Conflict of Interest

The authors declare no conflict of interest.
References
Awwad, H. M., Geisel, J., & Obeid, R. (2016a). Determination of trimethylamine, trimethylamine N-oxide, and taurine in human plasma and urine by UHPLC–MS/MS technique. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences ,1038 , 12–18. doi: 10.1016/j.jchromb.2016.10.017
Awwad, H. M., Geisel, J., & Obeid, R. (2016b). Determination of trimethylamine, trimethylamine N-oxide, and taurine in human plasma and urine by UHPLC–MS/MS technique. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences ,1038 , 12–18. doi: 10.1016/j.jchromb.2016.10.017
Catucci, G., Sadeghi, S. J., & Gilardi, G. (2019). A direct time-based ITC approach for substrate turnover measurements demonstrated on human FMO3. Chemical Communications , 55 (44), 6217–6220. doi: 10.1039/c9cc01356c
Chang, Y. C., Chu, Y. H., Wang, C. C., Wang, C. H., Tain, Y. L., & Yang, H. W. (2021a). Rapid detection of gut microbial metabolite trimethylamine n-oxide for chronic kidney disease prevention.Biosensors , 11 (9). doi: 10.3390/bios11090339
Chang, Y. C., Chu, Y. H., Wang, C. C., Wang, C. H., Tain, Y. L., & Yang, H. W. (2021b). Rapid detection of gut microbial metabolite trimethylamine n-oxide for chronic kidney disease prevention.Biosensors , 11 (9). doi: 10.3390/bios11090339
Chen, Y., Patel, N. A., Crombie, A., Scrivens, J. H., & Murrell, J. C. (2011). Bacterial flavin-containing monooxygenase is trimethylamine monooxygenase. Proceedings of the National Academy of Sciences of the United States of America , 108 (43), 17791–17796. doi: 10.1073/pnas.1112928108
Colby, J., & Zatman, L. J. (1973). Trimethylamine metabolism in obligate and facultative methylotrophs. Biochemical Journal ,132 (1), 101–112. doi: 10.1042/bj1320101
daCosta, K. A., Vrbanac, J. J., & Zeisel, S. H. (1990). The measurement of dimethylamine, trimethylamine, and trimethylamine N-oxide using capillary gas chromatography-mass spectrometry. Analytical Biochemistry , 187 (2), 234–239. doi: 10.1016/0003-2697(90)90449-J
Dixit, A., & Roche, T. E. (1984). Spectrophotometric assay of the flavin-containing monooxygenase and changes in its activity in female mouse liver with nutritional and diurnal conditions. Archives of Biochemistry and Biophysics , 233 (1), 50–63. doi: 10.1016/0003-9861(84)90600-3
Falony, G., Vieira-Silva, S., & Raes, J. (2015). Microbiology Meets Big Data: The Case of Gut Microbiota-Derived Trimethylamine. Annual Review of Microbiology , 69 (1), 305–321. doi: 10.1146/annurev-micro-091014-104422
Gątarek, P., & Kałużna-Czaplińska, J. (2021a). Trimethylamine n-oxide (TMAO) in human health. EXCLI Journal , Vol. 20, pp. 301–319. Leibniz Research Centre for Working Environment and Human Factors. doi: 10.17179/excli2020-3239
Gątarek, P., & Kałużna-Czaplińska, J. (2021b). Trimethylamine n-oxide (TMAO) in human health. EXCLI Journal , Vol. 20, pp. 301–319. Leibniz Research Centre for Working Environment and Human Factors. doi: 10.17179/excli2020-3239
He, M., Yu, H., Lei, P., Huang, S., Ren, J., Fan, W., … Jiang, M. (2021a). Determination of trimethylamine N-oxide and betaine in serum and food by targeted metabonomics. Molecules , 26 (5), 0–8. doi: 10.3390/molecules26051334
He, M., Yu, H., Lei, P., Huang, S., Ren, J., Fan, W., … Jiang, M. (2021b). Determination of trimethylamine N-oxide and betaine in serum and food by targeted metabonomics. Molecules , 26 (5), 0–8. doi: 10.3390/molecules26051334
Hefni, M. E., Bergström, M., Lennqvist, T., Fagerström, C., & Witthöft, C. M. (2021). Simultaneous quantification of trimethylamine N-oxide, trimethylamine, choline, betaine, creatinine, and propionyl-, acetyl-, and l-carnitine in clinical and food samples using HILIC-LC-MS.Analytical and Bioanalytical Chemistry , 413 (21), 5349–5360. doi: 10.1007/s00216-021-03509-y
Koeth, R. A., Wang, Z., Levison, B. S., Buffa, J. A., Org, E., Sheehy, B. T., … Hazen, S. L. (2013). Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis.Nature Medicine , 19 (5), 576–585. doi: 10.1038/nm.3145
Lakshmi, G. B. V. S., Yadav, A. K., Mehlawat, N., Jalandra, R., Solanki, P. R., & Kumar, A. (2021). Gut microbiota derived trimethylamine N-oxide (TMAO) detection through molecularly imprinted polymer based sensor. Scientific Reports , 11 (1), 1–14. doi: 10.1038/s41598-020-80122-6
Lang, D. H., Yeung, C. K., Peter, R. M., Ibarra, C., Gasser, R., Itagaki, K., … Rettie, A. E. (1998). Isoform specificity of trimethylamine N-oxygenation by human flavin-containing monooxygenase (FMO) and P450 enzymes Selective catalysis by fmo3. Biochemical Pharmacology , 56 (8), 1005–1012. doi: 10.1016/S0006-2952(98)00218-4
Li, C. Y., Chen, X. L., Zhang, D., Wang, P., Sheng, Q., Peng, M., … Zhang, Y. Z. (2017). Structural mechanism for bacterial oxidation of oceanic trimethylamine into trimethylamine N-oxide.Molecular Microbiology , 103 (6), 992–1003. doi: 10.1111/mmi.13605
Loo, R. L., Chan, Q., Nicholson, J. K., & Holmes, E. (2022). Balancing the Equation: A Natural History of Trimethylamine and Trimethylamine-N-oxide. Journal of Proteome Research ,21 (3), 560–589. doi: 10.1021/acs.jproteome.1c00851
Marquez, L. A., & Dunford, H. B. (1997). Mechanism of the oxidation of 3,5,3’,5’-tetramethylbenzidine by myeloperoxidase determined by transient- and steady-state kinetics. Biochemistry ,36 (31), 9349–9355. doi: 10.1021/bi970595j
Ocque, A. J., Stubbs, J. R., & Nolin, T. D. (2015). Development and validation of a simple UHPLC-MS/MS method for the simultaneous determination of trimethylamine N-oxide, choline, and betaine in human plasma and urine. Journal of Pharmaceutical and Biomedical Analysis , 109 , 128–135. doi: 10.1016/j.jpba.2015.02.040
Pena-Pereira, F., Lavilla, I., & Bendicho, C. (2010). Colorimetric assay for determination of trimethylamine-nitrogen (TMA-N) in fish by combining headspace-single-drop microextraction and microvolume UV-vis spectrophotometry. Food Chemistry , 119 (1), 402–407. doi: 10.1016/j.foodchem.2009.07.038
Spaans, S. K., Weusthuis, R. A., van der Oost, J., & Kengen, S. W. M. (2015). NADPH-generating systems in bacteria and archaea.Frontiers in Microbiology , 6 (JUL), 1–27. doi: 10.3389/fmicb.2015.00742
Swaroop, S., Sughosh, P., & Ramanathan, G. (2009). Biomineralization of N,N-dimethylformamide by Paracoccus sp. strain DMF. Journal of Hazardous Materials , 171 (1–3), 268–272. doi: 10.1016/j.jhazmat.2009.05.138
Wang, Z., Levison, B. S., Hazen, J. E., Donahue, L., Li, X. M., & Hazen, S. L. (2014). Measurement of trimethylamine-N-oxide by stable isotope dilution liquid chromatography tandem mass spectrometry.Analytical Biochemistry , 455 (1), 35–40. doi: 10.1016/j.ab.2014.03.016
Wu, J. T., Wu, L. H., & Knight, J. A. (1986). Stability of NADPH: effect of various factors on the kinetics of degradation. Clinical Chemistry , 32 (2), 314–319. doi: 10.1093/clinchem/32.2.314
Yang, S., Li, X., Yang, F., Zhao, R., Pan, X., Liang, J., … Wu, M. (2019). Gut microbiota-dependent marker TMAO in promoting cardiovascular disease: Inflammation mechanism, clinical prognostic, and potential as a therapeutic target. Frontiers in Pharmacology , Vol. 10. Frontiers Media S.A. doi: 10.3389/fphar.2019.01360
YOUNG, R. H., MARTIN, R. L., FERIOZI, D., BREWER, D., & KAYSER, R. (1973). on the Mechanism of Quenching of Singlet Oxygen By Amines‐Iii. Evidence for a Charge‐Transfer‐Like Complex. Photochemistry and Photobiology , 17 (4), 233–244. doi: 10.1111/j.1751-1097.1973.tb06352.x