REFERENCES
Acinas, S. G., Sarma-Rupavtarm, R., Klepac-Ceraj, V., & Polz, M. F. (2005). PCR-induced sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Applied and Environmental Microbiology , 71(12), 8966-8969.
Anderson, M. D., Ruess, R. W., Myrold, D. D., & Taylor, D. L. (2009). Host species and habitat affect nodulation by specific Frankiagenotypes in two species of Alnus in interior Alaska.Oecologia , 160(4), 619-630.
Anderson, M. D., Taylor, D. L., & Ruess, R. W. (2013). Phylogeny and assemblage composition of Frankia in Alnus tenuifolianodules across a primary successional sere in interior Alaska.Molecular Ecology , 22(14), 3864-3877.
Ben Tekaya, S., Ganesan, A. S., Guerra, T., Dawson, J. O., Forstner, M. R., & Hahn, D. (2017). Sybr green-and TaqMan-based quantitative PCR approaches allow assessment of the abundance and relative distribution of Frankia clusters in soils. Applied and Environmental Microbiology , 83(5), e02833-16.
Ben Tekaya, S., Guerra, T., Rodriguez, D., Dawson, J. O., & Hahn, D. (2018). Frankia diversity in host plant root nodules is independent of abundance or relative diversity of Frankiapopulations in corresponding rhizosphere soils. Applied and Environmental Microbiology , 84(5), e02248-17.
Benson, D. R., & Silvester, W. B. (1993). Biology of Frankiastrains, actinomycete symbionts of actinorhizal plants.Microbiological Reviews , 57(2), 293-319.
Bosco, M., Fernandez, M. P., Simonet, P., Materassi, R., & Normand, P. (1992). Evidence that some Frankia sp. strains are able to cross boundaries between Alnus and Elaeagnus host specificity groups. Applied and Environmental Microbiology , 58(5), 1569-1576.
Brockwell, J., Roughley, R. J., & Herridge, D. F. (1987). Population dynamics of Rhizobium japonicum strains used to inoculate three successive crops of soybean. Australian Journal of Agricultural Research , 38(1), 61-74.
Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution , 17(4), 540-552.
Chaia, E. E., Wall, L. G., & Huss-Danell, K. (2010). Life in soil by the actinorhizal root nodule endophyte Frankia . A review.Symbiosis , 51(3), 201-226.
Chandler, D. P., Fredrickson, J. K., & Brockman, F. J. (1997). Effect of PCR template concentration on the composition and distribution of total community 16S rDNA clone libraries. Molecular Ecology , 6(5), 475-482.
Clúa, J., Roda, C., Zanetti, M. E., & Blanco, F. A. (2018). Compatibility between legumes and rhizobia for the establishment of a successful nitrogen-fixing symbiosis. Genes , 9(3), 125.
Cotin-Galvan, L., Pozzi, A. C., Schwob, G., Fournier, P., Fernandez, M. P., & Herrera-Belaroussi, A. (2016). In-planta sporulation capacity enhances infectivity and rhizospheric competitiveness ofFrankia strains. Microbes and Environments , 31(1), 11-18.
Dawson, J. O. (2008). Ecology of actinorhizal plants. In: Nitrogen Fixation: Origin, Applications, and Research Progress, Vol. 6 Nitrogen-Fixing Actinorhizal Symbioses (eds Pawlowski K, Newton WE) Springer, Dordrecht, The Netherlands.
Denison, R. F. (2000). Legume sanctions and the evolution of symbiotic cooperation by rhizobia. The American Naturalist , 156(6), 567-576.
Denison, R. F., Bledsoe, C., Kahn, M., O’Gara, F., Simms, E. L., & Thomashow, L. S. (2003). Cooperation in the rhizosphere and the “free rider” problem. Ecology , 84(4), 838-845.
Denison, R. F., & Kiers, E. T. (2004). Lifestyle alternatives for rhizobia: mutualism, parasitism, and forgoing symbiosis. FEMS Microbiology Letters , 237(2), 187-193.
Denison, R. F., & Kiers, E. T. (2011). Life histories of symbiotic rhizobia and mycorrhizal fungi. Current Biology 21(18), R775-R785.
de Lipthay, J. R., Enzinger, C., Johnsen, K., Aamand, J., & Sørensen, S. J. (2004). Impact of DNA extraction method on bacterial community composition measured by denaturing gradient gel electrophoresis.Soil Biology and Biochemistry , 36(10), 1607-1614.
Diem, H. G., Gauthier, D., & Dommergues, Y. R. (1982). Extranodular growth of Frankia on Casuarina equisetifolia . FEMS Microbiology Lett ers, 15, 181-184.
Du, D., & Baker, D. D. (1992). Actinorhizal host-specificity of ChineseFrankia strains. Plant and Soil , 144(1), 113-116.
Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Research , 32(5), 1792-1797.
Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection.Bioinformatics , 27(16), 2194-2200.
Epstein, B., & Tiffin, P. (2021). Comparative genomics reveals high rates of horizontal transfer and strong purifying selection on rhizobial symbiosis genes. Proceedings of the Royal Society B , 288(1942), 20201804.
Ewald, P. W. (1987). Transmission modes and evolution of the parasite-mutualism continuum. Annals of the New York Academy of Sciences , 503, 295-305.
Frank, S. A. (1996). Host–symbiont conflict over the mixing of symbiotic lineages. Proceedings of the Royal Society of London. Series B: Biological Sciences , 263(1368), 339-344.
Ghodbane-Gtari, F., Nouioui, I., Boudabous, A., & Gtari, M. (2010). 16S–23S rRNA intergenic spacer region variability in the genusFrankia . Microbial Ecology , 60(3), 487-495.
Gołębiewski, M., & Tretyn, A. (2020). Generating amplicon reads for microbial community assessment with next‐generation sequencing.Journal of Applied Microbiology , 128(2), 330-354.
Gouy, M., Guindon, S., & Gascuel, O. (2010). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution , 27(2), 221-224.
Graham, P. H., & Vance, C. P. (2003). Legumes: importance and constraints to greater use. Plant Physiology , 131(3), 872-877.
Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT.Nucleic Acids Symposium Series , 41(41), 95-98.
Halloway, A. H., Heath, K. D., & McNickle, G. G. (2022). When does mutualism offer a competitive advantage? A game-theoretic analysis of host–host competition in mutualism. AoB Plants , 14(2), plac010.
Hammerstein, P., & Noë, R. (2016). Biological trade and markets.Philosophical Transactions of the Royal Society B: Biological Sciences , 371(1687), 20150101.
Heath, K. D., & Tiffin, P. (2007). Context dependence in the coevolution of plant and rhizobial mutualists. Proceedings of the Royal Society B: Biological Sciences , 274(1620), 1905-1912.
Heath, K. D., & Grillo, M. A. (2016). Rhizobia: tractable models for bacterial evolutionary ecology. Environmental Microbiology , 18(12), 4307–4311.
Higgins, L. M., & Kennedy, P. G. (2012). Symbiotic Frankiabacteria in Alnus forests in Mexico and the United States of America: is geographic location a good predictor of assemblage structure?. Botany , 90(6), 423-431.
Hollingsworth, T. N., Lloyd, A. H., Nossov, D. R., Ruess, R. W., Charlton, B. A., & Kielland, K. (2010). Twenty-five years of vegetation change along a putative successional chronosequence on the Tanana River, Alaska. Canadian Journal of Forest Research , 40(7), 1273-1287.
Hollingsworth, T. N. (2022). Bonanza Creek LTER: Shrub, Seedling and Sapling Density from 1975 to Present in the Bonanza Creek Experimental Forest near Fairbanks, Alaska, Bonanza Creek LTER - University of Alaska Fairbanks. BNZ:530, http://www.lter.uaf.edu/data/data-detail/id/530.
İnceoǧlu, O., Hoogwout, E. F., Hill, P., & van Elsas, J. D. (2010). Effect of DNA extraction method on the apparent microbial diversity of soil. Applied and Environmental Microbiology , 76(10), 3378-3382.
Ingestad, T. (1980). Growth, nutrition, and nitrogen fixation in grey alder at varied rate of nitrogen addition. Physiologia Plantarum , 50(4), 353-364.
JMP 16. (2021). Consumer research. SAS Institute, Cary, North Carolina, USA.
Katoh, K., Misawa, K., Kuma, K. I., & Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research , 30(14), 3059-3066.
Kennedy, P. G., Schouboe, J. L., Rogers, R. H., Weber, M. G., & Nadkarni, N. M. (2010)a. Frankia and Alnus rubracanopy roots: an assessment of genetic diversity, propagule availability, and effects on soil nitrogen. Microbial Ecology , 59(2), 214-220.
Kennedy, P. G., Weber, M. G., & Bluhm, A. A. (2010)b. Frankiabacteria in Alnus rubra forests: genetic diversity and determinants of assemblage structure. Plant and Soil , 335(1), 479-492.
Kiers, E. T., Rousseau, R. A., West, S. A., & Denison, R. F. (2003). Host sanctions and the legume–rhizobium mutualism. Nature , 425(6953), 78-81.
Kiers, E. T., Rousseau, R. A., & Denison, R. F. (2006). Measured sanctions: legume hosts detect quantitative variation in rhizobium cooperation and punish accordingly. Evolutionary Ecology Research , 8(6), 1077-1086.
Kiers, E. T., & Denison, R. F. (2008). Sanctions, cooperation, and the stability of plant-rhizosphere mutualisms. Annual Review of Ecology, Evolution, and Systematics , 39, 215-236.
Kirk, J. L., Beaudette, L. A., Hart, M., Moutoglis, P., Klironomos, J. N., Lee, H., & Trevors, J. T. (2004). Methods of studying soil microbial diversity. Journal of Microbiological Methods , 58(2), 169-188.
Lipus, A., & Kennedy, P. G. (2011). Frankia assemblages associated with Alnus rubra and Alnusviridis are strongly influenced by host species identity.International Journal of Plant Sciences , 172(3), 403-410.
Markham, J. H. (2008). Variability of nitrogen-fixing Frankia onAlnus species. Botany 86(5), 501-510.
McInnes, A., Thies, J. E., Abbott, L. K., & Howieson, J. G. (2004). Structure and diversity among rhizobial strains, populations and communities–a review. Soil Biology and Biochemistry , 36(8), 1295-1308.
Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees inProceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA pp 1 - 8.
Miranda-Sánchez, F., Rivera, J., & Vinuesa, P. (2016). Diversity patterns of Rhizobiaceae communities inhabiting soils, root surfaces and nodules reveal a strong selection of rhizobial partners by legumes.Environmental Microbiology , 18(8), 2375-2391.
Mirza, B. S., Welsh, A., & Hahn, D. (2007). Saprophytic growth of inoculated Frankia sp. in soil microcosms. FEMS Microbiology Ecology , 62(3), 280-289.
Mirza, B. S., Welsh, A., & Hahn, D. (2009)a. Growth of Frankiastrains in leaf litter-amended soil and the rhizosphere of a nonactinorhizal plant. FEMS Microbiology Ecology , 70(1), 132-141.
Mirza, B. S., Welsh, A., Rasul, G., Rieder, J. P., Paschke, M. W., & Hahn, D. (2009)b. Variation in Frankia populations of theElaeagnus host infection group in nodules of six host plant species after inoculation with soil. Microbial Ecology , 58(2), 384-393.
Mirza, B. S., Welsh, A., Rieder, J. P., Paschke, M. W., & Hahn, D. (2009)c. Diversity of frankiae in soils from five continents.Systematic and Applied Microbiology , 32(8), 558-570.
Noë, R., & Hammerstein, P. (1995). Biological markets. Trends in Ecology & Evolution , 10(8), 336-339.
Normand, P., Orso, S., Cournoyer, B., Jeannin, P., Chapelon, C., Dawson, J., … & Misra, A. K. (1996). Molecular phylogeny of the genusFrankia and related genera and emendation of the family Frankiaceae. International Journal of Systematic and Evolutionary Microbiology , 46(1), 1-9.
Normand, P., Simonet, P., & Bardin, R. (1988). Conservation ofnif sequences in Frankia . Molecular and General Genetics 213(2), 238-246.
Nouioui, I., Ghodhbane-Gtari, F., Beauchemin, N. J., Tisa, L. S., & Gtari, M. (2011). Phylogeny of members of the Frankia genus based on gyrB, nifH and glnII sequences. Antonie Van Leeuwenhoek , 100(4), 579-587.
Oono, R., & Denison, R. F. (2010). Comparing symbiotic efficiency between swollen versus nonswollen rhizobial bacteroids. Plant Physiology , 154(3), 1541-1548.
Parker, M. P. (1995). Plant fitness variation caused by different mutualist genotypes. Ecology , 76(5), 1525-1535.
Pawlowski, K., & Demchenko, K. N. (2012). The diversity of actinorhizal symbiosis. Protoplasma , 249(4), 967-979.
Pawlowski, K., & Sprent, J. I. (2008). Comparison between actinorhizal and legume symbiosis. In Nitrogen-fixing actinorhizal symbioses (pp. 261-288). Springer, Dordrecht.
Piex, A., Ramirez-Behena, M.H., Valazquez, E., & Bedmar, E.J. (2015). Bacterial associations with legumes. Critical Reviews in Plant Sciences 34(1-3), 17-42.
Pozzi, A. C., Bautista-Guerrero, H. H., Nouioui, I., Cotin-Galvan, L., Pepin, R., Fournier, P., … & Herrera-Belaroussi, A. (2015). In-planta sporulation phenotype: a major life history trait to understand the evolution of Alnus - infective Frankia strains.Environmental Microbiology , 17(9), 3125-3138.
Pozzi, A. C., Bautista-Guerrero, H. H., Abby, S. S., Herrera-Belaroussi, A., Abrouk, D., Normand, P., … & Fernandez, M. P. (2018)a. RobustFrankia phylogeny, species delineation and intraspecies diversity based on Multi-Locus Sequence Analysis (MLSA) and Single-Locus Strain Typing (SLST) adapted to a large sample size. Systematic and Applied Microbiology , 41(4), 311-323.
Pozzi, A. C., Roy, M., Nagati, M., Schwob, G., Manzi, S., Gardes, M., … & Fernandez, M. P. (2018)b. Patterns of diversity, endemism and specialization in the root symbiont communities of alder species on the island of Corsica. New Phytologist , 219(1), 336-349.
Prat, D. (1989). Effects of some pure and mixed Frankia strains on seedling growth in different Alnus species. Plant and Soil , 113(1), 31-38.
Qiu, X., Wu, L., Huang, H., McDonel, P. E., Palumbo, A. V., Tiedje, J. M., & Zhou, J. (2001). Evaluation of PCR-generated chimeras, mutations, and heteroduplexes with 16S rRNA gene-based cloning. Applied and Environmental Microbiology , 67(2), 880-887.
Radwan, M. A. (1987). Effects of fertilization on growth and foliar nutrients of red alder seedlings (Vol. 375). US Department of Agriculture, Forest Service, Pacific Northwest Research Station.
Robe, P., Nalin, R., Capellano, C., Vogel, T. M., & Simonet, P. (2003). Extraction of DNA from soil. European Journal of Soil Biology , 39(4), 183-190.
Rocha, E. P. (2018). Neutral theory, microbial practice: challenges in bacterial population genetics. Molecular Biology and Evolution , 35(6), 1338-1347.
Rodriguez, D., Guerra, T. M., Forstner, M. R., & Hahn, D. (2016). Diversity of Frankia in soil assessed by Illumina sequencing of nifH gene fragments. Systematic and Applied Microbiology , 39(6), 391-397.
Roff, D. A., & Fairbairn, D. J. (2007). The evolution of trade-offs: where are we?. Journal of Evolutionary Biology , 20(2), 433-447.
Ruess, R. W., Anderson, M. D., McFarland, J. M., Kielland, K., Olson, K., & Taylor, D. L. (2013). Ecosystem‐level consequences of symbiont partnerships in an N‐fixing shrub from interior Alaskan floodplains. Ecological Monographs, 83(2), 177-194.
Sachs, J. L., Mueller, U. G., Wilcox, T. P., & Bull, J. J. (2004). The evolution of cooperation. The Quarterly Review of Biology , 79(2), 135-160.
Sachs, J. L., & Simms, E. L. (2006). Pathways to mutualism breakdown.Trends in Ecology and Evolution , 21(10), 585-592.
Sachs, J. L., Ehinger, M. O., & Simms, E. L. (2010). Origins of cheating and loss of symbiosis in wild Bradyrhizobium .Journal of Evolutionary Biology , 23(5), 1075-1089.
Sachs, J. L., Skophammer, R. G., Bansal, N., & Stajich, J. E. (2014). Evolutionary origins and diversification of proteobacterial mutualists.Proceedings of the Royal Society B: Biological Sciences , 281(1775), 20132146.
Sáenz, J. S., Roldan, F., Junca, H., & Arbeli, Z. (2019). Effect of the extraction and purification of soil DNA and pooling of PCR amplification products on the description of bacterial and archaeal communities.Journal of Applied Microbiology , 126(5), 1454-1467.
Samant, S. S., Dawson, J. O., & Hahn, D. (2015). Growth responses of indigenous Frankia populations to edaphic factors in actinorhizal rhizospheres. Systematic and Applied Microbiology , 38(7), 501-505.
Samant, S., Huo, T., Dawson, J. O., & Hahn, D. (2016). Abundance and relative distribution of Frankia host infection groups under actinorhizal Alnus glutinosa and non-actinorhizalBetula nigra trees. Microbial Ecology , 71(2), 473-481.
Sanchez-Cid, C., Tignat-Perrier, R., Franqueville, L., Delaurière, L., Schagat, T., & Vogel, T. M. (2022). Sequencing depth has a stronger effect than DNA extraction on soil bacterial richness discovery.Biomolecules , 12(3), 364.
Schloss, P. D., Gevers, D., & Westcott, S. L. (2011). Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PloS One , 6(12), e27310.
Schloss P. D., Wescott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J., & Weber, C. F. (2009). Introducing mother: Open-source, platform-independet, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology , 75(23), 7537-41.
Sellstedt, A., Huss-Danell, K., & Ahlqvist, A. S. (1986). Nitrogen fixation and biomass production in symbioses between Alnusincana and Frankia strains with different hydrogen metabolism. Physiologia Plantarum , 66(1), 99-107.
Simms, E. L., & Taylor, D. L. (2002). Partner choice in nitrogen-fixation mutualisms of legumes and rhizobia. Integrative and Comparative Biology , 42(2), 369-380.
Simms, E. L., Taylor, D. L., Povich, J., Shefferson, R. P., Sachs, J. L., Urbina, M., & Tausczik, Y. (2006). An empirical test of partner choice mechanisms in a wild legume–rhizobium interaction. Proceedings of the Royal Society B: Biological Sciences, 273(1582), 77-81.
Simonet, P., Thi Le, N., Moiroud, A., & Bardin, R. (1989). Diversity ofFrankia strains isolated from a single alder stand. Plant and Soil , 118(1), 13-22.
Sipos, R., Székely, A., Révész, S., & Márialigeti, K. (2010). Addressing PCR biases in environmental microbiology studies. In Bioremediation (pp. 37-58). Humana Press.
Speksnijder, A. G., Kowalchuk, G. A., De Jong, S., Kline, E., Stephen, J. R., & Laanbroek, H. J. (2001). Microvariation artifacts introduced by PCR and cloning of closely related 16S rRNA gene sequences.Applied and Environmental Microbiology , 67(1), 469-472.
Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics , 30(9), 1312-1313.
Stewart, W. D. P., & Bond, G. (1961). The effect of ammonium nitrogen on fixation of elemental nitrogen in Alnus and Myrica .Plant and Soil , 14(4), 347-359.
Swensen, S. M., & Benson, D. R. (2008). Evolution of actinorhizal host plants and Frankia endosymbionts. In:Nitrogen Fixation: Origin, Applications, and Research Progress, Vol. 6 Nitrogen-Fixing Actinorhizal Symbioses (eds Pawlowski K, Newton WE) Springer, Dordrecht, The Netherlands.
Taylor, D. L., Herriott, I. C., Long, J., & O’Neill, K. (2007). TOPO TA is A-OK: a test of phylogenetic bias in fungal environmental clone library construction. Environmental Microbiology , 9(5), 1329-1334.
Van Cleve, K. V., Dyrness, C. T., Marion, G. M., & Erickson, R. (1993). Control of soil development on the Tanana River floodplain, interior Alaska. Canadian Journal of Forest Research , 23(5), 941-955.
van Elsas, J. D., & Boersma, F. G. H. (2011). A review of molecular methods to study the microbiota of soil and the mycosphere.European Journal of Soil Biology , 47(2), 77-87.
Vemulapally, S., Guerra, T., & Hahn, D. (2022)a. Effect of differentAlnus taxa on abundance and diversity of introduced and indigenous Frankia in soils and root nodules. FEMS Microbiology Ecology , 98(3), fiac020.
Vemulapally, S., Guerra, T., Weckerly, F. W., & Hahn, D. (2022)b. Competition of two inoculated Frankia strains in root nodulation of Alnus glutinosa seedlings and associatedFrankia -strain growth in rhizospheric and non-rhizospheric soils.Plant and Soil , 474(1), 115-124.
Vessey, J. K., Pawlowski, K., & Bergman, B. (2005). Root-based N2-fixing symbioses: Legumes, actinorhizal plants,Parasponia sp. and cycads. Plant and Soil 274(1), 51-78.
Vitousek, P. M., Cassman, K. E. N., Cleveland, C., Crews, T., Field, C. B., Grimm, N. B., … & Sprent, J. I. (2002). Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry, 57(1), 1-45.
Wall, L. G., & Berry, A. M. (2008). Early interactions, infection and nodulation in actinorhizal symbiosis. In Nitrogen-fixing actinorhizal symbioses (pp. 147-166). Springer, Dordrecht.
Werner, G. D., Strassmann, J. E., Ivens, A. B., Engelmoer, D. J., Verbruggen, E., Queller, D. C., … & Kiers, E. T. (2014). Evolution of microbial markets. Proceedings of the National Academy of Sciences , 111(4), 1237-1244.
Welsh, A. K., Dawson, J. O., Gottfried, G. J., & Hahn, D. (2009)a. Diversity of Frankia populations in root nodules of geographically isolated Arizona alder trees in central Arizona (United States). Applied and Environmental Microbiology , 75(21), 6913-6918.
Welsh, A., Mirza, B. S., Rieder, J. P., Paschke, M. W., & Hahn, D. (2009)b. Diversity of frankiae in root nodules of Morellapensylvanica grown in soils from five continents.Systematic and Applied Microbiology , 32(3), 201-210.
West, S. A., Kiers, E. T., Simms, E. L., & Denison, R. F. (2002). Sanctions and mutualism stability: why do rhizobia fix nitrogen?Proceedings of the Royal Society B 269(1492), 685-694.
Wheeler, C. T., & Miller, I. M. (1990). Current and potential uses of actinorhizal plants in Europe. In The Biology of Frankiaand Actinorhizal Plants . (eds. C.R. Schwintzer & J.D. Tjepkema) Academic Press, San Diego, CA.
TABLES