Reference list
Arias, M., Meichanetzoglou, A., Elias, M., Rosser, N., De-Silva, D. L., Nay, B., & Llaurens, V. (2016). Variation in cyanogenic compounds concentration within a Heliconius butterfly community: does mimicry explain everything?. BMC evolutionary biology16 (1), 1-10.
Beltran, M., Jiggins C. D., Brower, A. V., Bermingham, E., Mallet, J. (2007). Do pollen feeding, pupal-mating and larval gregariousness have a single origin in Heliconius butterflies? Inferences from multilocus DNA sequence data. Biological journal of the Linnean Society , 92 (2), 221-39.
Benson, W. W., Brown Jr, K. S., & Gilbert, L. E. (1975). Coevolution of plants and herbivores: passion flower butterflies. Evolution , 29(4), 659-680.
Birnbaum, S. S. L., & Abbot, P. (2018). Insect adaptations toward plant toxins in milkweed–herbivores systems–a review. Entomologia Experimentalis et Applicata166 (5), 357-366.
Braby, M. F. & Nishida, K. (2010). The immature stages, larval food plants and biology of Neotropical mistletoe butterflies (Lepidoptera: Pieridae). II. The Catasticta group (Pierini: Aporiina). J. Nat. Hist ., 44(29-30), 1831-1928.
Brown Jr, K. S. (1981). The biology of Heliconius and related genera. Annual review of entomology , 26(1), 427-57.
Campbell, S. A. & Stastny, M. (2015). Benefits of gregarious feeding by aposematic caterpillars depend on group age structure. Oecologia , 177(3), 715-721.
Cicconardi, F., Milanetti, E., de Castro, É. C. P., et al. (2022). Evolutionary dynamics of genome size and content during the adaptive radiation of Heliconiini butterflies. BioRxiv , 2022-08.
Clark, B. R. & Faeth, S. H. (1997). The consequences of larval aggregation in the butterfly Chlosyne laciniaEcol. Entomol ., 22(4), 408-415.
Clark, B. R. & Faeth, S. H. (1998). The evolution of egg clustering in butterflies: a test of the egg desiccation hypothesis. Evol. Ecol ., 12(5), 543-552.
Coley, P. D., Bateman, M. L., & Kursar, T. A. (2006). The effects of plant quality on caterpillar growth and defense against natural enemies. Oikos115 (2), 219-228.
Couto, A., Young, F. J., Atzeni, D., Marty, S., Melo-Florez, L., Hebberecht, L., … & Montgomery, S. H. (2022). Rapid expansion and visual specialization of learning and memory centers in Heliconiini butterflies. bioRxiv , 2022-09.
de Castro, É. C. P., Musgrove, J., Bak, S., McMillan, W. O., & Jiggins, C. D. (2021). Phenotypic plasticity in chemical defence of butterflies allows usage of diverse host plants. Biology Letters17 (3), 20200863.
de Castro, É. C. P., Zagrobelny, M., Cardoso, M. Z., & Bak, S. (2018). The arms race between heliconiine butterflies and Passifloraplants–new insights on an ancient subject. Biological Reviews93 (1), 555-573.
de Castro, É. C. P., Zagrobelny, M., Zurano, J. P., Zikan Cardoso, M., Feyereisen, R., & Bak, S. (2019). Sequestration and biosynthesis of cyanogenic glucosides in passion vine butterflies and consequences for the diversification of their host plants. Ecology and evolution9 (9), 5079-5093.
de Luna Souto, A. G., Cordeiro, M. H. M., Silva Rosado, L. D., dos Santos, C. E. M., & Bruckner, C. H. (2017). Non-destructive estimation of leaf area in passion fruit (’Passiflora edulis ’ L.). Australian Journal of Crop Science11 (12), 1534-1538.
Denno, R., & Benrey, B. (1997). Aggregation facilitates larval growth in the neotropical nymphalid butterfly Chlosyne janaisEcological Entomology22 (2), 133-141.
Despland, E. (2019). Caterpillars cooperate to overcome plant glandular trichome defenses. Frontiers in Ecology and Evolution7 , 232.
Despland, E. (2021). Selection forces driving herding of herbivorous insect larvae. Frontiers in Ecology and Evolution , 9, 854.
Despland, E. & Le Huu, A. (2007). Pros and cons of group living in the forest tent caterpillar: separating the roles of silk and of grouping.Entomol. Exp. Appl ., 122(2), 181-189.
Digrado, A., Gonzalez‐Escobar, E., Owston, N., Page, R., Mohammed, S. B., Umar, M. L., Boukar, O., Ainsworth, E. A & Carmo‐Silva, E. (2022). Cowpea leaf width correlates with above ground biomass across diverse environments. Legume Science , 4(4), e144.
Endler, J. A. (1993). The color of light in forests and its implications. Ecological monographs63 (1), 1-27.
Engler-Chaouat, H. S., & Gilbert, L. E. (2007). De novo synthesis vs. sequestration: negatively correlated metabolic traits and the evolution of host plant specialization in cyanogenic butterflies. Journal of chemical ecology33 (1), 25-42.
Fordyce, J. A. (2003). Aggregative feeding of pipevine swallowtail larvae enhances hostplant suitability. Oecologia , 135(2), 250-257.
Fordyce, J. A., & Agrawal, A. A. (2001). The role of plant trichomes and caterpillar group size on growth and defence of the pipevine swallowtail Battus philenorJournal of Animal Ecology70 (6), 997-1005.
Fürstenberg-Hägg, J., Zagrobelny, M., & Bak, S. (2013). Plant defense against insect herbivores. International journal of molecular sciences14 (5), 10242-10297.
Gilbert, L. E. (1971). Butterfly-plant coevolution: has Passiflora adenopoda won the selectional race with heliconiine butterflies? Science172 (3983), 585-586.
Greeney, H. F., Dyer, L. A. & Smilanich, A. M. (2012). Feeding by lepidopteran larvae is dangerous: A review of caterpillars’ chemical, physiological, morphological, and behavioral defenses against natural enemies. Invertebr. Surviv ., 9(1), 7-34.
Greeney, H. F., & Jones, M. T. (2003). Shelter building in the Hesperiidae: a classification scheme for larval shelters. Journal of Research on the Lepidoptera37 (1998), 27-36.
Hadfield, J. D. (2010). MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package. Journal of Statistical Software, 33 (2), 1-22.
Hebberecht, L., Melo‐Flórez, L., Young, F. J., McMillan, W. O., & Montgomery, S. H. (2022). The evolution of adult pollen feeding did not alter postembryonic growth in Heliconius butterflies. Ecology and Evolution12 (6), e8999.
Hunter, A. F. (2000). Gregariousness and repellent defences in the survival of phytophagous insects. Oikos , 91(2), 213-224.
Karban, R. (2011). The ecology and evolution of induced resistance against herbivores. Functional Ecology25 (2), 339-347.
Kawasaki, N., Miyashita, T. & Kato, Y. (2009). Leaf toughness changes the effectiveness of larval aggregation in the butterfly Byasa alcinous bradanus (Lepidoptera: Papilionidae). Entomol. Sci. , 12(2), 135-140.
Korb, J., & Heinze, J. (2016). Major hurdles for the evolution of sociality. Annual review of entomology61 .
Kozak, K. M. (2016). Macroevolution and phylogenomics in the adaptive radiation of Heliconiini butterflies (Doctoral dissertation, University of Cambridge).
Kozak, K. M., Wahlberg, N., Neild, A. F., Dasmahapatra, K. K., Mallet, J., Jiggins, C. D. (2015). Multilocus species trees show the recent adaptive radiation of the mimetic Heliconius butterflies.Systematic biology , 64(3), 505-24.
Mattila, A. L., Jiggins, C. D., Opedal, Ø. H., Montejo-Kovacevich, G., McMillan, W. O., Bacquet, C., & Saastamoinen, M. (2021). Evolutionary and ecological processes influencing chemical defense variation in an aposematic and mimetic Heliconiusbutterfly. PeerJ9 , e11523.
McClure, M. & Despland, E. (2011). Defensive responses by a social caterpillar are tailored to different predators and change with larval instar and group size. Naturwissenschaften , 98(5), 425-434.
McLellan, C. F., Cuthill, I. C., & Montgomery, S. H. (2023). Warning coloration, body size, and the evolution of gregarious behavior in butterfly larvae. The American Naturalist202 (1), 000-000.
Merrill, R. M., Naisbit, R. E., Mallet, J., & Jiggins, C. D. (2013). Ecological and genetic factors influencing the transition between host‐use strategies in sympatric Heliconiusbutterflies. Journal of evolutionary biology26 (9), 1959-1967.
Montejo‐Kovacevich, G., Smith, J. E., Meier, J. I., Bacquet, C. N., Whiltshire‐Romero, E., Nadeau, N. J., Jiggins, C. D. (2019). Altitude and life‐history shape the evolution of Heliconius wings.Evolution , 73(12), 2436-50.
Nilsson, M., & Forsman, A. (2003). Evolution of conspicuous colouration, body size and gregariousness: a comparative analysis of lepidopteran larvae. Evolutionary Ecology17 (1), 51-66.
Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature401 (6756), 877-884.
Paradis, E. & Schliep, K. (2018). ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526-528.
Pennell, M. W., Eastman, J. M., Slater, G. J., Brown, J. W., Uyeda, J. C., FitzJohn, R. G., Alfaro, M. E., & Harmon, L. J. (2014). geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics, 30, 2216-2218.
Pescador-Rubio, A. (2009). Growth and survival of a tropical polyphagous caterpillar: effects of host and group size. Southwest. Entomol ., 34(1), 75-84.
Pescador-Rubio, A., Stanford-Camargo, S. G., Páez-Gerardo, L. E., Ramírez-Reyes, A. J., Ibarra-Jiménez, R. A., & Fitzgerald, T. D. (2011). Trail marking by caterpillars of the silverspot butterflyDione juno huascumaJournal of Insect Science11 (1), 55.
Peterson, S. C. (1987). Communication of leaf suitability by gregarious eastern tent caterpillars (Malacosoma americanum ). Ecological entomology12 (3), 283-289.
Potter, K. A., Bronstein, J., & Davidowitz, G. (2012). Choice of oviposition sites by Manduca sexta and its consequences for egg and larval performance. Entomologia Experimentalis et Applicata144 (3), 286-293.
POWO (2022). Plants of the World Online. http://www.plantsoftheworldonline.org/.
Prudic, K. L., Oliver, J. C., & Sperling, F. A. (2007). The signal environment is more important than diet or chemical specialization in the evolution of warning coloration. Proceedings of the National Academy of Sciences104 (49), 19381-19386.
R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Rathcke, B. J., & Poole, R. W. (1975). Coevolutionary race continues: butterfly larval adaptation to plant trichomes. Science187 (4172), 175-176.
Reader, T. & Hochuli, D. F. (2003). Understanding gregariousness in a larval Lepidopteran: the roles of host plant, predation, and microclimate. Ecol. Entomol. , 28(6), 729-737.
Rentería, J., Despland, E. & Checa, M. F. (2022). Grouping as a strategy to mitigate top-down and bottom-up pressures for survival and growth in Methona confusa (Butler, 1873)(Nymphalidae, Ithomiini).Trop. Lepid. Res ., 32(1), 32-37.
Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol ., 3, 217-223.
Ruxton, G. D., & Sherratt, T. N. (2006). Aggregation, defence and warning signals: the evolutionary relationship. Proceedings of the Royal Society B: Biological Sciences273 (1600), 2417-2424.
Schäpers, A., Nylin, S., Carlsson, M. A., & Janz, N. (2016). Specialist and generalist oviposition strategies in butterflies: maternal care or precocious young? Oecologia180 (2), 335-343.
Thaler, J. S., Farag, M. A., Paré, P. W., & Dicke, M. (2002). Jasmonate‐deficient plants have reduced direct and indirect defences against herbivores. Ecology Letters5 (6), 764-774.
Thompson, J. N., & Pellmyr, O. (1991). Evolution of oviposition behavior and host preference in Lepidoptera. Annual review of entomology36 (1), 65-89.
Tullberg, B. S., & Hunter, A. F. (1996). Evolution of larval gregariousness in relation to repellent defences and warning coloration in tree-feeding Macrolepidoptera: a phylogenetic analysis based on independent contrasts. Biological Journal of the Linnean Society57 (3), 253-276.
Ulmar, T. & MacDougal, J. M. (2004) Passiflora: passion flowers of the world . Portland, USA: Timber Press.
von Hardenberg, A. and A. Gonzalez-Voyer. 2013. Disentangling evolutionary cause-effect relationships with phylogenetic confirmatory path analysis. Evolution 672:378-387.
Warren, A. D., Davis, K. J., Stangeland, E. M., Pelham, J. P., Willmott, K. R. & Grishin, N. V. (2016). Illustrated Lists of American Butterflies. http://www.butterfliesofamerica.com/.
Wittstock, U., & Gershenzon, J. (2002). Constitutive plant toxins and their role in defense against herbivores and pathogens. Current opinion in plant biology5 (4), 300-307.
Young, A. M. (1983). On the evolution of egg placement and gregariousness of caterpillars in the Lepidoptera. Acta Biotheor ., 32(1), 43-60.
Young, F. J., Monllor, M., McMillan, W. O., & Montgomery, S. H. (2023). Patterns of host plant use do not explain mushroom body expansion in Heliconiini butterflies. bioRxiv , 2023-04.