References
Akhter, E.T., Rotterman, T.M., English, A.W. & Alvarez, F.J. (2019) Sciatic nerve cut and repair using fibrin glue in adult mice. Bio Protoc , 9 , e3363.
Al-Majed, A.A., Brushart, T.M. & Gordon, T. (2000a) Electrical stimulation accelerates and increases expression of BDNF and trkB mRNA in regenerating rat femoral motoneurons. Eur J Neurosci ,12 , 4381-4390.
Al-Majed, A.A., Neumann, C.M., Brushart, T.M. & Gordon, T. (2000b) Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J Neurosci. , 20 , 2602-2608.
Al-Majed, A.A., Tam, S.L. & Gordon, T. (2004) Electrical stimulation accelerates and enhances expression of regeneration-associated genes in regenerating rat femoral motoneurons. Cell Mol Neurobiol ,24 , 379-402.
Basmajian, J.V. & Stecko, G. (1963) The role of muscles in arch support of the foot. J Bone Joint Surg Am , 45 , 1184-1190.
Bekelis, K., Missios, S. & Spinner, R.J. (2015) Falls and peripheral nerve injuries: an age-dependent relationship. J Neurosurg ,123 , 1223-1229.
Boeltz, T., Ireland, M., Mathis, K., Nicolini, J., Poplavski, K., Rose, S.J., Wilson, E. & English, A.W. (2013) Effects of treadmill training on functional recovery following peripheral nerve injury in rats.J Neurophysiol , 109 , 2645-2657.
Buck, C.R., Seburn, K.L. & Cope, T.C. (2000) Neurotrophin expression by spinal motoneurons in adult and developing rats. J. Comp. Neurol. , 416 , 309-318.
Copray, S. & Kernell, D. (2000) Neurotrophins and trk-receptors in adult rat spinal motoneurons: differences related to cell size but not to ’slow/fast’ specialization. Neurosci. Let. , 289 , 217-220.
English, A.W. (2005) Enhancing axon regeneration in peripheral nerves also increases functionally inappropriate reinnervation of targets.J Comp Neurol , 490 , 427-441.
English, A.W., Carrasco, D., Hoffman, D., Isaacson, R., Kang, S.S., Khan, S., Liu, X. & Ye, K. (2022) Oral Treatments With the TrkB Ligand Prodrug, R13, Promote Enhanced Axon Regeneration Following Peripheral Nerve Injury. Frontiers in Cellular Neuroscience , 16 .
English, A.W., Cucoranu, D., Mulligan, A., Rodriguez, J.A. & Sabatier, M.J. (2011a) Neurotrophin-4/5 is implicated in the enhancement of axon regeneration produced by treadmill training following peripheral nerve injury. Eur J Neurosci , 33 , 2265-2271.
English, A.W., Liu, K., Nicolini, J.M., Mulligan, A.M. & Ye, K. (2013) Small-molecule trkB agonists promote axon regeneration in cut peripheral nerves. Proceedings of the National Academy of Sciences ,110 , 16217-16222.
English, A.W., Liu, X., Mistretta, O.C., Ward, P.J. & Ye, K. (2021) Asparagine Endopeptidase (delta secretase), an enzyme implicated in Alzheimer’s disease pathology, is an inhibitor of axon regeneration in peripheral nerves. eNeuro , 8 .
English, A.W., Mulligan, A., Cucoranu, D. & Sabatier, M.J. (2009) Treadmill training enhances axon regeneration in cut peripheral nerves without effecting topographic specificity of reinnervating motoneurons.J Comp Neurol , 517 , 245-255.
English, A.W., Mulligan, A., Meador, W., Sabatier, M.J. & Schwartz, G. (2007) Electrical stimulation promotes peripheral axon regeneration by enhanced neuronal neurotrophin signaling. Dev. Neurobiol. ,67 , 158-172.
English, A.W., Wilhelm, J.C. & Sabatier, M.J. (2011b) Enhancing recovery from peripheral nerve injury using treadmill training.Ann. Anat. , 193 , 354-361.
English, A.W., Wilhelm, J.C. & Ward, P.J. (2014) Exercise, neurotrophins, and axon regeneration in the PNS. Physiology ,29 , 437-445.
Gordon, T. & English, A.W. (2016) Strategies to promote peripheral nerve regeneration: electrical stimulation and/or exercise. Eur J Neurosci , 43 , 336-350.
Karchewski, L.A., Gratto, K.A., Wetmore, C. & Verge, V.M. (2002) Dynamic patterns of BDNF expression in injured sensory neurons: differential modulation by NGF and NT-3. Eur J Neurosci ,16 , 1449-1462.
Scholz, T., Krichevsky, A., Sumarto, A., Jaffurs, D., Wirth, G., Paydar, K. & Evans, G. (2009) Peripheral nerve injuries: An internationalsurvey of current treatments and future perspectives. J Reconstr Microsurg , 25 , 339-344.
Shirahama-Noda, K., Yamamoto, A., Sugihara, K., Hashimoto, N., Asano, M., Nishimura, M. & Hara-Nishimura, I. (2003) Biosynthetic processing of cathepsins and lysosomal degradation are abolished in asparaginyl endopeptidase-deficient mice. J Biol Chem , 278 , 33194-33199.
Udina, E., Cobianchi, S., Allodi, I. & Navarro, X. (2011a) Effects of activity-dependent strategies on regeneration and plasticity after peripheral nerve injuries. Ann Anat , 193 , 347-353.
Udina, E., Puigdemasa, A. & Navarro, X. (2011b) Passive and active exercise improve regeneration and muscle reinnervation after peripheral nerve injury in the rat. Muscle & Nerve , 43 , 500-509.
Wang, Z.H., Wu, W., Kang, S.S., Liu, X., Wu, Z., Peng, J., Yu, S.P., Manfredsson, F.P., Sandoval, I.M., Liu, X., Wang, J.Z. & Ye, K. (2018) BDNF inhibits neurodegenerative disease-associated asparaginyl endopeptidase activity via phosphorylation by AKT. JCI Insight ,3 .
Wilhelm, J.C., Xu, M., Cucoranu, D., Chmielewski, S., Holmes, T., Lau, K., Bassell, G.J. & English, A.W. (2012) Cooperative roles of BDNF expression in neurons and Schwann cells are modulated by exercise to facilitate nerve regeneration. Journal of Neuroscience ,32 , 5002-5009.
Zhang, Z., Obianyo, O., Dall, E., Du, Y., Fu, H., Liu, X., Kang, S.S., Song, M., Yu, S.P., Cabrele, C., Schubert, M., Li, X., Wang, J.Z., Brandstetter, H. & Ye, K. (2017) Inhibition of delta-secretase improves cognitive functions in mouse models of Alzheimer’s disease. Nature communications , 8 , 14740.
Zhang, Z., Song, M., Liu, X., Kang, S.S., Kwon, I.S., Duong, D.M., Seyfried, N.T., Hu, W.T., Liu, Z., Wang, J.Z., Cheng, L., Sun, Y.E., Yu, S.P., Levey, A.I. & Ye, K. (2014) Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer’s disease. Nat Med , 20 , 1254-1262.
Zhang, Z., Song, M., Liu, X., Su Kang, S., Duong, D.M., Seyfried, N.T., Cao, X., Cheng, L., Sun, Y.E., Ping Yu, S., Jia, J., Levey, A.I. & Ye, K. (2015) Delta-secretase cleaves amyloid precursor protein and regulates the pathogenesis in Alzheimer’s disease. Nature communications , 6 , 8762.