberecht, L., Melo‐Flórez, L., Young, F. J., McMillan, W. O., &
Montgomery, S. H. (2022). The evolution of adult pollen feeding did not
alter postembryonic growth in Heliconius butterflies. Ecology and
Evolution , 12 (6), e8999.
Hunter, A. F. (2000). Gregariousness and repellent defences in the
survival of phytophagous insects. Oikos , 91(2), 213-224.
Karban, R. (2011). The ecology and evolution of induced resistance
against herbivores. Functional Ecology , 25 (2), 339-347.
Kawasaki, N., Miyashita, T. & Kato, Y. (2009). Leaf toughness changes
the effectiveness of larval aggregation in the butterfly Byasa
alcinous bradanus (Lepidoptera: Papilionidae). Entomol. Sci. ,
12(2), 135-140.
Korb, J., & Heinze, J. (2016). Major hurdles for the evolution of
sociality. Annual review of entomology , 61 .
Kozak, K. M. (2016). Macroevolution and phylogenomics in the adaptive
radiation of Heliconiini butterflies (Doctoral dissertation, University
of Cambridge).
Kozak, K. M., Wahlberg, N., Neild, A. F., Dasmahapatra, K. K., Mallet,
J., Jiggins, C. D. (2015). Multilocus species trees show the recent
adaptive radiation of the mimetic Heliconius butterflies.Systematic biology , 64(3), 505-24.
Mattila, A. L., Jiggins, C. D., Opedal, Ø. H., Montejo-Kovacevich, G.,
McMillan, W. O., Bacquet, C., & Saastamoinen, M. (2021). Evolutionary
and ecological processes influencing chemical defense variation in an
aposematic and mimetic Heliconiusbutterfly. PeerJ , 9 , e11523.
McClure, M. & Despland, E. (2011). Defensive responses by a social
caterpillar are tailored to different predators and change with larval
instar and group size. Naturwissenschaften , 98(5), 425-434.
McLellan, C. F., Cuthill, I. C., & Montgomery, S. H. (2023). Warning
coloration, body size, and the evolution of gregarious behavior in
butterfly larvae. The American Naturalist , 202 (1),
000-000.
Merrill, R. M., Naisbit, R. E., Mallet, J., & Jiggins, C. D. (2013).
Ecological and genetic factors influencing the transition between
host‐use strategies in sympatric Heliconiusbutterflies. Journal of evolutionary biology , 26 (9),
1959-1967.
Montejo‐Kovacevich, G., Smith, J. E., Meier, J. I., Bacquet, C. N.,
Whiltshire‐Romero, E., Nadeau, N. J., Jiggins, C. D. (2019). Altitude
and life‐history shape the evolution of Heliconius wings.Evolution , 73(12), 2436-50.
Nilsson, M., & Forsman, A. (2003). Evolution of conspicuous
colouration, body size and gregariousness: a comparative analysis of
lepidopteran larvae. Evolutionary Ecology , 17 (1), 51-66.
Pagel, M. (1999). Inferring the historical patterns of biological
evolution. Nature , 401 (6756), 877-884.
Paradis, E. & Schliep, K. (2018). ape 5.0: an environment for modern
phylogenetics and evolutionary analyses in R. Bioinformatics, 35,
526-528.
Pennell, M. W., Eastman, J. M., Slater, G. J., Brown, J. W., Uyeda, J.
C., FitzJohn, R. G., Alfaro, M. E., & Harmon, L. J. (2014). geiger
v2.0: an expanded suite of methods for fitting macroevolutionary models
to phylogenetic trees. Bioinformatics, 30, 2216-2218.
Pescador-Rubio, A. (2009). Growth and survival of a tropical polyphagous
caterpillar: effects of host and group size. Southwest. Entomol .,
34(1), 75-84.
Pescador-Rubio, A., Stanford-Camargo, S. G., Páez-Gerardo, L. E.,
Ramírez-Reyes, A. J., Ibarra-Jiménez, R. A., & Fitzgerald, T. D.
(2011). Trail marking by caterpillars of the silverspot butterflyDione juno huascuma . Journal of Insect
Science , 11 (1), 55.
Peterson, S. C. (1987). Communication of leaf suitability by gregarious
eastern tent caterpillars (Malacosoma
americanum ). Ecological entomology , 12 (3), 283-289.
Potter, K. A., Bronstein, J., & Davidowitz, G. (2012). Choice of
oviposition sites by Manduca sexta and its consequences for egg
and larval performance. Entomologia Experimentalis et
Applicata , 144 (3), 286-293.
POWO (2022). Plants of the World Online.
http://www.plantsoftheworldonline.org/.
Prudic, K. L., Oliver, J. C., & Sperling, F. A. (2007). The signal
environment is more important than diet or chemical specialization in
the evolution of warning coloration. Proceedings of the National
Academy of Sciences , 104 (49), 19381-19386.
R Core Team (2013). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
Rathcke, B. J., & Poole, R. W. (1975). Coevolutionary race continues:
butterfly larval adaptation to plant
trichomes. Science , 187 (4172), 175-176.
Reader, T. & Hochuli, D. F. (2003). Understanding gregariousness in a
larval Lepidopteran: the roles of host plant, predation, and
microclimate. Ecol. Entomol. , 28(6), 729-737.
Rentería, J., Despland, E. & Checa, M. F. (2022). Grouping as a
strategy to mitigate top-down and bottom-up pressures for survival and
growth in Methona confusa (Butler, 1873)(Nymphalidae, Ithomiini).Trop. Lepid. Res ., 32(1), 32-37.
Revell, L. J. (2012). phytools: An R package for phylogenetic
comparative biology (and other things). Methods Ecol. Evol ., 3,
217-223.
Ruxton, G. D., & Sherratt, T. N. (2006). Aggregation, defence and
warning signals: the evolutionary relationship. Proceedings of the
Royal Society B: Biological Sciences , 273 (1600), 2417-2424.
Schäpers, A., Nylin, S., Carlsson, M. A., & Janz, N. (2016). Specialist
and generalist oviposition strategies in butterflies: maternal care or
precocious young? Oecologia , 180 (2), 335-343.
Thaler, J. S., Farag, M. A., Paré, P. W., & Dicke, M. (2002).
Jasmonate‐deficient plants have reduced direct and indirect defences
against herbivores. Ecology Letters , 5 (6), 764-774.
Thompson, J. N., & Pellmyr, O. (1991). Evolution of oviposition
behavior and host preference in Lepidoptera. Annual review of
entomology , 36 (1), 65-89.
Tullberg, B. S., & Hunter, A. F. (1996). Evolution of larval
gregariousness in relation to repellent defences and warning coloration
in tree-feeding Macrolepidoptera: a phylogenetic analysis based on
independent contrasts. Biological Journal of the Linnean
Society , 57 (3), 253-276.
Ulmar, T. & MacDougal, J. M. (2004) Passiflora: passion flowers
of the world . Portland, USA: Timber Press.
von Hardenberg, A. and A. Gonzalez-Voyer. 2013. Disentangling
evolutionary cause-effect relationships with phylogenetic confirmatory
path analysis. Evolution 672:378-387.
Warren, A. D., Davis, K. J., Stangeland, E. M., Pelham, J. P., Willmott,
K. R. & Grishin, N. V. (2016).
Illustrated
Lists of American Butterflies.
http://www.butterfliesofamerica.com/.
Wittstock, U., & Gershenzon, J. (2002). Constitutive plant toxins and
their role in defense against herbivores and pathogens. Current
opinion in plant biology , 5 (4), 300-307.
Young, A. M. (1983). On the evolution of egg placement and
gregariousness of caterpillars in the Lepidoptera. Acta
Biotheor ., 32(1), 43-60.
Young, F. J., Monllor, M., McMillan, W. O., & Montgomery, S. H. (2023).
Patterns of host plant use do not explain mushroom body expansion in
Heliconiini butterflies. bioRxiv , 2023-04.