REFERENCES
Acinas, S. G., Sarma-Rupavtarm, R., Klepac-Ceraj, V., & Polz, M. F.
(2005). PCR-induced sequence artifacts and bias: insights from
comparison of two 16S rRNA clone libraries constructed from the same
sample. Applied and Environmental Microbiology , 71(12),
8966-8969.
Anderson, M. D., Ruess, R. W., Myrold, D. D., & Taylor, D. L. (2009).
Host species and habitat affect nodulation by specific Frankiagenotypes in two species of Alnus in interior Alaska.Oecologia , 160(4), 619-630.
Anderson, M. D., Taylor, D. L., & Ruess, R. W. (2013). Phylogeny and
assemblage composition of Frankia in Alnus tenuifolianodules across a primary successional sere in interior Alaska.Molecular Ecology , 22(14), 3864-3877.
Ben Tekaya, S., Ganesan, A. S., Guerra, T., Dawson, J. O., Forstner, M.
R., & Hahn, D. (2017). Sybr green-and TaqMan-based quantitative PCR
approaches allow assessment of the abundance and relative distribution
of Frankia clusters in soils. Applied and Environmental
Microbiology , 83(5), e02833-16.
Ben Tekaya, S., Guerra, T., Rodriguez, D., Dawson, J. O., & Hahn, D.
(2018). Frankia diversity in host plant root nodules is
independent of abundance or relative diversity of Frankiapopulations in corresponding rhizosphere soils. Applied and
Environmental Microbiology , 84(5), e02248-17.
Benson, D. R., & Silvester, W. B. (1993). Biology of Frankiastrains, actinomycete symbionts of actinorhizal plants.Microbiological Reviews , 57(2), 293-319.
Bosco, M., Fernandez, M. P., Simonet, P., Materassi, R., & Normand, P.
(1992). Evidence that some Frankia sp. strains are able to cross
boundaries between Alnus and Elaeagnus host specificity
groups. Applied and Environmental Microbiology , 58(5), 1569-1576.
Brockwell, J., Roughley, R. J., & Herridge, D. F. (1987). Population
dynamics of Rhizobium japonicum strains used to inoculate
three successive crops of soybean. Australian Journal of
Agricultural Research , 38(1), 61-74.
Castresana, J. (2000). Selection of conserved blocks from multiple
alignments for their use in phylogenetic analysis. Molecular
Biology and Evolution , 17(4), 540-552.
Chaia, E. E., Wall, L. G., & Huss-Danell, K. (2010). Life in soil by
the actinorhizal root nodule endophyte Frankia . A review.Symbiosis , 51(3), 201-226.
Chandler, D. P., Fredrickson, J. K., & Brockman, F. J. (1997). Effect
of PCR template concentration on the composition and distribution of
total community 16S rDNA clone libraries. Molecular Ecology ,
6(5), 475-482.
Clúa, J., Roda, C., Zanetti, M. E., & Blanco, F. A. (2018).
Compatibility between legumes and rhizobia for the establishment of a
successful nitrogen-fixing symbiosis. Genes , 9(3), 125.
Cotin-Galvan, L., Pozzi, A. C., Schwob, G., Fournier, P., Fernandez, M.
P., & Herrera-Belaroussi, A. (2016). In-planta sporulation
capacity enhances infectivity and rhizospheric competitiveness ofFrankia strains. Microbes and Environments , 31(1), 11-18.
Dawson, J. O. (2008). Ecology of actinorhizal plants. In: Nitrogen
Fixation: Origin, Applications, and Research Progress, Vol. 6
Nitrogen-Fixing Actinorhizal Symbioses (eds Pawlowski K, Newton WE)
Springer, Dordrecht, The Netherlands.
Denison, R. F. (2000). Legume sanctions and the evolution of symbiotic
cooperation by rhizobia. The American Naturalist , 156(6),
567-576.
Denison, R. F., Bledsoe, C., Kahn, M., O’Gara, F., Simms, E. L., &
Thomashow, L. S. (2003). Cooperation in the rhizosphere and the “free
rider” problem. Ecology , 84(4), 838-845.
Denison, R. F., & Kiers, E. T. (2004). Lifestyle alternatives for
rhizobia: mutualism, parasitism, and forgoing symbiosis. FEMS
Microbiology Letters , 237(2), 187-193.
Denison, R. F., & Kiers, E. T. (2011). Life histories of symbiotic
rhizobia and mycorrhizal fungi. Current Biology 21(18),
R775-R785.
de Lipthay, J. R., Enzinger, C., Johnsen, K., Aamand, J., & Sørensen,
S. J. (2004). Impact of DNA extraction method on bacterial community
composition measured by denaturing gradient gel electrophoresis.Soil Biology and Biochemistry , 36(10), 1607-1614.
Diem, H. G., Gauthier, D., & Dommergues, Y. R. (1982). Extranodular
growth of Frankia on Casuarina equisetifolia . FEMS
Microbiology Lett ers, 15, 181-184.
Du, D., & Baker, D. D. (1992). Actinorhizal host-specificity of ChineseFrankia strains. Plant and Soil , 144(1), 113-116.
Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high
accuracy and high throughput, Nucleic Acids Research , 32(5),
1792-1797.
Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R.
(2011). UCHIME improves sensitivity and speed of chimera detection.Bioinformatics , 27(16), 2194-2200.
Epstein, B., & Tiffin, P. (2021). Comparative genomics reveals high
rates of horizontal transfer and strong purifying selection on rhizobial
symbiosis genes. Proceedings of the Royal Society B , 288(1942),
20201804.
Ewald, P. W. (1987). Transmission modes and evolution of the
parasite-mutualism continuum. Annals of the New York Academy of
Sciences , 503, 295-305.
Frank, S. A. (1996). Host–symbiont conflict over the mixing of
symbiotic lineages. Proceedings of the Royal Society of London.
Series B: Biological Sciences , 263(1368), 339-344.
Ghodbane-Gtari, F., Nouioui, I., Boudabous, A., & Gtari, M. (2010).
16S–23S rRNA intergenic spacer region variability in the genusFrankia . Microbial Ecology , 60(3), 487-495.
Gołębiewski, M., & Tretyn, A. (2020). Generating amplicon reads for
microbial community assessment with next‐generation sequencing.Journal of Applied Microbiology , 128(2), 330-354.
Gouy, M., Guindon, S., & Gascuel, O. (2010). SeaView version 4: a
multiplatform graphical user interface for sequence alignment and
phylogenetic tree building. Molecular Biology and Evolution ,
27(2), 221-224.
Graham, P. H., & Vance, C. P. (2003). Legumes: importance and
constraints to greater use. Plant Physiology , 131(3), 872-877.
Hall, T. A. (1999). BioEdit: a user-friendly biological sequence
alignment editor and analysis program for Windows 95/98/NT.Nucleic Acids Symposium Series , 41(41), 95-98.
Halloway, A. H., Heath, K. D., & McNickle, G. G. (2022). When does
mutualism offer a competitive advantage? A game-theoretic analysis of
host–host competition in mutualism. AoB Plants , 14(2), plac010.
Hammerstein, P., & Noë, R. (2016). Biological trade and markets.Philosophical Transactions of the Royal Society B: Biological
Sciences , 371(1687), 20150101.
Heath, K. D., & Tiffin, P. (2007). Context dependence in the
coevolution of plant and rhizobial mutualists. Proceedings of the
Royal Society B: Biological Sciences , 274(1620), 1905-1912.
Heath, K. D., & Grillo, M. A. (2016). Rhizobia: tractable models for
bacterial evolutionary ecology. Environmental Microbiology ,
18(12), 4307–4311.
Higgins, L. M., & Kennedy, P. G. (2012). Symbiotic Frankiabacteria in Alnus forests in Mexico and the United States of
America: is geographic location a good predictor of assemblage
structure?. Botany , 90(6), 423-431.
Hollingsworth, T. N., Lloyd, A. H., Nossov, D. R., Ruess, R. W.,
Charlton, B. A., & Kielland, K. (2010). Twenty-five years of vegetation
change along a putative successional chronosequence on the Tanana River,
Alaska. Canadian Journal of Forest Research , 40(7), 1273-1287.
Hollingsworth, T. N. (2022). Bonanza Creek LTER: Shrub, Seedling and
Sapling Density from 1975 to Present in the Bonanza Creek Experimental
Forest near Fairbanks, Alaska, Bonanza Creek LTER - University of Alaska
Fairbanks. BNZ:530, http://www.lter.uaf.edu/data/data-detail/id/530.
İnceoǧlu, O., Hoogwout, E. F., Hill, P., & van Elsas, J. D. (2010).
Effect of DNA extraction method on the apparent microbial diversity of
soil. Applied and Environmental Microbiology , 76(10), 3378-3382.
Ingestad, T. (1980). Growth, nutrition, and nitrogen fixation in grey
alder at varied rate of nitrogen addition. Physiologia Plantarum ,
50(4), 353-364.
JMP 16. (2021). Consumer research. SAS Institute, Cary, North Carolina,
USA.
Katoh, K., Misawa, K., Kuma, K. I., & Miyata, T. (2002). MAFFT: a novel
method for rapid multiple sequence alignment based on fast Fourier
transform. Nucleic Acids Research , 30(14), 3059-3066.
Kennedy, P. G., Schouboe, J. L., Rogers, R. H., Weber, M. G., &
Nadkarni, N. M. (2010)a. Frankia and Alnus rubracanopy roots: an assessment of genetic diversity, propagule
availability, and effects on soil nitrogen. Microbial Ecology ,
59(2), 214-220.
Kennedy, P. G., Weber, M. G., & Bluhm, A. A. (2010)b. Frankiabacteria in Alnus rubra forests: genetic diversity and
determinants of assemblage structure. Plant and Soil , 335(1),
479-492.
Kiers, E. T., Rousseau, R. A., West, S. A., & Denison, R. F. (2003).
Host sanctions and the legume–rhizobium mutualism. Nature ,
425(6953), 78-81.
Kiers, E. T., Rousseau, R. A., & Denison, R. F. (2006). Measured
sanctions: legume hosts detect quantitative variation in rhizobium
cooperation and punish accordingly. Evolutionary Ecology
Research , 8(6), 1077-1086.
Kiers, E. T., & Denison, R. F. (2008). Sanctions, cooperation, and the
stability of plant-rhizosphere mutualisms. Annual Review of
Ecology, Evolution, and Systematics , 39, 215-236.
Kirk, J. L., Beaudette, L. A., Hart, M., Moutoglis, P., Klironomos, J.
N., Lee, H., & Trevors, J. T. (2004). Methods of studying soil
microbial diversity. Journal of Microbiological Methods , 58(2),
169-188.
Lipus, A., & Kennedy, P. G. (2011). Frankia assemblages
associated with Alnus rubra and Alnusviridis are strongly influenced by host species identity.International Journal of Plant Sciences , 172(3), 403-410.
Markham, J. H. (2008). Variability of nitrogen-fixing Frankia onAlnus species. Botany 86(5), 501-510.
McInnes, A., Thies, J. E., Abbott, L. K., & Howieson, J. G. (2004).
Structure and diversity among rhizobial strains, populations and
communities–a review. Soil Biology and Biochemistry , 36(8),
1295-1308.
Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES
Science Gateway for inference of large phylogenetic trees inProceedings of the Gateway Computing Environments Workshop (GCE), 14
Nov. 2010, New Orleans, LA pp 1 - 8.
Miranda-Sánchez, F., Rivera, J., & Vinuesa, P. (2016). Diversity
patterns of Rhizobiaceae communities inhabiting soils, root surfaces and
nodules reveal a strong selection of rhizobial partners by legumes.Environmental Microbiology , 18(8), 2375-2391.
Mirza, B. S., Welsh, A., & Hahn, D. (2007). Saprophytic growth of
inoculated Frankia sp. in soil microcosms. FEMS
Microbiology Ecology , 62(3), 280-289.
Mirza, B. S., Welsh, A., & Hahn, D. (2009)a. Growth of Frankiastrains in leaf litter-amended soil and the rhizosphere of a
nonactinorhizal plant. FEMS Microbiology Ecology , 70(1), 132-141.
Mirza, B. S., Welsh, A., Rasul, G., Rieder, J. P., Paschke, M. W., &
Hahn, D. (2009)b. Variation in Frankia populations of theElaeagnus host infection group in nodules of six host plant
species after inoculation with soil. Microbial Ecology , 58(2),
384-393.
Mirza, B. S., Welsh, A., Rieder, J. P., Paschke, M. W., & Hahn, D.
(2009)c. Diversity of frankiae in soils from five continents.Systematic and Applied Microbiology , 32(8), 558-570.
Noë, R., & Hammerstein, P. (1995). Biological markets. Trends in
Ecology & Evolution , 10(8), 336-339.
Normand, P., Orso, S., Cournoyer, B., Jeannin, P., Chapelon, C., Dawson,
J., … & Misra, A. K. (1996). Molecular phylogeny of the genusFrankia and related genera and emendation of the family
Frankiaceae. International Journal of Systematic and Evolutionary
Microbiology , 46(1), 1-9.
Normand, P., Simonet, P., & Bardin, R. (1988). Conservation ofnif sequences in Frankia . Molecular and General
Genetics 213(2), 238-246.
Nouioui, I., Ghodhbane-Gtari, F., Beauchemin, N. J., Tisa, L. S., &
Gtari, M. (2011). Phylogeny of members of the Frankia genus based
on gyrB, nifH and glnII sequences. Antonie Van Leeuwenhoek ,
100(4), 579-587.
Oono, R., & Denison, R. F. (2010). Comparing symbiotic efficiency
between swollen versus nonswollen rhizobial bacteroids. Plant
Physiology , 154(3), 1541-1548.
Parker, M. P. (1995). Plant fitness variation caused by different
mutualist genotypes. Ecology , 76(5), 1525-1535.
Pawlowski, K., & Demchenko, K. N. (2012). The diversity of actinorhizal
symbiosis. Protoplasma , 249(4), 967-979.
Pawlowski, K., & Sprent, J. I. (2008). Comparison between actinorhizal
and legume symbiosis. In Nitrogen-fixing actinorhizal symbioses (pp.
261-288). Springer, Dordrecht.
Piex, A., Ramirez-Behena, M.H., Valazquez, E., & Bedmar, E.J. (2015).
Bacterial associations with legumes. Critical Reviews in Plant
Sciences 34(1-3), 17-42.
Pozzi, A. C., Bautista-Guerrero, H. H., Nouioui, I., Cotin-Galvan, L.,
Pepin, R., Fournier, P., … & Herrera-Belaroussi, A. (2015). In-planta
sporulation phenotype: a major life history trait to understand the
evolution of Alnus - infective Frankia strains.Environmental Microbiology , 17(9), 3125-3138.
Pozzi, A. C., Bautista-Guerrero, H. H., Abby, S. S., Herrera-Belaroussi,
A., Abrouk, D., Normand, P., … & Fernandez, M. P. (2018)a. RobustFrankia phylogeny, species delineation and intraspecies diversity
based on Multi-Locus Sequence Analysis (MLSA) and Single-Locus Strain
Typing (SLST) adapted to a large sample size. Systematic and
Applied Microbiology , 41(4), 311-323.
Pozzi, A. C., Roy, M., Nagati, M., Schwob, G., Manzi, S., Gardes, M.,
… & Fernandez, M. P. (2018)b. Patterns of diversity, endemism and
specialization in the root symbiont communities of alder species on the
island of Corsica. New Phytologist , 219(1), 336-349.
Prat, D. (1989). Effects of some pure and mixed Frankia strains
on seedling growth in different Alnus species. Plant and
Soil , 113(1), 31-38.
Qiu, X., Wu, L., Huang, H., McDonel, P. E., Palumbo, A. V., Tiedje, J.
M., & Zhou, J. (2001). Evaluation of PCR-generated chimeras, mutations,
and heteroduplexes with 16S rRNA gene-based cloning. Applied and
Environmental Microbiology , 67(2), 880-887.
Radwan, M. A. (1987). Effects of fertilization on growth and foliar
nutrients of red alder seedlings (Vol. 375). US Department of
Agriculture, Forest Service, Pacific Northwest Research Station.
Robe, P., Nalin, R., Capellano, C., Vogel, T. M., & Simonet, P. (2003).
Extraction of DNA from soil. European Journal of Soil Biology ,
39(4), 183-190.
Rocha, E. P. (2018). Neutral theory, microbial practice: challenges in
bacterial population genetics. Molecular Biology and Evolution ,
35(6), 1338-1347.
Rodriguez, D., Guerra, T. M., Forstner, M. R., & Hahn, D. (2016).
Diversity of Frankia in soil assessed by Illumina sequencing of
nifH gene fragments. Systematic and Applied Microbiology , 39(6),
391-397.
Roff, D. A., & Fairbairn, D. J. (2007). The evolution of trade-offs:
where are we?. Journal of Evolutionary Biology , 20(2), 433-447.
Ruess, R. W., Anderson, M. D., McFarland, J. M., Kielland, K., Olson,
K., & Taylor, D. L. (2013). Ecosystem‐level consequences of symbiont
partnerships in an N‐fixing shrub from interior Alaskan floodplains.
Ecological Monographs, 83(2), 177-194.
Sachs, J. L., Mueller, U. G., Wilcox, T. P., & Bull, J. J. (2004). The
evolution of cooperation. The Quarterly Review of Biology , 79(2),
135-160.
Sachs, J. L., & Simms, E. L. (2006). Pathways to mutualism breakdown.Trends in Ecology and Evolution , 21(10), 585-592.
Sachs, J. L., Ehinger, M. O., & Simms, E. L. (2010). Origins of
cheating and loss of symbiosis in wild Bradyrhizobium .Journal of Evolutionary Biology , 23(5), 1075-1089.
Sachs, J. L., Skophammer, R. G., Bansal, N., & Stajich, J. E. (2014).
Evolutionary origins and diversification of proteobacterial mutualists.Proceedings of the Royal Society B: Biological Sciences ,
281(1775), 20132146.
Sáenz, J. S., Roldan, F., Junca, H., & Arbeli, Z. (2019). Effect of the
extraction and purification of soil DNA and pooling of PCR amplification
products on the description of bacterial and archaeal communities.Journal of Applied Microbiology , 126(5), 1454-1467.
Samant, S. S., Dawson, J. O., & Hahn, D. (2015). Growth responses of
indigenous Frankia populations to edaphic factors in actinorhizal
rhizospheres. Systematic and Applied Microbiology , 38(7),
501-505.
Samant, S., Huo, T., Dawson, J. O., & Hahn, D. (2016). Abundance and
relative distribution of Frankia host infection groups under
actinorhizal Alnus glutinosa and non-actinorhizalBetula nigra trees. Microbial Ecology , 71(2),
473-481.
Sanchez-Cid, C., Tignat-Perrier, R., Franqueville, L., Delaurière, L.,
Schagat, T., & Vogel, T. M. (2022). Sequencing depth has a stronger
effect than DNA extraction on soil bacterial richness discovery.Biomolecules , 12(3), 364.
Schloss, P. D., Gevers, D., & Westcott, S. L. (2011). Reducing the
effects of PCR amplification and sequencing artifacts on 16S rRNA-based
studies. PloS One , 6(12), e27310.
Schloss P. D., Wescott, S. L., Ryabin, T., Hall, J. R., Hartmann, M.,
Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H.,
Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D.
J., & Weber, C. F. (2009). Introducing mother: Open-source,
platform-independet, community-supported software for describing and
comparing microbial communities. Applied and Environmental
Microbiology , 75(23), 7537-41.
Sellstedt, A., Huss-Danell, K., & Ahlqvist, A. S. (1986). Nitrogen
fixation and biomass production in symbioses between Alnusincana and Frankia strains with different hydrogen
metabolism. Physiologia Plantarum , 66(1), 99-107.
Simms, E. L., & Taylor, D. L. (2002). Partner choice in
nitrogen-fixation mutualisms of legumes and rhizobia. Integrative
and Comparative Biology , 42(2), 369-380.
Simms, E. L., Taylor, D. L., Povich, J., Shefferson, R. P., Sachs, J.
L., Urbina, M., & Tausczik, Y. (2006). An empirical test of partner
choice mechanisms in a wild legume–rhizobium interaction. Proceedings
of the Royal Society B: Biological Sciences, 273(1582), 77-81.
Simonet, P., Thi Le, N., Moiroud, A., & Bardin, R. (1989). Diversity ofFrankia strains isolated from a single alder stand. Plant
and Soil , 118(1), 13-22.
Sipos, R., Székely, A., Révész, S., & Márialigeti, K. (2010).
Addressing PCR biases in environmental microbiology studies. In
Bioremediation (pp. 37-58). Humana Press.
Speksnijder, A. G., Kowalchuk, G. A., De Jong, S., Kline, E., Stephen,
J. R., & Laanbroek, H. J. (2001). Microvariation artifacts introduced
by PCR and cloning of closely related 16S rRNA gene sequences.Applied and Environmental Microbiology , 67(1), 469-472.
Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis
and post-analysis of large phylogenies. Bioinformatics , 30(9),
1312-1313.
Stewart, W. D. P., & Bond, G. (1961). The effect of ammonium nitrogen
on fixation of elemental nitrogen in Alnus and Myrica .Plant and Soil , 14(4), 347-359.
Swensen, S. M., & Benson, D. R. (2008). Evolution of actinorhizal host
plants and Frankia endosymbionts. In:Nitrogen Fixation:
Origin, Applications, and Research Progress, Vol. 6 Nitrogen-Fixing
Actinorhizal Symbioses (eds Pawlowski K, Newton WE) Springer,
Dordrecht, The Netherlands.
Taylor, D. L., Herriott, I. C., Long, J., & O’Neill, K. (2007). TOPO TA
is A-OK: a test of phylogenetic bias in fungal environmental clone
library construction. Environmental Microbiology , 9(5),
1329-1334.
Van Cleve, K. V., Dyrness, C. T., Marion, G. M., & Erickson, R. (1993).
Control of soil development on the Tanana River floodplain, interior
Alaska. Canadian Journal of Forest Research , 23(5), 941-955.
van Elsas, J. D., & Boersma, F. G. H. (2011). A review of molecular
methods to study the microbiota of soil and the mycosphere.European Journal of Soil Biology , 47(2), 77-87.
Vemulapally, S., Guerra, T., & Hahn, D. (2022)a. Effect of differentAlnus taxa on abundance and diversity of introduced and
indigenous Frankia in soils and root nodules. FEMS
Microbiology Ecology , 98(3), fiac020.
Vemulapally, S., Guerra, T., Weckerly, F. W., & Hahn, D. (2022)b.
Competition of two inoculated Frankia strains in root nodulation
of Alnus glutinosa seedlings and associatedFrankia -strain growth in rhizospheric and non-rhizospheric soils.Plant and Soil , 474(1), 115-124.
Vessey, J. K., Pawlowski, K., & Bergman, B. (2005). Root-based
N2-fixing symbioses: Legumes, actinorhizal plants,Parasponia sp. and cycads. Plant and Soil 274(1), 51-78.
Vitousek, P. M., Cassman, K. E. N., Cleveland, C., Crews, T., Field, C.
B., Grimm, N. B., … & Sprent, J. I. (2002). Towards an ecological
understanding of biological nitrogen fixation. Biogeochemistry, 57(1),
1-45.
Wall, L. G., & Berry, A. M. (2008). Early interactions, infection and
nodulation in actinorhizal symbiosis. In Nitrogen-fixing actinorhizal
symbioses (pp. 147-166). Springer, Dordrecht.
Werner, G. D., Strassmann, J. E., Ivens, A. B., Engelmoer, D. J.,
Verbruggen, E., Queller, D. C., … & Kiers, E. T. (2014). Evolution of
microbial markets. Proceedings of the National Academy of
Sciences , 111(4), 1237-1244.
Welsh, A. K., Dawson, J. O., Gottfried, G. J., & Hahn, D. (2009)a.
Diversity of Frankia populations in root nodules of
geographically isolated Arizona alder trees in central Arizona (United
States). Applied and Environmental Microbiology , 75(21),
6913-6918.
Welsh, A., Mirza, B. S., Rieder, J. P., Paschke, M. W., & Hahn, D.
(2009)b. Diversity of frankiae in root nodules of Morellapensylvanica grown in soils from five continents.Systematic and Applied Microbiology , 32(3), 201-210.
West, S. A., Kiers, E. T., Simms, E. L., & Denison, R. F. (2002).
Sanctions and mutualism stability: why do rhizobia fix nitrogen?Proceedings of the Royal Society B 269(1492), 685-694.
Wheeler, C. T., & Miller, I. M. (1990). Current and potential uses of
actinorhizal plants in Europe. In The Biology of Frankiaand Actinorhizal Plants . (eds. C.R. Schwintzer & J.D. Tjepkema)
Academic Press, San Diego, CA.
TABLES