Device Fabrication and Measurement
The AG1, UG1 and DG1 based OFET memory devices were prepared on the
heavily doped n-type Si++ wafer with 90 nm thick
SiO2. The SiO2/Si++substrates were cleaned by ultrasonic cleaning with acetone, ethanol,
and deionized water for 10 min, respectively, and finally dried with
nitrogen. The dried silicon wafers were then treated under the ozone
environment for 10 min. AG1, UG1 and DG1 were dissolved in toluene and
then spin-coated on SiO2/Si++substrates as the charge trapping layer, respectively. The concentration
of AG1, UG1 and DG1 solutions was 1 mg/mL. The speed of spin coating for
AG1, UG1 and DG1 thin film was 3000 rpm and the spin coating time was 30
s.The semiconductor layer of 50 nm thick pentacene was deposited onto
AG1, UG1 and DG1 thin film by the thermal vacuum evaporation. Finally, a
100 nm Cu film was thermally evaporated through a shadow mask to form
source and drain electrodes. The channel length (L) and width (W) were
100 and 1000 µm, respectively. Commercial LED with a wavelength of
410-800 nm was shined directly from the top of the device. All of the
devices were synchronously fabricated at the same conditions and
characterized in a shielding box under an ambient air environment (RH =
20%) connected with a Keithley 2636B semiconductor parameter analyzer.
Supporting Information
The supporting information for this article is available on the WWW
under https://doi.org/10.1002/cjoc.2023xxxxx.
Acknowledgement
Project supported by the Natural Science Foundation of China (22071112
and 22275098), the Project of State Key Laboratory of Organic
Electronics and Information Displays, Nanjing University of Posts and
Telecommunications, (GDX2022010005 and GZR2022010011).
References
- Zhong, H.; Zhao, B.; Deng, J. P. Chiral Magnetic Hybrid Materials
Constructed from Macromolecules and Their Chiral Applications.Nanoscale 2021 , 13 , 11765‒11780.
- Wen, Y.; He, M. Q.; Yu, Y. L.; Wang, J. H. Biomolecule-Mediated Chiral
Nanostructures: A Review of Chiral Mechanism and Application.Adv. Colloid Interface Sci. 2021 , 289 , 102376.
- Harada, N. Chiral Molecular Science: How Were the Absolute
Configurations of Chiral Molecules Determined? ”Experimental Results
and Theories”. Chirality 2017 , 29 , 774‒797.
- Liang, X. T.; Liang, W. T.; Jin, P. Y.; Wang, H. T.; Wu, W. H.; Yang,
C. Advances in Chirality Sensing with Macrocyclic Molecules.Chemosensors 2021 , 9 , 279.
- Chen, J. F.; Ding, J. D.; Wei, T. B. Pillararenes: Fascinating Planar
Chiral Macrocyclic. Arenes. Chem Commun (Camb). 2021 ,57 , 9029‒9039.
- Xie, X. M.; Wei, Y.; Lin, D. Q.; Zhong, C. X.; Xie, L. H.; Huang, W.
Nanogridarene: A Rising Nanomolecular Integration Platform of Organic
Intelligence. Chin. J. Chem. 2019 , 38 , 103‒105.
- Wei, Y.; Feng, Q. Y.; Liu, H.; Wang, X. L.; Lin, D. Q.; Xie, S. L.;
Yi, M. D.; Xie, L. H.; Huang, W. Organic Synthesis of Ancient
Windmill-Like Window Nanogrid at Molecular Scale. Eur. J. Org.
Chem. 2018 , 48 , 7009‒7016.
- Wei, Y.; Li, Y.; Lin, D. Q.; Jin, D.; Du, X.; Zhong, C. X.; Zhou, P.;
Sun, Y.; Xie, L. H.; Huang, W. Spiro-based Diamond-type Nanogrids
(DGs) via Two Ways of ‘A1B1’/ ‘A2+B2’ Type Gridization of Vertical
Spiro-based Fluorenol Synthons. Org. Biomol. Chem.2021 , 19 , 10408‒10416.
- Zhang, G. W.; Wei, Y.; Wang, J. S.; Liu, Y. Y.; Xie, L. H.; Wang, L.;
Ren, B.; Huang, W. A Robust Molecular Unit Nanogrid Servicing as
Network Nodes via Molecular Installing Technology. Mater. Chem.
Front. 2017 , 1 , 455‒459.
- Lin, D. Q.; Wei, Y.; Peng, A. Z.; Zhang, H.; Zhong, C. X.; Lu, D.;
Zhang, H.; Zheng, X. P.; Yang, L.; Feng, Q. Y.; Xie, L. H.; Huang, W.
Stereoselective Gridization and Polygridization with Centrosymmetric
Molecular Packing. Nat. Commun. 2020 , 11 , 1756.
- Lin, D. Q.; Zhang, W. H.; Yin, H.; Hu, H. X.; Li, Y.; Zhang, H.; Wang,
L.; Xie, X. M.; Hu, H. K.; Yan, Y. X.; Ling, H. F.; Liu, J. A.; Qian,
Y.; Tang, L.; Wang, Y. X.; Dong, C. Y.; Xie, L. H.; Zhang, H.; Wang,
S. S.; Wei, Y.; Guo, X. F.; Lu, D.; Huang, W. Cross-Scale Synthesis of
Organic High-k Semiconductors Based on Spiro-Gridized Nanopolymers.Research 2022 , 2022 , 9820585.
- Brandt, J. R.; Salerno, F.; Fuchter, M. J. The Added Value of
Small-molecule Chirality in Technological Applications. Nat.
Rev. Chem. 2017 , 1 , 0045.
- Kočovský, P.; Vyskočil, Š.; Smrčina, M. Non-Symmetrically Substituted
1,1′-Binaphthyls in Enantioselective Catalysis. Chem. Rev.2003 , 103 , 3213‒3245.
- Lee, Y. Y.; Kim, R. M.; Im, S. W.; Balamurugan, M.; Nam, K. T.
Plasmonic Metamaterials for Chiral Sensing Applications.Nanoscale 2020 , 12 , 58‒66.
- Yang, H.; Zheng, W. H. Chiral-Organotin-Catalyzed Kinetic Resolution
of Vicinal Amino Alcohols. Angew. Chem. Ed. 2019 ,58 , 16177‒16180.
- Xing, P. Y.; Zhao, Y. L. Controlling Supramolecular Chirality in
Multicomponent Self-Assembled Systems. Acc. Chem. Res.2018 , 51 , 2324‒2334.
- Phipps, R. J.; Hamilton, G. L.; Toste, F. D. The Progression of Chiral
Anions from Concepts to Applications in Asymmetric Catalysis.Nat. Chem. 2012 , 4 , 603‒14.
- Mancinelli, M.; Bencivenni, G.; Pecorari, D.; Mazzanti, A.
Stereochemistry and Recent Applications of Axially Chiral Organic
Molecules. Eur. J. Org. Chem. 2020 , 27 ,
4070‒4086.
- Wang, X.; Chen, X. L.; Lin, W.; Li, P. F.; Li, W. J. Recent Advances
in Organocatalytic Enantioselective Synthesis of Axially Chiral
Allenes. Adv. Synth. Catal. 2022 , 364 ,
1212‒1222.
- Rahman, A.; Lin, X. F. Development and Application of Chiral
Spirocyclic Phosphoric Acids in Asymmetric Catalysis. Org.
Biomol. Chem. 2018 , 16, 4753‒4777.
- Brunel, J. M. BINOL: A Versatile Chiral Reagent. Chem. Rev.2005 , 105 , 857‒897.
- Krajnc, M.; Niemeyer, J. BINOL as A Chiral Element in Mechanically
Interlocked Molecules. Beilstein J. Org. Chem. 2022 ,18 , 508‒523.
- Sun, Z. B.; Liu, J. K.; Yuan, D. F.; Zhao, Z. H.; Zhu, X. Z.; Liu, D.
H.; Peng, Q.; Zhao, C. H. 2,2’-Diamino-6,6’-diboryl-1,1’-binaphthyl: A
Versatile Building Block for Temperature-Dependent Dual Fluorescence
and Switchable Circularly Polarized Luminescence. Angew. Chem.
Int. Ed. 2019 , 58 , 4840‒4846.