Device Fabrication and Measurement
The AG1, UG1 and DG1 based OFET memory devices were prepared on the heavily doped n-type Si++ wafer with 90 nm thick SiO2. The SiO2/Si++substrates were cleaned by ultrasonic cleaning with acetone, ethanol, and deionized water for 10 min, respectively, and finally dried with nitrogen. The dried silicon wafers were then treated under the ozone environment for 10 min. AG1, UG1 and DG1 were dissolved in toluene and then spin-coated on SiO2/Si++substrates as the charge trapping layer, respectively. The concentration of AG1, UG1 and DG1 solutions was 1 mg/mL. The speed of spin coating for AG1, UG1 and DG1 thin film was 3000 rpm and the spin coating time was 30 s.The semiconductor layer of 50 nm thick pentacene was deposited onto AG1, UG1 and DG1 thin film by the thermal vacuum evaporation. Finally, a 100 nm Cu film was thermally evaporated through a shadow mask to form source and drain electrodes. The channel length (L) and width (W) were 100 and 1000 µm, respectively. Commercial LED with a wavelength of 410-800 nm was shined directly from the top of the device. All of the devices were synchronously fabricated at the same conditions and characterized in a shielding box under an ambient air environment (RH = 20%) connected with a Keithley 2636B semiconductor parameter analyzer.
Supporting Information
The supporting information for this article is available on the WWW under https://doi.org/10.1002/cjoc.2023xxxxx.
Acknowledgement
Project supported by the Natural Science Foundation of China (22071112 and 22275098), the Project of State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, (GDX2022010005 and GZR2022010011).
References
  1. Zhong, H.; Zhao, B.; Deng, J. P. Chiral Magnetic Hybrid Materials Constructed from Macromolecules and Their Chiral Applications.Nanoscale 2021 , 13 , 11765‒11780.
  2. Wen, Y.; He, M. Q.; Yu, Y. L.; Wang, J. H. Biomolecule-Mediated Chiral Nanostructures: A Review of Chiral Mechanism and Application.Adv. Colloid Interface Sci. 2021 , 289 , 102376.
  3. Harada, N. Chiral Molecular Science: How Were the Absolute Configurations of Chiral Molecules Determined? ”Experimental Results and Theories”. Chirality 2017 , 29 , 774‒797.
  4. Liang, X. T.; Liang, W. T.; Jin, P. Y.; Wang, H. T.; Wu, W. H.; Yang, C. Advances in Chirality Sensing with Macrocyclic Molecules.Chemosensors 2021 , 9 , 279.
  5. Chen, J. F.; Ding, J. D.; Wei, T. B. Pillararenes: Fascinating Planar Chiral Macrocyclic. Arenes. Chem Commun (Camb). 2021 ,57 , 9029‒9039.
  6. Xie, X. M.; Wei, Y.; Lin, D. Q.; Zhong, C. X.; Xie, L. H.; Huang, W. Nanogridarene: A Rising Nanomolecular Integration Platform of Organic Intelligence. Chin. J. Chem. 2019 , 38 , 103‒105.
  7. Wei, Y.; Feng, Q. Y.; Liu, H.; Wang, X. L.; Lin, D. Q.; Xie, S. L.; Yi, M. D.; Xie, L. H.; Huang, W. Organic Synthesis of Ancient Windmill-Like Window Nanogrid at Molecular Scale. Eur. J. Org. Chem. 2018 , 48 , 7009‒7016.
  8. Wei, Y.; Li, Y.; Lin, D. Q.; Jin, D.; Du, X.; Zhong, C. X.; Zhou, P.; Sun, Y.; Xie, L. H.; Huang, W. Spiro-based Diamond-type Nanogrids (DGs) via Two Ways of ‘A1B1’/ ‘A2+B2’ Type Gridization of Vertical Spiro-based Fluorenol Synthons. Org. Biomol. Chem.2021 , 19 , 10408‒10416.
  9. Zhang, G. W.; Wei, Y.; Wang, J. S.; Liu, Y. Y.; Xie, L. H.; Wang, L.; Ren, B.; Huang, W. A Robust Molecular Unit Nanogrid Servicing as Network Nodes via Molecular Installing Technology. Mater. Chem. Front. 2017 , 1 , 455‒459.
  10. Lin, D. Q.; Wei, Y.; Peng, A. Z.; Zhang, H.; Zhong, C. X.; Lu, D.; Zhang, H.; Zheng, X. P.; Yang, L.; Feng, Q. Y.; Xie, L. H.; Huang, W. Stereoselective Gridization and Polygridization with Centrosymmetric Molecular Packing. Nat. Commun. 2020 , 11 , 1756.
  11. Lin, D. Q.; Zhang, W. H.; Yin, H.; Hu, H. X.; Li, Y.; Zhang, H.; Wang, L.; Xie, X. M.; Hu, H. K.; Yan, Y. X.; Ling, H. F.; Liu, J. A.; Qian, Y.; Tang, L.; Wang, Y. X.; Dong, C. Y.; Xie, L. H.; Zhang, H.; Wang, S. S.; Wei, Y.; Guo, X. F.; Lu, D.; Huang, W. Cross-Scale Synthesis of Organic High-k Semiconductors Based on Spiro-Gridized Nanopolymers.Research 2022 , 2022 , 9820585.
  12. Brandt, J. R.; Salerno, F.; Fuchter, M. J. The Added Value of Small-molecule Chirality in Technological Applications. Nat. Rev. Chem. 2017 , 1 , 0045.
  13. Kočovský, P.; Vyskočil, Š.; Smrčina, M. Non-Symmetrically Substituted 1,1′-Binaphthyls in Enantioselective Catalysis. Chem. Rev.2003 , 103 , 3213‒3245.
  14. Lee, Y. Y.; Kim, R. M.; Im, S. W.; Balamurugan, M.; Nam, K. T. Plasmonic Metamaterials for Chiral Sensing Applications.Nanoscale 2020 , 12 , 58‒66.
  15. Yang, H.; Zheng, W. H. Chiral-Organotin-Catalyzed Kinetic Resolution of Vicinal Amino Alcohols. Angew. Chem. Ed. 2019 ,58 , 16177‒16180.
  16. Xing, P. Y.; Zhao, Y. L. Controlling Supramolecular Chirality in Multicomponent Self-Assembled Systems. Acc. Chem. Res.2018 , 51 , 2324‒2334.
  17. Phipps, R. J.; Hamilton, G. L.; Toste, F. D. The Progression of Chiral Anions from Concepts to Applications in Asymmetric Catalysis.Nat. Chem. 2012 , 4 , 603‒14.
  18. Mancinelli, M.; Bencivenni, G.; Pecorari, D.; Mazzanti, A. Stereochemistry and Recent Applications of Axially Chiral Organic Molecules. Eur. J. Org. Chem. 2020 , 27 , 4070‒4086.
  19. Wang, X.; Chen, X. L.; Lin, W.; Li, P. F.; Li, W. J. Recent Advances in Organocatalytic Enantioselective Synthesis of Axially Chiral Allenes. Adv. Synth. Catal. 2022 , 364 , 1212‒1222.
  20. Rahman, A.; Lin, X. F. Development and Application of Chiral Spirocyclic Phosphoric Acids in Asymmetric Catalysis. Org. Biomol. Chem. 2018 , 16, 4753‒4777.
  21. Brunel, J. M. BINOL: A Versatile Chiral Reagent. Chem. Rev.2005 , 105 , 857‒897.
  22. Krajnc, M.; Niemeyer, J. BINOL as A Chiral Element in Mechanically Interlocked Molecules. Beilstein J. Org. Chem. 2022 ,18 , 508‒523.
  23. Sun, Z. B.; Liu, J. K.; Yuan, D. F.; Zhao, Z. H.; Zhu, X. Z.; Liu, D. H.; Peng, Q.; Zhao, C. H. 2,2’-Diamino-6,6’-diboryl-1,1’-binaphthyl: A Versatile Building Block for Temperature-Dependent Dual Fluorescence and Switchable Circularly Polarized Luminescence. Angew. Chem. Int. Ed. 2019 , 58 , 4840‒4846.