References
[1] Duddington, C.L. A new predaceous species of Trichothecium.Transactions of the British Mycological Society . 1948 ,
32, 284–287.
[2] Wang, B.B.; Liu, W.; Chen, M.Y.; Li, X.; Han, Y.; Xu, Q.; Sun,
L.J.; Xie, D.Q.; Cai, K.Z.; Liu, Y.Z.; Liu, J.L.; Yi, L.X.; Wang, H.;
Zhao, M.W.; Li, X.S.; Wu, J.Y.; Yang, J.; Wang, Y.Y. Isolation and
characterization of china isolates of Duddingtonia flagrans , a
candidate of the nematophagous fungi for biocontrol of animal parasitic
nematodes. Journal of Parasitology . 2015 , 101, 476–484.
[3] Wang, B.B.; Zhang, N.; Gong, P.T.; Li, J.H.; Yang, J.; Zhang,
H.B.; Zhang, X.C.; Cai, K.Z. Morphological variability, molecular
phylogeny, and biological characteristics of the nematophagous fungusDuddingtonia flagrans . Journal of Basic Microbiology .2019 , 59, 645-657.
[4] Larsen, M.; Faedo, M.; Waller, P.J. The potential of
nematophagous fungi to control the free-living stages of nematode
parasites of sheep: survey for the presence of fungi in fresh faeces of
grazing livestock in Australia. Veterinary Parasitology .1994 , 53, 275-281.
[5] Mendoza de Gives. P.; Flores Crespo, J.; Herrera Rodriguez, D.;
Vazquez Prats, V.; Liebano Hernandez, E.; Ontiveros Fernandez, G.E.
Biological control of Haemonchus contortus infective larvae in
ovine faeces by administering an oral suspension of Duddingtonia
flagrans chlamydospores to sheep. Journal of Helminthology .1998 , 72, 343-347.
[6] Wang, B.B.; Wang, F.H.; Xu, Q.; Wang, K.Y.; Xue, Y.J.; Ren, R.;
Zeng, J.Q.; Liu, Y.; Zhang, H.Y.; Wang, H.Y.; Cai, B.; Cai, K.Z.; Cao,
X. In vitro and in vivo studies of the native isolates of
nematophagous fungi from China against the larvae of trichostrongylides.Journal of basic microbiology . 2017 , 57, 265-275.
[7] Braga, F.R.; de Araújo, J.V. Nematophagous fungi for biological
control of gastrointestinal nematodes in domestic animals. Applied
Microbiology and Biotechnology . 2014 , 98, 71-82.
[8] Li, Q.Y.; Wang, F.; Yang, X.C.; Wan, X.M.; Zhao, T.Y.; Chang,
F.F.; Du, J.L.; Wang, B.B.; Jia, X.Y.; Zhou, X.Y.; Ran, Q.D.; Pan, H.;
Shi, J.C.; Cai, K.Z.; Ma, Z.R. Effects of times and storage conditions
of Duddingtonia flagrans chlamydospores in sodium alginate
pellets on its nematode predatory ability. Biocontrol Science and
Technology . 2019 , 29, 638-648.
[9] Sagüés, M.F.; Fusé, L.A.; Fernández, A.S.; Iglesias, L.E.;
Moreno, F.C.; Saumell, C.A. Efficacy of an energy block containingDuddingtonia flagrans in the control of gastrointestinal
nematodes of sheep. Parasitology Research . 2011 , 109,
707-713.
[10] Liu, X.Y.; Chang, F.F.; Zhao, T.Y.; Huang, H.Y.; Li, F.D.;
Wang, F.; Wang, B.B.; Wang, F.H.; Liu, Q.; Luo, Q.H.; Cai, K.Z.; Ma,
Z.R. Biological control of sheep gastrointestinal nematode in three
feeding systems in Northern China by using powder drug with
nematophagous fungi. Biocontrol Science and Technology .2020 , 30, 701-715.
[11] Silva, B.F.; Carrijo-Mauad, J.R.; Braga, F.R.; Campos, A.K.;
Araújo, J.V. Amarante, A.F. Efficacy of Duddingtonia flagrans andArthrobotrys robusta in controlling sheep parasitic
gastroenteritis. Parasitology research . 2010 , 106,
1343-1350.
[12] MendozCe-Gives, P.; López-Arellano, M.E.; Aguilar-Marcelino,
L.; Olazarán-Jenkins, S.; Reyes-Guerrero, D.; Ramírez-Várgas, G.;
Vega-Murillo, V.E. The nematophagous fungus Duddingtonia flagransreduces the gastrointestinal parasitic nematode larvae population in
faeces of orally treated calves maintained under tropical
conditions—Dose/response assessment. Veterinary parasitology .2018 , 263, 66-72.
[13] Healey, K.; Lawlor, C.; Knox, M.R.; Chambers, M.; Lamb, J.;
Groves, P. Field evaluation of Duddingtonia flagrans IAH 1297 for
the reduction of worm burden in grazing animals: Pasture larval studies
in horses, cattle and goats. Veterinary parasitology .2018 , 258, 124-132.
[14] Feofilova, E.P.; Ivashechkin, A.A.; Alekhin, A.I.; Sergeeva,
IaÉ. Fungal spores: dormancy, germination, chemical composition, and
role in biotechnology. Applied Biochemistry and Microbiology .2012 , 48, 1-11.
[15] Wang, B.B. The dormancy characteristics of the chlamydospores
and mechanism of anti-Haemonchus contortus by Duddingtonia flagrans.
Jilin University, DOI:10.27162/d.cnki.gjlin.2021.007281. (in Chinese)
[16] Osherov, N.; May, G.S. The molecular mechanisms of conidial
germination. FEMS microbiology letters . 2001 , 199,
153-160.
[17] Novodvorska, M.; Hayer, K.; Pullan, S.T.; Wilson, R.; Blythe,
M.J.; Stam, H.; Stratford, M.; Archer, D.B. Transcriptional landscape of
Aspergillus nigerat breaking of conidial dormancy revealed by
RNA-sequencing. BMC genomics. 2013 , 14, 1-18.
[18] Lamarre, C.; Sokol, S.; Debeaupuis, J.P.; Henry, C.; Lacroix,
C.; Glaser, P.; Coppée, J.Y.; François, J.M.; Latgé, J.P. Transcriptomic
analysis of the exit from dormancy of Aspergillus fumigatusconidia. BMC Genomics . 2008 , 9, 1-15.
[19] Hagiwara, D.; Takahashi, H.; Kusuya, Y.; Kawamoto, S.; Kamei,
K.; Gonoi, T. Comparative transcriptome analysis revealing dormant
conidia and germination associated genes in Aspergillus species :
an essential role for AtfA in conidial dormancy. BMC Genomics .2016 , 17, 1-18.
[20] Leng, W.; Liu, T.; Li, R.; Yang, J.; Wei, C.; Zhang, W.; Jin,
Q. Proteomic profile of dormant Trichophyton rubrum conidia. BMC
Genomics . 2008 , 9, 1-11.
[21] Anjo, S.I.; Figueiredo, F.; Fernandes, R.; Manadas, B.;
Oliveira, M. A proteomic and ultrastructural characterization ofAspergillus fumigatus 'conidia adaptation at different culture
ages. Journal of Proteomics . 2017 , 161, 47-56.
[22] Pezet, R.; Pont, V. Ultrastructural observations of
pterostilbene fungitoxicity in dormant conidia of Botrytis cinerea Pers.Journal of phytopathology . 1990 , 129(1): 19-30.
[23] Dute, R.R.; Weete, J.D.; Rushing, A.E. Ultrastructure of
dormant and germinating conidia of Aspergillus ochraceus .Mycologia . 1989 , 81, 772-782.
[24] Citiulo, F.; Moran, G.P.; Coleman, D.C.; Sullivan, D.J.
Purification and germination of Candida albicans andCandida dubliniensis chlamydospores cultured in liquid media.FEMS Yeast Research . 2009 , 9, 1051-1060.
[25] Yan, W.T.; Liu, W.M.; Deng, L.W.; Huang, H.M.; Liu, D.B.; LV,
J.L.; Feng, G.P.; Mao, Y. Ultrastructure comparison of chlamydospores
with different color of Ustilaginoidea virens. Acta
Phytopathologica Sinica . 2010 , 40, 538-542. (in Chinese)
[26] Xu, C.L.; Liu, W.; Li, Y.Q.; Wang, K.Y.; Qin, G.G.; Wang, D.M.;
Wang, B.B.; Wang, H.; Li, X.; Yi, L.X. Observation on dynamics of
Duddingtonia flagrans against infective larvae of Haemonchus contortus
and free-living nematode Caenorhabditis elegans. Chinese
Veterinary Science . 2014 , 44, 1119-1126. (in Chinese)
[27] Campos, A.K.; Araújo, J.V.; Guimarães, M.P. Interaction between
the nematophagous fungus Duddingtonia flagrans and infective larvae of
Haemonchus contortus (Nematoda: Trichostrongyloidea). Journal of
Helminthology . 2008 , 82, 337-341.
[28] Wang, B.B.; Zhang, N.; Gong, P.T.; Li, J.; Yang, J.; Zhang, X.;
Cai, K.Z. Effect of temperature, pH, physical and chemical factors on
germination rate of the chlamydospores of the nematophagous fungusDuddingtonia flagrans . FEMS Microbiology Letters .2019 , 366(17): fnz212.
[29] Liu, W.; Han, Y.; Wang, B.B.; Sun, L.J.; Chen, M.Y.; Cai, K.Z.;
Li, X.; Zhao, M.W.; Xu, C.L.; Xu, Q.; Yi, L.X.; Wang, H.; Xie, D.Q.; Li,
X.S.; Wu, J.Y.; Yang, J.; Wei, S.; Li, D.; Chen, C.R.; Zheng, T.H.; Li,
Q.; Peng, J.W. Isolation, identification, and characterization of the
nematophagous fungus Monacrosporium salinum from China.Journal of Basic Microbiology . 2015 , 55, 992-1001.
[30] Hemmes, D.E. Cytology of phytophthora. Phytophthora: Its
biology, taxonomy, ecology and pathology. 1983 , 9-40.
[31] McCarren, K.L.; McComb, J.A.; Shearer, B.L.; Hardy, E.S.T.J.
The role of chlamydospores of Phytophthora cinnamomi —a review.Australasian Plant Pathology . 2005 , 34, 333-338.
Figure 1 Light microscope observation of different
types of chlamydospores. A. Dormant-spores; B. Non-dormant; C. Dead
spores; D. Dormant spores stained with lactophenol cotton blue; E.
Non-dormant stained with lactophenol cotton blue; F. Dead spores stained
with lactophenol cotton blue; G. Dormant spores stained with trypan
blue; H. Non-dormant stained with trypan blue; I. Dead spores stained
with trypan blue; J. Dormant spores stained with MTT; K. Non-dormant
stained with MTT; L. Naturally dead spores stained with MTT; M.
Artificially dead spores stained with MTT.
Figure 2 Observation on metabolic activity, cell nucleus and
cell wall of chlamydospores with fluorescent dye. A. Dormant spores
stained with FUN-1; B. Non-dormant spores stained with FUN-1; C. Dormant
spores stained with DAPI; D. Non-dormant spores stained with DAPI; E.
Dormant spores stained with CFW; F. Non-dormant spores stained with CFW.
Figure 3 Electron
microscopic images of dormant and non-dormant chlamydospores. A.
Dormant spores under SEM; B. Non-dormant sporesunder SEM; C. Non-dormant
spores under TEM; D. Non-dormant spores under TEM (showing spore walls
and cytoplasmic vesicles); E. Dormant spores under TEM; F. Dormant
spores under TEM (showing the spore wall and a part in the spore).